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Abstract: In this article we discuss the factorisations of semigroups and monoids in the context of direct, semidirect and
Zappa–Szép products addressing the question of uniqueness. An equivalence between external and internal Zappa–Szép
product of groups and monoids is known, but no such correspondence exists for semigroups in general. We prove the
equivalence between external and internal Zappa–Szép product of semigroups subject to certain conditions in this article.
We end with some illustrative examples of the Zappa–Szép product of the bisimple inverse monoids.
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1. Introduction
Direct, semidirect and Zappa–Szép products, with each being a generalisation of its predecessor, are natural
notions used to compose and decompose algebraic structures such as groups, monoids and semigroups. These
constructions can be approached from two directions: internal and external- the two are closely related and
often form the first step behind the development of structure theorems.

Over recent years, semidirect and Zappa–Szép products have become significant tools for groups, monoids
and semigroups. Indeed, the Kaloujnine–Krasner Theorem [7] and the Krohn–Rhodes Theorem [8] have
established semidirect products as key players. Zappa–Szép products, on the other hand, have become very
useful in the construction of examples of C∗ -algebras of semigroups and topological groupoids [2, 3].

The concept of Zappa–Szép product was first studied by Neumann for groups, who used the terminology
general decompositions for these products [12]. Neumann pointed the equivalence between a general decom-
position G = HK and transitive actions of G with point stabilizer H and regular subgroup K . The first
systematic study of such constructions was done by Zappa in 1940 [21]. Further developments in the theory for
groups were made by Casadio [4], Redei [15] and Szép [16–19]. Redei introduced the term skew products for
Zappa–Szép products [15]. Szép initiated the study of similar products in setting other than groups in [18] and
[19]. Lavers who used the term general product, gave necessary and sufficient conditions for the Zappa–Szép
product of two finitely presented monoids to be finitely presented [10].

There is a correspondence between the external and internal Zappa–Szép products (and also direct and
semidirect products) of groups and monoids, but this is not true for semigroups in general. We discuss the
internal and external direct and semidirect products of monoids and semigroups in Sections 2 and 3, respectively.
We discuss some known results that describe the correspondence between external and internal direct and
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semidirect products of monoids and consider why such a correspondence for semigroups does not exist. We
discuss the conditions under which we get an equivalence for direct and semidirect products of semigroups

In Section 4, we consider the conditions under which we get an equivalence between external and internal
Zappa–Szép products of semigroups. We provide two proofs for this construction and will see that it generalises
results on semidirect products.

A semigroup S is called inverse if every element a ∈ S possesses a unique inverse in S , usually denoted
a−1 , in the sense that

a = aa−1a and a−1 = a−1aa−1.

Canonical examples of inverse semigroups are groups (possessing exactly one idempotent) and semilattices
(inverse semigroups all of whose elements are idempotent, which perforce possess the structure of a semilattice
in the ordered sense).

Green’s relations R , L , H , D and J are well known equivalence relations that characterise the
elements of a semigroup in terms of principal ideals they generate. If S is an inverse semigroup, then for
a, b ∈ S , a R b if and only if aa−1 = bb−1 . Dually, a L b if and only if a−1a = b−1b . The reader is referred
to [6] for further details concerning inverse semigroups and Green’s relations on such semigroups.

In Section 5, we provide examples of Zappa–Szép product of bisimple inverse monoids. A semigroup S is
called bisimple if it has a single D -class. In [5], Gould and Zenab studied Zappa–Szép products of semigroups
with well behaved structures determined by idempotents in the broader sense away from canonical situation of
inverse semigroups. They indicated the applications of their construction to bisimple inverse monoids. In this
article we show that how the theory in [5] works explicitly in the inverse case to provide the reader new insights
hidden in the broader sense.

We will denote the R -class of the identity of a monoid by R1 , L -class of the identity by L1 and the
H -class of the identity by H1 .

2. Direct products of monoids and semigroups

The notion of the direct product is one of the well known techniques to construct a new algebra from two given
ones. The structure theorem of finitely generated abelian groups demonstrates the importance of the direct
product construction. In this section we discuss the equivalence between external and internal direct products of
monoids and semigroups. We begin with the notion of the external direct product of two semigroups (monoids)
taken from category theory [11].

