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Abstract: In this paper, we study the existence and multiplicity of solutions for a class of quasi-linear elliptic problems
driven by a nonlocal integro-differential operator with homogeneous Dirichlet boundary conditions. As a particular case,
we study the following problem: {

(−∆)spu = f(x, u) in Ω,
u = 0 in RN \ Ω,

where (−∆)sp is the fractional p-Laplacian operator, Ω is an open bounded subset of RN with Lipschitz boundary and
f : Ω×R → R is a generic Carathéodory function satisfying either a p−sublinear or a p−superlinear growth condition.
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1. Introduction
In recent decades, fractional and nonlocal problems have attracted considerable attention. The basic operator
involved in this kind of problems is the so-called fractional Laplacian (−∆)s with s ∈ (0, 1) . This operator and
its generalization appear in many areas of mathematics, such as harmonic analysis, probability theory, potential
theory, quantum mechanics, statistical physics, and cosmology, as well as in many applications, see, for instance
[3, 6, 19] and the references therein.

Lately, many works are devoted to the study of existence, nonexistence and regularity of solutions for
nonlocal elliptic equations; we refer the interested reader to [10, 11, 13, 16, 20, 22]-[26] and the references therein.

In this paper we are concerned with the existence and multiplicity of solutions for the following problem:

{
Lp
Ku = f(x, u) in Ω,

u = 0 in RN \ Ω, (1.1)

where Lp
K is the non local operator defined as follows:

Lp
Kφ(x) = lim

ϵ→0+
2

∫
RN\Bϵ(x)

|φ(x)− φ(y)|p−2(φ(x)− φ(y))K(x− y)dy, x ∈ RN ,

along any φ ∈ C∞
0 (RN ) , where Bϵ(x) denotes the ball in RN of radius ϵ > 0 at the center x ∈ RN and
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K : RN \ {0} → R+ is a measurable function with the following property:


mK ∈ L1(RN ), where m = min{1, |x|p},
∃ s ∈ (0, 1),K0 > 0 : K(x) ≥ K0|x|−(N+sp), a.e. in RN \ {0},
K(−x) = K(x), a.e. in RN \ {0}.

(1.2)

Throughout the paper, we assume that s ∈ (0, 1), N > sp, p ∈ (1,+∞), r ∈ (p, p⋆s) where p∗s = Np
N−sp and the

condition (1.2) is fulfilled.

A typical example for K is given by the singular kernel K(x) = |x|−(N+ps) . In this case, the operator
Lp
K becomes the fractional p-Laplacian denoted by (−∆)sp and problem (1.1) is equivalent to

{
(−∆)spu = f(x, u) in Ω,
u = 0 in RN \ Ω. (1.3)

When p = 2 , the operator (−∆)sp reduces to the usual linear fractional Laplacian operator (−∆)s .

Recently, Servadei and Valdinoci [16] considered the problem (1.3) . Under suitable conditions on the
growth of the nonlinearity f , mainly the Ambrosetti–Rabinowitz growth condition, they got the existence of
nontrivial weak solutions for problem (1.3) . The same conclusion is obtained by Ambrosio in [2] by relaxing
the Ambrosetti–Rabinowitz condition.

Later, Iannizzotto et al. [11] examined the following problem

{
(−∆)spu = λ|u|p−2u+ f(x, u) in Ω,
u = 0 in RN \ Ω. (1.4)

By means of Morse theory and the spectral properties of the operator (−∆)sp , they proved the existence of
a nonzero solution for (1.4) for all λ ∈ R . They treated, respectively, the cases where f is p -superlinear,
p−sublinear or asymptotically p -linear. Using the same tools, Ho et al. extended the above results in [12]
to potentials of the form f(x, u) = λh(x)|u|p−2u + k(x)|u|r−2u + g(x, u) where h and k are two measurable
functions belong to a class of singular weights (for more details see [12]).

Newly, in [20, 22]-[24], the authors studied the existence and multiplicity of solutions for fractional Kirch-
hoff problems involving different kinds of nonlinearities: logarithmic, superquadratic or critical. Their study is
mainly based on the use of the Nehari manifold approach and variational arguments.

In the present paper, motivated by the above papers, we study the existence of weak solutions for the
problem (1.1) involving more general nonlocal fractional operators with various classes of nonlinearities includ-
ing those of the form f(x, u) = λV (x)|u|p−2u+ µg(x)|u|r−2u+ g(x, u) via critical point theory.