Definition 2.1 Let S , T and U be semigroups (monoids) and suppose

U S
p1 and U T

p2

are morphisms. We say that U is the external direct product of semigroups (monoids) S and T if for any
semigroup (monoid) U ′ and morphisms

U ′ S
f1 and U ′ T

f2
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there exists a unique morphism U ′ U
f making the following diagram commute:

U ′

S U T

f
f2

p1 p2

f1

From above definition we have (u′)f = ((u′)f1, (u
′)f2) , so that a point in U is determined by its S -coordinate

and T -coordinate. This is to say that p1 and p2 are projection morphisms and U is in one to one correspondence
with the Cartesian product S × T . Thus the universal property of product not only determines S × T as a set
but determines it up to isomorphism in the category of semigroups (monoids).

To give the definition of the internal direct product of semigroups, we first need to explain what we mean
by a uniquely factorisable semigroup.

Definition 2.2 Let U be a semigroup. We say that U is factorisable (with factors S and T ) if there are
subsemigroups S and T of U such that U = ST . If each element u ∈ U can be uniquely written as a product
of an element of S and an element of T , then we say that U is uniquely factorisable.

It is worth mentioning here that this is also the definition of an internal Zappa–Szép product which we will
discuss later in this paper.

If a semigroup U is uniquely factorisable as U = ST , then from [1, Lemma 3.4] there is an idempotent
e ∈ S∩T which is a right identity for S and a left identity for T . We provide an alternative proof of this result
in the following.

Lemma 2.3 Let U be a semigroup and suppose U is uniquely factorisable as U = ST , where S and T are
subsemigroups of U . Then there exists an idempotent e ∈ S ∩ T which is a right identity for S and a left
identity for T .

Proof Let s ∈ S . Then s can be written as s = uv for u ∈ S and v ∈ T . For t ∈ T , st = uvt for all t ∈ T

so that t = vt for all t ∈ T by uniqueness of factorisation. Thus v is a left identity for T and in particular
v = v2 .

Next as v ∈ T , so we can write v as v = pq for p ∈ S , q ∈ T . For w ∈ S wv = wpq for all w ∈ S so
that w = wp for all w ∈ S which implies p is a right identity for S and in particular, p = p2 , so that

v = pq = ppq = pv.

Dually, there exists an element l = l2 ∈ T which is a left identity for T and we can write p as p = pl . Now

v = pv
⇒ vl = pvl
⇒ l = pl because v is a left identity for T
⇒ l = p because p = pl.

Hence l = p = e ∈ S ∩ T which is a right identity for S and a left identity for T . 2

We now explain what we mean by an internal direct product of semigroups and monoids.
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Definition 2.4 Let U be a semigroup (monoid) and S and T are subsemigroups (submonoids) of U . Then
U is the internal direct product of S and T if:

(1) U is uniquely factorisable with factors S and T ;
(2) for all s ∈ S and for all t ∈ T , st = ts .

There is an equivalence between internal and external direct product of monoids and we state this result
without proof since the proof follows that for groups.

Proposition 2.5 Let U be a monoid and S, T be submonoids of U . Suppose U is the internal direct product
of S and T . Then U is isomorphic to the external direct product S × T .

Conversely, suppose that U = S × T is the external direct product of monoids S and T . Then there are
submonoids S′ and T ′ of U such that S ∼= S′ , T ∼= T ′ and U = S′T ′ is the internal direct product of S′ and
T ′ .

There is not such a complete equivalence between internal and external direct products of semigroups as
we have seen for monoids. One direction: from internal to external works as we now explain. When we consider
the internal direct product U = ST of semigroup U with subsemigroups S and T , then we notice that there
is an element e ∈ S ∩ T which becomes the identity of S and T and hence of U . Thus U is forced to be a
monoid with submonoids S and T as we see in the following lemma.

Lemma 2.6 Let U be a semigroup and S and T be subsemigroups of U . Suppose U is the internal direct
product of S and T . Then U is a monoid and S and T are submonoids of U .

Proof As U is uniquely factorisable, so by Lemma 2.3, there exists an element e ∈ S ∩ T such that se = s

for all s ∈ S and et = t for all t ∈ T .
We note that for s ∈ S es = se = s , because elements of S and T commute, so that e is identity of S .

Thus for all s ∈ S and for all t ∈ T est = st , implies that e is left identity for U . Dually e is right identity
for U and hence U is a monoid with submonoids S and T . Thus U is the internal direct product of S and
T , which by Proposition 2.5 is isomorphic to the external direct product S × T . 2

From the above lemma, we observe that S∩T = {e} as if w ∈ S∩T is another element, then w = ew = we

gives w = e because of unique factorisations. Hence S ∩ T = {e} .
Thus an internal direct product of semigroups is just an internal direct product of monoids which

correspond to an external direct product of semigroups. Naturally our next step is to see what happens if
we consider an external direct product of semigroups S and T . If T (respectively S ) contains an idempotent,
then S (respectively T ) is embedded in S × T . In general it is not immediate to obtain an internal direct
product from an external direct product of semigroups, because for semigroups there do not exist such mappings
s 7→ (s, 1T ) and t 7→ (1S , t) as they exists for monoids, but we can use Preston’s techniques from [14] to
characterise internal and external direct product of semigroups. Preston developed these in the more general
context of semidirect products, we specialise here to direct products.

Lemma 2.7 Suppose S and T are semigroups and U = S × T is the external direct product of S and T .
Let S(1) and T (1) be the semigroups obtained from S and T , respectively by adjoining an identity and let
V = S(1) × T (1) . Then there are subsemigroups S′ and T ′ of V = S(1) × T (1) with S ∼= S′, T ∼= T ′ such that
U = S′T ′ and every element of U is uniquely factorisable as u = st for s ∈ S′ and t ∈ T ′ .
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Proof Let S(1) and T (1) be the semigroups obtained from S and T , respectively by adjoining an identity
and suppose V = S(1) × T (1) . Let

S′′ = {(s, 1); s ∈ S(1)} and T ′′ = {(1, t) : t ∈ T (1)}.

By Proposition 2.5, S′′ and T ′′ are submonoids of V = S(1)×T (1) and V = S′′T ′′ is the internal direct product
of S′′ and T ′′ where α : S(1) → S′′ and β : T (1) → T ′′ are isomorphisms. Next let

S′ = {(s, 1) : s ∈ S} and T ′ = {(1, t) : t ∈ T}.

Clearly S′ and T ′ are subsemigroups of S′′ and T ′′ and hence of V = S(1) × T (1) . Then α|S : S → S′ and
β|T : T → T ′ are isomorphisms. Also each element (s, t) ∈ U can be written as (s, t) = (s, 1)(1, t) where
(s, 1) ∈ S′ and (1, t) ∈ T ′ . Moreover elements of S′ and T ′ commute. Hence U = S′T ′ is a subsemigroup of
V = S(1) × T (1) . 2

The following example shows that there is not a natural correspondence between internal and external
direct products of semigroups.

Example 2.8 Consider the additive semigroup N = {1, 2, 3, · · · } and let S = N× N . Suppose S = UT is the
internal direct product of subsemigroups U and T where U ∼= N and T ∼= N . Now

U = 〈(p, q)〉 = {np, nq) n ∈ N} and T = 〈(r, s)〉 = {(mr,ms) : m ∈ N},

for some (p, q), (r, s) ∈ S .
As (1, 1) ∈ S = UT , so we may write (1, 1) = (np, nq) + (mr,ms) , but this is impossible because the

element 1 is indecomposable in the additive semigroup N . Thus our supposition is wrong and an external direct
product of semigroups is not isomorphic to an internal direct product.

3. Semidirect products of monoids and semigroups

In this section we discuss an equivalence between internal and external semidirect product of monoids/semigroups.
The term semidirect product for semigroups was first used by Neumann [13] to construct wreath products of
semigroups.

We first explain what we mean by an action of a monoid/semigroup S on a set X .

Definition 3.1 Let S be a monoid and X be a set. Then S acts on X on the left if there is a map

S ×X → X, (s, x) 7→ s · x

such that for all x ∈ X and for all s, s′ ∈ S we have
(S1) ss′ · x = s · (s′ · x) .
(S2) 1S · x = x .

Equivalently, an action of S is a monoid morphism from S to the transformation monoid T X . Diverting
from usual practice, we write elements of T X from right to left, that is, for α, β ∈ T X , to compute αβ we
first do β then α and for each s ∈ S , we denote (α(s))x by s · x .
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Definition 3.2 Let S and T be monoids and suppose T acts on S on the left satisfying (S1) and (S2). We
say that T acts on S by morphisms if for all t ∈ T and s, s′ ∈ S we have

(S3) t · ss′ = (t · s)(t · s′) .
This is equivalent to saying that there there is a homomorphism

θ : T → EndS

where EndS is monoid of endomorphisms of S . We say that θ : T → EndS is a monoid morphism if t · 1 = 1

for all t ∈ T .
Define a binary operation on S × T by

(s, t)(s′, t′) = (s(t · s′), tt′).

With θ being a monoid morphism, it is easy to check that S × T is a monoid with identity (1S , 1T ) known as
an external semidirect product of monoids S and T and denoted by S ⋊ T .

If S and T are semigroups and T acts on the left of S by endomorphisms satisfying (S1) and (S3), then
S ⋊ T is a semigroup known as the external semidirect product of semigroups S and T .

Just as in the case of direct products, it is not so easy to get hold of the notion of internal semidirect
product for monoids and semigroups. We now give the definition of an internal semidirect product from [14].