This paper is organized as follows: In Section 2, we present the variational framework of problem (1.1)

and some preliminary results. In Section 3, we treat the case of p−sublinear nonlinearities. Section 4 is devoted
to study the case of p−superlinear and subcritical nonlinearities.
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2. Functional framework
Throughout the paper we assume that Ω ⊂ RN is a bounded Lipschitz domain, p ∈ (1,+∞) and s ∈ (0, 1) .
We consider the space

X = {v ∈ Lp(RN ) :

∫∫
R2N

|v(x)− v(y)|pK(x− y)dx dy < ∞},

endowed with the norm
∥v∥X = |v|Lp(RN ) + [v]s,p,K ,

where

[v]s,p,K =

(∫∫
R2N

|v(x)− v(y)|pK(x− y)dx dy

) 1
p

.

Lemma 2.1 ([24]) (X, ∥.∥X) is a separable and reflexive Banach space.

In the following, we denote Q = R2N \ O , where O = C(Ω) × C(Ω) ⊂ R2N , and C(Ω) = RN \ Ω . We
shall work in the closed linear subspace

X0 =
{
u ∈ X : u(x) = 0 a.e. in RN \ Ω

}
,

endowed with the norm

∥u∥ := [u]s,p,K =

(∫∫
Q

∣∣u(x)− u(y)
∣∣pK(x− y) dx dy

)1/p

.

Then (X0, ∥.∥) is a separable and reflexive Banach space, (see [24]). Moreover, C∞
0 (Ω) is dense in X0 , (see

[9]).

Lemma 2.2 ([8]) Let K : RN \ {0} → R+ satisfies (1.2) and let (vi) be a bounded sequence in X0 . Then
there exists v ∈ Lν(RN ) with v = 0 a.e. in RN \ Ω such that, up to subsequence,

vi → v strongly in Lν(RN ),∀ ν ∈ [1, p⋆s).

Furthermore, there is a constant Cν > 0 such that

|v|Lν(Ω) ≤ Cν [v]s,p,K ,∀v ∈ X0.

Lemma 2.3 Under the assumption (1.2) , we have

(a) Lp
K : X0 → X ′

0 is a continuous, bounded and strictly monotone operator.

(b) Lp
K is a mapping of (S+) , i.e. if vn ⇀ v and Lp

K(vn).(vn − v) → 0, then

vn → v strongly in X0.
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Proof Let us prove part (a) , by the Hölder inequality, for all v, w ∈ X0 we have:

|Lp
K(v).w| ≤

∫∫
Q

|v(x)− v(y)|p−1|w(x)− w(y)||K(x− y)|
p−1
p |K(x− y)|

p−1
p dx dy,

≤
(∫∫

Q

|v(x)− v(y)|pK(x− y)dx dy

) p−1
p

(∫∫
Q

|w(x)− w(y)|pK(x− y)dx dy

) 1
p

,

≤ [v]p−1
s,p,K [w]s,p,K .

Hence ∥Lp
K(v)∥⋆ ≤ [v]p−1

s,p,K .
Let us now recall the well-known Simon inequality (see [24]): For all ξ, ς ∈ R , there exists κp > 0 such that

κp(|ξ|p−2ξ − |ς|p−2ς)(ξ − ς) ≥
{

|ξ − ς|p if p ≥ 2
|ξ − ς|2(|ξ|+ |ς|)p−2if 1 < p < 2.

(2.1)

By inequality (2.1) , it is easy to see that the operator Lp
K is strictly monotone.

For part (b) , we know that if vn ⇀ v then

lim
n→+∞

(Lp
K(vn)− Lp

K(v), vn − v) = lim
n→+∞

(Lp
K(vn), vn − v)− (Lp

K(v), vn − v) = 0.

Using (2.1) , we obtain, for p ≥ 2 ,

[vn − v]ps,p,K ≤ κp(Lp
K(vn)− Lp

K(v), vn − v) = o(1).