Definition 3.3 Let U be a monoid and S be a subset of U . An element u ∈ U is said to be left permutable
with S if

uS ⊆ Su.

If T is a subset of U , then T is said to be locally left permutable with S if each element of T is left permutable
with S .

Definition 3.4 Let U be a monoid and S, T be submonoids of U . Then U is the internal semidirect product
of S and T if U is uniquely factorisable with factors S and T and T is locally left permutable with S .

There is an equivalence between internal and external semidirect products of monoids as we see in the
following theorem.

Theorem 3.5 Let U be a monoid and let U = ST be the internal semidirect product of submonoids S and T .
Then there is an action of T on S such that U ∼= S ⋊ T , the external semidirect product of S by T .

Conversely, let U = S ⋊ T be the external semidirect product of monoids S and T . Let

S′ = {(s, 1T ) : s ∈ S} and T ′ = {(1S , t) : t ∈ T}.

Then S′ and T ′ are submonoids of U such that T ′ is locally left permutable with S′ , and U = S′T ′ is the
internal semidirect product of S′ and T ′ . Further S ∼= S′ and T ∼= T ′ .

Proof Suppose U = ST is the internal semidirect product of submonoids S and T . As factorisations are
unique, so for each s ∈ S and t ∈ T , there exists a unique element t · s of S such that

ts = (t · s)t.
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By associativity we have that (tt′)s = t(t′s) for any t, t′ ∈ T and s ∈ S . Now

(tt′)s = ((tt′) · s)tt′

and
t(t′s) = t((t′ · s)t′) = (t · (t′ · s))tt′.

By uniqueness we have tt′ · s = t · (t′ · s) and so (S1) holds.
Next for t ∈ T and s, s′ ∈ S

t(ss′) = (t · (ss′))t

and
(ts)s′ = (t · s)ts′ = (t · s)(t · s′)t.

By associativity and uniqueness, we have that

t · (ss′) = (t · s)(t · s′),

and thus (S3) holds.
Also as U is a monoid and 1U = 1 ∈ S ∩ T , so for s ∈ S , we see that

s1 = 1s = (1 · s)1

and by uniqueness 1 · s = s . Thus (S2) holds. Hence we can form an external semidirect product U ′ = S ⋊ T

of S and T . Now define a map
φ : U → U ′

by (st)φ = (s, t) . By uniqueness of factorisation, it is easy to see that φ is well defined and one-one. Clearly
φ is onto. To show that φ is a morphism, let st, s′t′ ∈ U . Then

(st)φ(s′t′)φ = (s, t)(s′, t′)
= (s(t · s′), tt′)
= (s(t · s′)tt′)φ
= (s(ts′)t′)φ
= ((st)(s′t′))φ.

Also (1)φ = (1, 1) . Hence U ∼= U ′ .
Conversely, let U = S ⋊ T be the external semidirect product of monoids S and T . As t · 1 = 1 for all

t ∈ T , it is easy to see that U contains submonoids

S′ = {(s, 1T ) : s ∈ S} and T ′ = {(1S , t) : t ∈ T}.

We note that every element of U has a unique expression

(s, t) = (s, 1T )(1S , t).

Let s′ = (s, 1T ) ∈ S′ and t′ = (1S , t) ∈ T ′ . Then

t′s′ = (1S , t)(s, 1T )
= (t · s, t)
= (t · s, 1T )(1S , t)
= (t′ · s′)t′.
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Thus t′S′ ⊆ S′t′ and hence T ′ is locally left permutable with S′ . Thus S⋊T is the internal semidirect product
of S′ and T ′ . Now define maps α : S → S′ and β : T → T ′ by

s 7→ (s, 1T ) and t 7→ (1S , t),

respectively. Then it is easy to check that S ∼= S′ and T ∼= T ′ . 2

We see in the following lemma that if U is the internal semidirect product of subsemigroups S and T ,
then T is forced to be a monoid.

Lemma 3.6 Let U be a semigroup and suppose that U = ST is the internal semidirect product of subsemigroups
S and T . Then there exists an element e ∈ S ∩T which is a right identity for S and a left identity for T such
that

e · s = es, e = t · e for all s ∈ S and t ∈ T .

Moreover T is a monoid with identity e .

Proof As factorisations are unique, so from Lemma 2.3 there exists an element e ∈ S ∩ T which is a right
identity for S and a left identity for T . Now for s ∈ S

es = (e · s)e.

But e is right identity for S , so that
es = e(se) = (es)e.

Thus (es)e = (e · s)e and by uniqueness es = e · s .
Next for t ∈ T

te = (t · e)t.

But e is a left identity for T , so that
te = (et)e = e(te).

Thus e(te) = (t · e)t and by uniqueness e = t · e and te = t . Hence

e · s = es, e = t · e for all s ∈ S and t ∈ T .

Also as te = t for all t ∈ T , so e is a right identity for T and hence T is a monoid. 2

As for direct products, there is not such a complete equivalence between internal and external semidirect
products of semigroups. It is not difficult to get an external semidirect product of semigroups from an internal
semidirect product of semigroups, but the converse is not obvious. However we can characterise those external
semidirect products of semigroups which are also internal semidirect products.

Theorem 3.7 Let U be a semigroup and let U = ST be the internal semidirect product of subsemigroups S

and T . Then there is an action of T on S such that U ′ = S ⋊ T is the external semidirect product of S by T

and U ∼= U ′ . Moreover there exists an element e ∈ S ∩ T which is a right identity for S and an identity for T

such that
e · s = es, e = t · e for all s ∈ S and t ∈ T .
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Conversely, suppose that U = S⋊ T is the external semidirect product of semigroups S and T such that
S has a right identity eS and T is a monoid with identity eT and

eT · s = eSs, eS = t · eS for all s ∈ S and t ∈ T .

Let
S′ = {(s, eT ) : s ∈ S} and T ′ = {(eS , t) : t ∈ T}.

Then S′ and T ′ are subsemigroups of U , S ∼= S′ , T ∼= T ′ and U = S′T ′ is the internal semidirect product of
S′ and T ′ .

Proof Suppose U = ST is the internal semidirect product of subsemigroups S and T . Then because T is
locally left permutable with S and factorisations are unique, so associativity and uniqueness gives us (S1) and
(S3). Therefore we can form an external semidirect product U ′ = S ⋊ T as in Theorem 3.5, so that U ∼= U ′ .
Also from Lemma 3.6, there exits an element e ∈ S ∩ T which is a right identity for S and an identity for T

such that
e · s = es, e = t · e for all s ∈ S and t ∈ T .

Conversely, let U = S ⋊ T be the external semidirect product of semigroups S and T such that S has
a right identity eS and T has an identity eT with

eT · s = eSs, eS = t · eS for all s ∈ S and t ∈ T .

Put
S′ = {(s, eT ) : s ∈ S} and T ′ = {(eS , t) : t ∈ T}.

Define maps α : S → S′ and β : T → T ′ by

sα = (s, eT ) and tβ = (eS , t),

respectively. Then it is easy to see that S ∼= S′ and T ∼= T ′ . Also each element in (s, t) ∈ U can be written as

(s, t) = (s, eT )(eS , t)

and this decomposition is unique. Next let s′ = (s, eS) ∈ S′ and t′ = (eS , t) ∈ T ′ . Then

t′s′ = (eS , t)(s, eT )
= (eS(t · s), teT )
= ((t · eS)(t · s), t) because eS = t · eS and teT = t
= (t · (eSs), t) using (S3)
= (t · (eT · s), t) because eT · s = eSs
= (teT · s, t) using (S1)
= (t · s, t) because teT = t
= (t · s, eT )(eS , t)
∈ S′t′.

Thus t′S′ ⊆ S′t′ and so T ′ is locally left permutable with S′ . Hence U = S′T ′ is the internal semidirect
product of S′ and T ′ . 2

Preston provided a characterisation of external semidirect products of semigroups as we mentioned in
previous section where we used it to characterise external direct products of semigroups. Preston proved that
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it is always possible to consider a semidirect product of semigroups as a subsemigroup of semidirect product of
monoids [14]. His construction works as follows:

Let S and T be semigroups and U = S⋊T be an external semidirect product with θ : T → EndS . Let
S(1) and T (1) be semigroups obtained from S and T , respectively by adjoining an extra element 1 , that acts as
an identity element. Let t · 1 = 1 and define θ(1) : T (1) → EndS(1) to be the extension of θ where (1)θ = 1S1 .
Set W = S(1) ⋊ T (1) . Then α : s 7→ (s, 1) and β : t 7→ (1, t) embed S and T , respectively in W . Observe that
Sα∩ Tβ = ∅ because if x = sα = tβ , then (s, 1) = (1, t) , which is impossible. Therefore by identifying S with
Sα and T with Tβ , S and T become disjoint subsemigroups of W . Thus we have the following result:

Theorem 3.8 [14, Theorem 8] Let S and T be semigroups and U = S ⋊ T be an external semidirect product
with θ : T → EndS . Then setting W = S(1) ⋊ T (1) and θ1 as above, S and T are subsemigroups of W and
U ′ = ST is a subsemigroup of W . Moreover, U ∼= U ′ .