For 1 < p < 2 , let wn(x, y) = vn(x)− vn(y), w(x, y) = v(x)− v(y), so, we get

[vn − v]ps,p,K =

∫∫
Q

|wn(x, y)− w(x, y)|pK(x− y) dx dy,

≤ κ
p
2
p

∫∫
Q

(
(|wn|p−2wn − |w|p−2w)(wn − w)

) p
2

(
|wn|+ |w|

(2−p)p
2

)
K(x− y)dxdy,

≤ κ
p
2
p

(∫∫
Q

(|wn|p−2wn − |w|p−2w)(wn − w)K(x− y) dx dy

) p
2

,

×
(∫

Q

(|wn|+ |w|)pK(x− y) dx dy

) 2
2−p

,

≤ κ
p
2
p (Lp

K(vn)− Lp
K(v), vn − v)

p
2 ×

(∫∫
Q

(|wn|+ |w|)pK(x− y) dx dy

) 2
2−p

= o(1).

Then vn → v in X0 as n → +∞ , i.e. Lp
K is of type (S+) . 2

Since X0 is separable, there exist (en) ⊂ X0 and (fn) ⊂ X ′
0 such that (see [28], Section 17)

X0 = span{en}n≥1, X ′
0 = span{fn}n≥1, < fi, ej >=

{
1 if i = j,
0 if i ̸= j.
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Let

Xn = span{en}, Yn =

n⊕
k=1

Xk, Zn =

+∞⊕
k=n

Xk. (2.2)

Lemma 2.4 Let δ > 0 and for any n ∈ N ,

βn = sup{|u|Lq(Ω), u ∈ Zn : ∥u∥ ≤ δ}.

Then βn → 0 as n → +∞ .

Proof By definition of Zn , we have Zn+1 ⊂ Zn , and consequently 0 < βn+1 ≤ βn for any n ∈ N . Hence
there exists β ≥ 0 such that

βn → β, as n −→ +∞.

Moreover, by the definition of βn , for any n ∈ N there exists un ∈ Zn such that

∥un∥ ≤ δ and |un|Lq(Ω) >
βn

2
. (2.3)

Since X0 is a reflexive space, there exist u∞ ∈ X0 and a subsequence of (un) (still denoted by un ) such that
un ⇀ u∞ . Since each of Zn is convex and closed, hence it is closed for the weak topology. Consequently,

u∞ ∈
+∞⋂
n=1

Zn = {0}.

By the Sobolev embedding theorem, we get

un → 0 in Lq(Ω). (2.4)

Since β is nonnegative, from (2.3) and (2.4) we get that βn → 0 as n → +∞ which completes the proof of
Lemma 2.4. 2

Next, we need the following results in critical point theory.

Theorem 2.5 ([7]) Let (X, ∥.∥) be a reflexive Banach space and J : X −→ R be a functional which is weakly
lower semicontinuous and coercive, namely

J (u) → +∞ as ∥u∥ → +∞.

Then J is bounded from below and attains its minimum.

Theorem 2.6 (Mountain Pass Theorem [1])
Let (X, ∥.∥) be a real Banach space and J ∈ C1(X,R) . Suppose that J satisfies the Palais–Smale condition
and

(a) J (0) = 0 .
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(b) ∃ ρ, γ > 0 : J (u) ≥ γ, ∀u ∈ X with ∥u∥ = ρ .

(c) ∃ e ∈ X,R > 0 : ∥e∥ = R and J (e) < 0 .

Then J possesses a critical value c > γ which can be characterized as

c = inf
g∈Γ

max
t∈[0,1]

J (g(t)),

where
Γ = {g ∈ ([0, 1], X) : g(0) = 0, g(1) = e}.

Theorem 2.7 (Fountain Theorem [21])
Let (X, ∥.∥) be a reflexive and separable Banach space, J ∈ C1(X,R) be an even functional and the subspaces
Xn, Yn, Zn as defined in (2.2) .
If for each n ∈ N , there exists ρn > rn > 0 such that

(a) infu∈Zn,∥u∥=rn J (u) → +∞ as n → +∞ ,

(b) maxu∈Yn,∥u∥=ρn
J (u) ≤ 0 ,

(c) J satisfies the Palais–Smale condition at any level c > 0 .

Then J has a sequence of critical values tending to +∞ .

Let (X, ∥.∥) be a real Banach space and let Σ(X) denote the class of closed subsets of X\{0} symmetric
with respect to the origin. A nonempty set A ∈ Σ is said to have genus k (denoted γ(A) = k ) if k is the
smallest integer with the property that there exists an odd continuous mapping h : A −→ Rk \ {0} . If such an
integer does not exist, γ(A) = +∞ . For properties and more details of the notion of genus we refer the reader
to [1].