4. Zappa–Szép products of semigroups
For convenience of the reader we begin this section with the definition of the Zappa–Szép product of semigroups.

Definition 4.1 Let S and T be semigroups and suppose that we have maps

T × S → S, (t, s) 7→ t · s and T × S → T, (t, s) 7→ ts

such that for all s, s′ ∈ S, t, t′ ∈ T :

(ZS1) tt′ · s = t · (t′ · s); (ZS3) (ts)s
′
= tss

′
;

(ZS2) t · (ss′) = (t · s)(ts · s′); (ZS4) (tt′)s = tt
′·st′s.

From (ZS1) and (ZS3), we see that in the usual sense T acts on S from the left and S acts on T from the
right, respectively. We define a binary operation on S × T by

(s, t)(s′, t′) = (s(t · s′), ts
′
t′).

It is easy to see that this binary operation is associative. Thus S × T becomes a semigroup known as (external)
Zappa–Szép product of S and T and denoted by S ▷◁ T .

Note that if one of the above actions is trivial (that is, one semigroup acts by the identity map), then
the second action is by morphisms, and we obtain the semidirect product S ⋊ T (if S acts trivially) or S ⋉ T

(if T acts trivially). If both actions are trivial, then we obtain the direct product S × T .
If S and T are monoids then we insist that the following four axioms also hold:

(ZS5) t · 1S = 1S ; (ZS7) 1T · s = s;
(ZS6) t1S = t; (ZS8) 1sT = 1T .

From (ZS6) and (ZS7) we see that the actions are monoid actions in the usual sense and (ZS5) and (ZS8) are
saying that the identities are fixed under the actions. It follows that S ▷◁ T becomes a monoid with identity
(1S , 1T ) .

If we replace monoids by groups in the above definition, then S ▷◁ T is a group [21].
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We now give definition of an internal Zappa–Szép product and then we explain the correspondence
between external and internal Zappa–Szép products of semigroups and monoids.

Definition 4.2 Let U be a monoid and S, T be subsemigroups (submonoids) of U . Then U is the internal
Zappa–Szép product of S and T if U is uniquely factorisable with factors S and T , that is, U = ST and every
element u ∈ U has a unique expression as

u = st where s ∈ S and t ∈ T .

It is well known that there is an equivalence between internal and external Zappa–Szép
products of groups. A similar correspondence exists for monoids [9], as we now explain.
If Z = S ▷◁ T is the external Zappa–Szép product of monoids S and T , then putting

S′ = {(s, 1T ) : s ∈ S} and T ′ = {(1S , t) : t ∈ T}

we have that S′ and T ′ are submonoids of Z , isomorphic to S and T respectively, such that Z is the internal
Zappa–Szép product of S′ and T ′ . Conversely if Z = ST is the internal Zappa–Szép product of submonoids
S and T then uniqueness of decompositions and associativity enable us to show that Z is isomorphic to an
external Zappa–Szép product S ▷◁ T .

In general, there is no such correspondence between internal and external Zappa–Szép product of semi-
groups. It is not difficult to get an external Zappa–Szép product from an internal Zappa–Szép product of
semigroups but the converse is not obvious. However we can characterise those external Zappa–Szép products
of semigroups which are also internal ones.

Wazzan [20] noticed that if an idempotent exists as in Lemma 2.3, which is a right identity for S and a
left identity for T then for s ∈ S , t ∈ T in any external Zappa–Szép product we have

es = e · s, e = es and t · e = e, te = te.

We use above information to show that the internal and external Zappa–Szép products of semigroups
correspond to each other subject to certain conditions.

Theorem 4.3 Let U be a semigroup and suppose that U = ST is the internal Zappa–Szép product of
subsemigroups S and T . Then there is an action of T on the left of S and an action of S on the right
of T such that (ZS1)–(ZS4) hold and U ∼= S ▷◁ T . Further, there exists an idempotent e ∈ S ∩ T such that e

is right identity for S and left identity for T with

es = e · s, e = es and t · e = e, te = te

for all s ∈ S and t ∈ T .
Conversely suppose that U = S ▷◁ T is an external Zappa–Szép product of semigroups S and T such

that S has a right identity eS and T has a left identity eT with

eSs = eT · s, eT = esT and t · eS = eS , t
eS = teT

for all s ∈ S and t ∈ T . Let

S′ = {(s, eT ) : s ∈ S} and T ′ = {(eS , t) : t ∈ T}.

Then S ∼= S′ , T ∼= T ′ and U = S′T ′ is the internal Zappa–Szép product of S′ and T ′ .
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Proof If U = ST is the internal Zappa–Szép product of subsemigroups S and T , then from associativity
and uniqueness it is easy to show that there is an action of T on the left of S and an action of S on the right
of T such that (ZS1)–(ZS4) hold and U ∼= S ▷◁ T . Also as the factorisation is unique, therefore there exists an
idempotent e which is a right identity for S and a left identity for T such that

es = e · s, e = es and t · e = e, te = te

for all s ∈ S and t ∈ T .
Conversely, let U = S ▷◁ T be an external Zappa–Szép product of S and T . Suppose there is a right

identity eS of S and a left identity eT of T satisfying

eSs = eT · s, eT = esT and t · eS = eS , t
eS = teT

for all s ∈ S and t ∈ T . Put

S′ = {(s, eT ) : s ∈ S} and T ′ = {(eS , t) : t ∈ T}.

Define a map α : S → S′ by
(s)α = (s, eT ).

Clearly α is well defined, one-one and onto. To check that α is a homomorphism, let s, s′ ∈ S . Then

(ss′)α = (ss′, eT )
= (seSs

′, eT ) because eS is right identity for S

= (s(eT · s′), es′T eT ) because eT · s′ = eSs
′ and es

′

T = eT by our supposition
= (s, eT )(s

′, eT )
= (s)α(s′)α.

Hence S ∼= S′ . Similarly, defining a map β : T → T ′ by (t)β = (eS , t) , it is easy to check that T ∼= T ′ . Now
for (s, eT ) ∈ S′ and (eS , t) ∈ T ′ , we see that

(s, eT )(eS , t) = (s(eT · eS), eeST t)
= (seS , eT t) because eT · eS = eS and eeST = eT
= (s, t) because eS is a right identity of S and

eT is a left identity of T .

Thus each element (s, t) ∈ U can be written as

(s, t) = (s, eT )(eS , t)

and this composition is evidently unique. Hence U = S′T ′ is the internal Zappa–Szép product of S′ and T ′ .
2

We can also use Preston’s technique [14] to get an internal Zappa–Szép product from an external Zappa–
Szép product S ▷◁ T of semigroups S and T by adjoining identities to S and T and extending the actions to
S(1) and T (1) .

Theorem 4.4 Let S and T be semigroups and let U = S ▷◁ T be the external Zappa–Szép product of S and
T . Let S(1) and T (1) be the semigroups obtained from S and T , respectively by adjoining an identity. Then,
setting t · 1 = 1 and 1s = 1 and defining

(1, s) 7→ 1 · s = s, (t, 1) 7→ t1 = t
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to be the identity maps, the extended actions satisfy (ZS1)–(ZS8). Thus we can form the Zappa–Szép product
S(1) ▷◁ T (1) of S(1) and T (1) . Moreover S ∼= S′ = {(s, 1) : s ∈ S} under the map s 7→ (s, 1) and
T ∼= T ′ = {(1, t) : t ∈ T} under the map t 7→ (1, t) and U = S′T ′ is a subsemigroup of S(1) ▷◁ T (1) ,
and is uniquely factorisable with factors S′ and T ′ .

Proof We first check that S(1) ▷◁ T (1) satisfies all axioms of a Zappa–Szép product.
(ZS1) Let t, t′ ∈ T (1) and s ∈ S(1) . Then to check that tt′ · s = t · (t′ · s) , we have eight cases as follows:

(i) t = t′ = s = 1; (v) t = 1, t′ = 1 and s 6= 1;
(ii) t = 1, t′ 6= 1 and s = 1; (vi) t = 1, t′ 6= 1 and s 6= 1;
(iii) t 6= 1, t′ 6= 1 and s = 1; (vii) t 6= 1, t′ = 1and s 6= 1;
(iv) t 6= 1, t′ = 1 and s = 1; (viii) t 6= 1, t′ 6= 1 and s 6= 1.

(i)–(iv) are obvious because s = 1 in all four cases and t · 1 = 1 for all t ∈ T (1) . For (v) we see that

tt′ · s = 11 · s = 1 · s = s = 1 · (1 · s) = t · (t′ · s).

For (vi)
tt′ · s = 1t′ · s = t′ · s = 1 · (t′ · s) = t · (t′ · s).

For (vii)
tt′ · s = t · s = t · (1 · s) = t · (t′ · s).

For (viii) because t 6= 1 , t′ 6= 1 and s 6= 1 and S(1) and T (1) are the monoids obtained from S and T ,
respectively by adjoining an identity, so t, t′ ∈ T and s ∈ S . Also as S ▷◁ T is the external Zappa–Szép
product of S and T , we have

tt′ · s = t · (t′ · s).