Theorem 2.8 ([1]) Let (X, ∥.∥) be a Banach space and J ∈ C1(X,R) be an even functional satisfying the
Palais–Smale condition and J (0) = 0 . Set, for all n ∈ N ,

Σn(X) = {A ∈ Σ(X) : γ(A) ≥ n},

K(c) = {u ∈ X : J (u) = c and J ′(u) = 0},

cn = inf
A∈Σn(X)

sup
u∈A

J (u), n ∈ N.

If for all n ∈ N,−∞ < cn < 0 then each cn is a critical value of J , cn ≤ cn+1 < 0 for all n ∈ N . Moreover,
if there exists k ∈ N such that cn = cn+1 = ... = cn+k , then γ(K(cn)) ≥ n+ 1 .

3. p-sublinear case
In this section, we investigate the existence of solutions for the following problem{

Lp
Ku(x) = f(x, u(x)) in Ω,

u = 0 in RN \ Ω.
(3.1)
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Suppose that f : Ω× R → R is a Carathéodory function satisfying:
(H1) there exist q ∈ (1, p), b > 0, a ∈ Lq′(Ω), a ≥ 0 a.e. in Ω such that

|f(x, t)| ≤ a(x) + b|t|q−1, for all t ∈ R, and a.e. x ∈ Ω,

where q′ ∈ (1,+∞) such that 1
q + 1

q′ = 1.

In [15], H. Qiu and M. Xiang used Leray-Schauder’s nonlinear alternative to prove the existence of a
weak solution for (3.1) under the p−sublinear condition (H1) . The problem is also studied in [11] via Morse
theory. Here, we treat the problem (3.1) using variational techniques and a minimisation argument. Moreover,
we give a result of multiplicity in case of odd potential.

The corresponding energy functional of the problem (3.1) is

I(u) =
1

p
∥u∥p −

∫
Ω

F (x, u(x)) dx,

where F denotes the primitive function of f with respect to the second variable,i.e., F (x, t) =
∫ t

0
f(x, ξ) dξ .

We notice that, under the condition (H1) , I is a C1 functional and the critical points of I are weak solutions
of the problem (3.1) . Moreover,

Lemma 3.1 Under the condition (H1) , the functional I satisfies the Palais–Smale condition.

Proof Let the sequence (un) ⊂ X0 be such that

(I(un)) is bounded, I ′(un) → 0, as n −→ +∞.

By (H1) we have

I(un) =
1

p
∥un∥p −

∫
Ω

F (x, un(x))dx,

≥ 1

p
∥un∥p −

b Cq
q

q
∥un∥q − Cq|a|Lq′ (Ω)∥un∥.

From p > q > 1 and the last inequality we deduce that the sequence (un) is bounded in X0 . Since X0 is a
reflexive space, up to a subsequence, still denoted by (un) , there exists u ∈ X0 such that un ⇀ u weakly in
X0 .
Firstly, we have

I ′(un).(un − u) = Lp
K(un).(un − u)−

∫
Ω

f(x, un)(un − u)dx.
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By Lemma 2.2, un → u strongly in Lq(Ω) . Moreover,

|
∫
Ω

f(x, un(x))(un(x)− u(x))dx| ≤
∫
Ω

|f(x, un(x))||un(x)− u(x)|dx,

≤
∫
Ω

|a(x)||un(x)− u(x)|dx

+ b

∫
Ω

|un(x)|q−1|un(x)− u(x)|dx,

≤ |a|Lq′ (Ω)|un − u|Lq(Ω) + b|un|q−1
Lq(Ω)|un − u|Lq(Ω).

Then

lim
n→+∞

∫
Ω

f(x, un(x))(un(x)− u(x))dx = 0. (3.2)

Hence
Lp
K(un).(un − u) → 0,

and by Lemma 2.3 we have un → u strongly in X0 . 2

Theorem 3.2 Under the condition (H1) and
(H2) there exist δ > 0, d > 0 , and 1 < θ < p such that

f(x, t) ≥ dtθ−1 a.e. x ∈ Ω and 0 < t ≤ δ,

the problem (3.1) has at least one weak nontrivial solution.

The proof is based on the direct method of calculus of variation via Theorem 2.5

Proof By (H1) , I is weakly lower semicontinuous on X0 . Moreover, we have

I(u) ≥ 1

p
∥u∥p −

b Cq
q

q
∥u∥q − Cq|a|Lq′ (Ω)∥u∥. (3.3)

Since p > q > 1 , the latter gives the coercivity of I . Hence I attains its minimum on X0 and provides a weak
solution of (3.1) denoted by u0 .
It remains to prove that u0 ̸= 0. Let u ∈ C∞

0 (Ω) such that u ≥ 0, u ̸= 0 and |u|L∞(Ω) ≤ δ . Then, by (H2) , we
have for all t ∈ (0, 1) ,

I(tu) =
1

p
∥tu∥p −

∫
Ω

F (x, tu(x))dx,

≤ tp

p
∥u∥p − d

θ
tθ|u|θLθ(Ω),

≤ tp
(
∥u∥p

p
− d

θ
|u|θLθ(Ω)t

θ−p

)
.
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As 1 < θ < p , we can find t ∈ (0, 1) small enough such that I(tu) < 0 . Hence inf
v∈X0

I(v) = I(u0) < 0 and

accordingly u0 ̸= 0.

2

Now, we treat the question of multiplicity in case where the function f is odd.

Theorem 3.3 Suppose that f satisfies the conditions (H1), (H2) and
(H3) f(x,−t) = −f(x, t), for a.e. x ∈ Ω and for all t ∈ R .
Then problem (3.1) has a sequence of weak solutions (un) ⊂ X0 such that

I(un) < 0 and I(un) → 0 as n → +∞.

Proof
First of all, by Lemma 3.1, we know that I satisfies the Palais–Smale condition. Moreover, by (H3) , I

is an even functional. Now, for any n ∈ N , we can choose a n−dimentional linear subspace Xn ⊂ X0 such that
Xn ⊂ C∞

0 (Ω) . As the norms on Xn are equivalent, there exists ρn ∈ (0, 1) such that

∥u∥ ≤ ρn ⇒ |u|L∞(Ω) ≤ δ, u ∈ Xn.

Set
S(n)
ρn

= {u ∈ Xn : ∥u∥ = ρn}.

By (H2) , for u ∈ S
(n)
ρn and t ∈ (0, 1) , we have

I(tu) =
1

p
∥tu∥p −

∫
Ω

F (x, tu(x))dx,

≤ tp

p
ρpn − d

θ
tθ|u|θLθ(Ω),

≤ tp

p
ρpn − d̃nt

θ,

≤ d̃nt
p

(
ρpn

pd̃n
− tθ−p

)
.

As 1 < θ < p , we can find tn ∈ (0, 1) and ϵn > 0 such that

I(tnu) ≤ −ϵn < 0,∀u ∈ S(n)
ρn

,

that is
I(u) ≤ −ϵn < 0,∀u ∈ S

(n)
tnρn

.

We know that γ(S
(n)
tnρn

) = n (see [1]), so cn ≤ −ϵn < 0 . By Theorem 2.8, each cn is a critical value of I . Hence
there is a sequence of solutions (un) ⊂ X0 of (3.1) such that I(un) = cn < 0 .
It remains to prove that cn → 0 as n → +∞ . By the coerciveness of I , there exists a constant γ > 0 such
that I(u) > 0 when ∥u∥ ≥ γ . Taking arbitrary A ∈ Σn , then γ(A) ≥ n . Let Yn, Zn the subspaces of X0 as
mentioned in (2.2) , according to the properties of genus (see [1]), we know that A ∩ Zn ̸= ∅ . Let

βn = sup{|u|Lq(Ω), u ∈ Zn : ∥u∥ ≤ δ}.
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By Lemma 2.4 we have βn → 0 as n → +∞ . When u ∈ Zn and ∥u∥ ≤ δ , we have

I(u) =
1

p
∥u∥p −

∫
Ω

F (x, u)dx ≥ −
∫
Ω

F (x, u(x))dx,

≥ −|a|Lq′ (Ω)|u|Lq(Ω) −
b

q
|u|qLq(Ω),

≥ −|a|Lq′ (Ω)βn − b

q
βq
n,

and then cn ≥ −|a|Lq′ (Ω)βn − b
qβ

q
n , which implies that cn → 0 as n → +∞ . 2

Remark 3.4 To the best knowledge of the authors, there are only few works treating problem (3.1) with p-
sublinear nonlinearity (see [10, 11, 15]). In [15], the authors established the existence of a weak solution under
the condition (H1) but they are unable to check its nontriviality due to the method used (Leray-Schauder’s
nonlinear alternative). In [11], the authors proved the existence and multiplicity of solutions for the problem
(3.1) in the coercive case, including the case when f(x, .) is p−sublinear at infinity. They used Morse theory
and suppose, among others assumption, F (t, x) ≥ 0 for a.e. in Ω and for all t ∈ R , which is very restrictive
compared to our assumptions. Earlier, in the paper [10], by means of critical point theory, the authors treated
the case of fractional Laplacian equations for reaction term f with sublinear growth and oscillatory behavior.
They established the existence and multiplicity of positive, negative and sign changing solutions. In Theorem 3.2
and Theorem 3.3, we generalize and complete the above works by involving more general operators or weakening
the assumptions on the reaction term.

4. p-superlinear case

In this section, we study the existence and multiplicity of solutions for the following problem{
Lp
Ku(x) = λV (x)|u|p−2u+ µg(x)|u|r−2u+ f(x, u(x)) in Ω,

u = 0 in RN \ Ω,
(4.1)

where V : Ω → R and g : Ω → R are two measurable functions satisfying:

(V) there exists V0 > 0 such that |V (x)| ≤ V0 a.e. in Ω ,

(G) there exists g > 0 such that 0 < g(x) ≤ g a.e. in Ω .

In a recent paper the authors of [11] considered the fractional problem

{
(−∆p)

su(x) = λ|u|p−2u+ g(x, u(x)) in Ω,

u = 0 in RN \ Ω,
(4.2)

where the primitive function of g with respect to the second variable satisfies the usual Ambrosetti–Rabinowitz
p−superquadratic growth condition and does not change sign near the origin. They provide existence and
multiplicity results as well as characterization of critical groups of the variational functional associated to
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problem (4.2) .
More recently, the authors of [12], considered the following problem

{
(−∆p)

su(x) = λh(x)|u|p−2u+ k(x)|u|r−2u+ f(x, u(x)) in Ω,

u = 0 in RN \ Ω,
(4.3)

with weights which are possibly singular on the boundary of the domain. Using Morse theory and some Hardy-
type inequalities, the authors proved the existence and multiplicity of solutions for (4.3) .
Here, motivated by the above works, we consider the more general problem (4.1) with a p−sublinear pertur-
bation of a p−superlinear and subcritical nonlinearity with bounded weights.

For all λ, µ > 0 , define Φλ,µ : X0 → R by

Φλ,µ(u) =
1

p
∥u∥p − λ

p

∫
Ω

V (x)|u(x)|p dx− µ

r

∫
Ω

g(x)|u(x)|r dx−
∫
Ω

F (x, u)dx.

Under the conditions (H1), (V ) and (G) , Φλ,µ ∈ C1(X0,R) and for all u, v ∈ X0 we have

Φ′
λ,µ(u).v = Lp

Ku.v − λ

∫
Ω

V (x)|u|p−2u(x)v(x) dx− µ

∫
Ω

g(x)|u|r−2u(x)v(x) dx−
∫
Ω

f(x, u(x))v(x)dx.

Denote by

λ1 = inf
u∈X0

∥u∥p

|u|pLp(Ω)

≥ 1

Cp
p
.

Lemma 4.1 Under the conditions (H1), (V ) and (G) , for all λ ∈ (0, λ1

V0
) , Φλ,µ satisfies the Palais–Smale

condition.

Proof Let (un) ⊂ X0 such that (Φλ,µ(un)) is bounded and and Φ′
λ(un) → 0. By (H1) and (V ) , we get

rΦλ,µ(un)− Φ′
λ,µ(un).un = (

r

p
− 1)∥un∥p − (

r

p
− 1)λ

∫
Ω

V (x)|un(x)|pdx

+

∫
Ω

(f(x, un)un − rF (x, un(x)) dx,

≥ (
r

p
− 1)

(
∥un∥p − V0λ|un|pLp(Ω)

)
− (r + 1)

(
|a|Lq′ (Ω)Cq∥un∥

)
− (r + 1)bCq

q∥un∥q,

≥ (
r

p
− 1)

(
1− V0λ

λ1

)
∥un∥p − (r + 1)

(
|a|Lq′ (Ω)Cq∥un∥

)
− (r + 1)bCq

q∥un∥q.

Now λ < λ1

V0
and r > p > q > 1 give that (un) is bounded in X0 . Since X0 is reflexive space, up to a

subsequence, still denoted by (un) , there exists u ∈ X0 such that un ⇀ u weakly in X0 . By Lemma 2.2,
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un → u strongly in Lα(Ω) for all α ∈ [1, p⋆s) . Moreover, one has∣∣∣ ∫
Ω

g(x)|un(x)|r−2un(x)(un(x)− u(x))dx
∣∣∣ ≤ g|un|r−1

Lr(Ω)|un − u|Lr(Ω). (4.4)

∣∣∣ ∫
Ω

V (x)|un(x)|p−2un(x)(un(x)− u(x))dx
∣∣∣ ≤ V0|un|p−1

Lp(Ω)|un − u|Lp(Ω). (4.5)

Now, combining (3.2), (4.4) and (4.5) we get

lim
n→+∞

Lp
Kun.(un − u) = 0, (4.6)

and by Lemma 2.3 we have un → u strongly in X0 . 2

Lemma 4.2 If λ ∈ (0, λ1

V0
) , then, there exists µ⋆ > 0 such that for any µ ∈ (0, µ⋆) , we can choose ρ, γ > 0 so

that Φλ,µ(u) > γ for all u ∈ X0 with ∥u∥ = ρ .

Proof By (H1), (V ) and (G) and for all u ∈ X0 , we have

Φλ,µ(u) =
1

p
∥u∥p − λ

p

∫
Ω

V (x)|u(x)|p dx− µ

r

∫
Ω

g(x)|u(x)|r dx−
∫
Ω

F (x, u(x))dx,

≥ 1

p
∥u∥p − λ

p
V0|u|pLp(Ω) −

µ

r
g|u|rLr(Ω) − b|u|qLq(Ω) − |a|Lq′ (Ω)|u|Lq(Ω),

≥ 1

p
∥u∥p

(
1− V0λ

λ1

)
− µ

r
gCr

r∥u∥r − Cq
q b∥u∥q − |a|Lq′ (Ω)Cq∥u∥,

≥ ∥u∥p
(
1

p
(1− V0λ

λ1
)− bCq

q∥u∥q−p − Cq|a|Lq′ (Ω)∥u∥
1−p

)
− µ

r
gCr

r∥u∥r.

If λ < λ1

V0
, then there exists ρ > 0 such that bCq

qρ
q−p + Cq|a|Lq′ (Ω)ρ

1−p < 1
2p (1−

V0λ
λ1

) .

Now let u ∈ X0 be such that ∥u∥ = ρ , then

Φλ,µ(u) ≥
1

2p
(1− V0λ

λ1
)ρp − µ

r
gCr

rρ
r → 1

2p
(1− V0λ

λ1
)ρp > 0 as µ → 0.

Then, there exists µ⋆ > 0 such that for all µ ∈ (0, µ⋆) , Φλ,µ(u) = γ > 0 for all u ∈ X0 with ∥u∥ = ρ . 2

Lemma 4.3 There exist e ∈ X0, R > ρ such that ∥e∥ = R and Φλ,µ(e) < 0 .

Proof By (H1) , for all u ∈ X0 we have

Φλ,µ(u) =
1

p
∥u∥p − λ

p

∫
Ω

V (x)|u(x)|p dx− µ

r

∫
Ω

g(x)|u(x)|r dx−
∫
Ω

F (x, u(x))dx,

≤ 1

p
∥u∥p − λ

p

∫
Ω

V (x)|u(x)|p dx− µ

r

∫
Ω

g(x)|u(x)|r dx+

∫
Ω

a(x)|u(x)|dx,

+
b

q

∫
Ω

|u(x)|q dx.
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Now let t ≥ 0 , u0 ∈ X0 such that ∥u0∥ = 1 , then

Φλ,µ(tu0) ≤ tp

p
∥u0∥p −

tpλ

p

∫
Ω

V (x)|u0(x)|p dx− trµ

r

∫
Ω

g(x)|u0(x)|r dx

+ t

∫
Ω

a(x)|u0(x)|dx+
btq

q

∫
Ω

|u0(x)|q dx.

Hence
lim

t→+∞
Φλ,µ(tu0) = −∞. (4.7)

From (4.7) , there exists R > ρ such that Φλ,µ(Ru0) < 0 . Let e = Ru0 , then ∥e∥ = R and Φλ,µ(e) < 0 . 2

Theorem 4.4 Under the conditions (H1), (V ) and (G) , if λ ∈ (0, λ1

V0
) , then there exists µ⋆ > 0 such that for

all µ ∈ (0, µ⋆) , problem (4.1) has a nontrivial weak solution which corresponds to a positive critical value.

Proof According to Lemmas 4.1, 4.2 and 4.3, the functional Φλ,µ satisfies all the assumptions of the Mountain
Pass Theorem. Then, there exists u ∈ X0 a nontrivial critical point of the functional Φλ,µ with Φλ,µ(u) > 0

and thus a nontrivial weak solution of problem (4.1) . 2

Now, we show the existence of a sequence of weak solutions via Fountain Theorem.

Theorem 4.5 Under the conditions (H1), (H3), (V ), (G) and λ ∈ (0, λ1

V0
) , problem (4.1) admits a sequence of

weak solutions (un) ⊂ X0 , for all µ > 0 , such that

Φλ,µ(un) → +∞ as n → +∞.

Proof By (H3) , Φλ,µ is an even functional. Due to Lemma 4.1, we only need to verify conditions (a) and
(b) of Theorem 2.7. Let

β1
n = sup{|v|Lr(Ω), u ∈ Zn : ∥u∥ ≤ 1},

β2
n = sup{|v|Lp(Ω), u ∈ Zn : ∥u∥ ≤ 1},

β3
n = sup{|v|Lq(Ω), u ∈ Zn : ∥u∥ ≤ 1},

βn = max{βk
n, k = 1, 2, 3}.

According to Lemma 2.4, we have βn → 0 , as n → +∞ . From (H1), (V ) and (G) we have

Φλ,µ(u) =
1

p
∥u∥p − λ

p

∫
Ω

V (x)|u(x)|p dx− µ

r

∫
Ω

g(x)|u(x)|r dx−
∫
Ω

F (x, u(x))dx,

≥ 1

p
∥u∥p − λ

p
V0|u|pLp(Ω) −

µ

r
g|u|rLr(Ω) − b|u|qLq(Ω) − |a|Lq′ (Ω)|u|Lq(Ω),

≥ 1

p

(
1− V0λ

λ1

)
∥u∥p − µ

r
g∥u∥r

∣∣∣ u

∥u∥

∣∣∣r
Lr(Ω)

− b∥u∥q
∣∣∣ u

∥u∥

∣∣∣q
Lq(Ω)

− |a|Lq′ (Ω)∥u∥
∣∣∣ u

∥u∥

∣∣∣
Lq(Ω)

,

≥ 1

p

(
1− V0λ

λ1

)
∥u∥p − µ

r
g∥u∥rβr

n − b∥u∥qβq
n − |a|Lq′ (Ω)∥u∥βn.
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For each n ∈ N , let rn = 1
βn

, then rn → +∞ as n → +∞ .

Now if λ ∈ (0, λ1

V0
), u ∈ Zn with ∥u∥ = rn we get

Φλ,µ(u) ≥
1

p

(
1− V0λ

λ1

)
rpn − (

µ

r
g + b+ |a|Lq′ (Ω)) → +∞ as n → +∞.

Hence
lim

n→+∞
inf

u∈Zn,∥u∥=rn
Φλ,µ(u) = +∞.

For (b) , let u ∈ Yn we have

Φλ,µ(u) =
1

p
∥u∥p − λ

p

∫
Ω

V (x)|u(x)|p dx− µ

r

∫
Ω

g(x)|u(x)|r dx−
∫
Ω

F (x, u(x))dx,

≤ 1

p
∥u∥p + λ

p
V0|u|pLp(Ω) −

µ

r
|g 1

r u|rLr(Ω) + |a|Lq′ (Ω)|u|Lq(Ω) + b|u|qLq(Ω).

Since dim(Yn) < ∞ , the norms ∥.∥, |.|Lp(Ω), |g
1
r .|Lr(Ω), |.|Lq(Ω) are equivalent. As q < p < r , the last estimate

yields Φλ,µ(u) ≤ 0 for all u ∈ Yn with ∥u∥ large enough. This completes the proof of Theorem 4.5. 2

Remark 4.6 Compared to the results in [11, 12], a part the general character of the operator involved in
Theorem 4.4 and Theorem 4.5, note that the weight functions satisfy weaker conditions than those in [11, 12].
Especially the following assumptions in problem (4.3) ,

|{x ∈ Ω; h(x) > 0}| > 0 and inf
x∈Ω

k(x) > 0,

will be omitted. Hence, from this point of view, Theorems 4.4 and 4.5 complete the results in [11, 12] in case
of bounded weights.
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