Hence T (1) acts on S(1) from the left and thus (ZS1) holds.
(ZS2) Let t ∈ T (1) and s, s′ ∈ S(1) . We need to check that t · ss′ = (t · s)(ts · s′) . Now again we have

eight cases as follows:

(i) t = s = s′ = 1; (v) t 6= 1, s = 1 and s′ = 1;
(ii) t = 1, s = 1 and s′ 6= 1; (vi) t 6= 1, s = 1 and s′ 6= 1;
(iii) t = 1, s 6= 1 and s′ = 1; (vii) t 6= 1, s 6= 1 and s′ = 1;
(iv) t = 1, s 6= 1 and s′ 6= 1; (viii) t 6= 1, s 6= 1 and s′ 6= 1.

(i)-(iv) are clear because t = 1 in all four cases and 1 · s = s, 1s = 1 for all s ∈ S . For (v), we see that
t · (ss′) = t · 11 = t · 1 = 1 = (t · 1)(t1 · 1) = (t · s)(ts · s′) . For (vi)

t · (ss′) = t · s′ = (t · 1)(t1 · s′) = (t · s)(ts · s′).

For (vii)
t · (ss′) = t · s = (t · s)(ts · 1) = (t · s)(ts · s′).

For (viii) because t 6= 1 , s 6= 1 and s′ 6= 1 and S(1) and T (1) are the monoids obtained from S and T ,
respectively by adjoining an identity, so t ∈ T and s, s′ ∈ S . Also, as S ▷◁ T is the external Zappa–Szép
product of S and T , we have

t · (ss′) = (t · s)(ts · s′).
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Hence (ZS2) holds.
(ZS3) is dual of (ZS1) and (ZS4) is dual of (ZS2).
Also (ZS5)–(ZS8) hold because of the way in which we have extended our actions of S on T and T on

S to actions of S(1) on T (1) and T (1) on S(1) respectively.
Hence we may form the Zappa–Szép product V = S(1) ▷◁ T (1) of the monoids S(1) and T (1) .
Next let

S′′ = {(s, 1) : s ∈ S(1)} and T ′′ = {(1, t) : t ∈ T (1)}.

It is easy to check that S′′, T ′′ are submonoids of V and V = S′′T ′′ is the internal Zappa–Szép product of S′′

and T ′′ . Moreover
α : S(1) → S′′ and β : T (1) → T ′′

are isomorphisms. Now let
S′ = {(s, 1) : s ∈ S} and T ′ = {(1, t) : t ∈ T}.

Then S′ and T ′ are subsemigroups of S′′ and T ′′ , respectively and hence of V . Clearly

α|S : S → S′ and β|T : T → T ′

are isomorphisms.
Note that any element (s, t) ∈ U can be written as

(s, t) = (s, 1)(1, t) for (s, 1) ∈ S′ and (1, t) ∈ T ′

and this decomposition is unique.
Thus U = S′T ′ is uniquely factorisable with factors S′ and T ′ . 2

5. Zappa–Szép product of bisimple inverse monoids

This section is devoted to the study of Zappa–Szép products of bisimple inverse monoids. For convenience of
the reader we begin this section with the definition of the Bruck–Reilly extension of a monoid.

Definition 5.1 Let S be a monoid and let θ be an endomorphism on S . Define a binary operation on
N0 × S × N0 by the rule

(m, r, n)(p, s, q) =
(
m− n+ t, (rθt−n)(sθt−p), q − p+ t

)
,

where t = max(n, p) and θ0 is the identity map on S . It is easy to check that this binary operation is associative
and so N0 × S × N0 is a monoid called Bruck–Reilly extension of a monoid determined by θ and denoted by
BR(S, θ) .

Note that the outer coordinates in the multiplication combine exactly as in the bicyclic semigroup B = N0×N0

and so the bicyclic semigroup is just the Bruck–Reilly extension of the trivial group. The bicyclic monoid is an
important example of an inverse semigroup that is not a group, having left (right) invertible elements that are
not right (left) invertible.
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The above construction plays an important role in the theory of inverse semigroups and was used to
classify several classes of simple inverse semigroups.

It is known that the Bruck–Reilly extension of a monoid S can be realised as a Zappa–Szép product of
(N,+) and a semidirect product N ⋊ S [9]. The author and Gould generalised this result to a broader class

of semigroups which they call special D̃E -simple restriction monoids [5]. The structure of such semigroups is
determined by idempotents and is a generalisation of bisimple inverse monoids. In a bisimple inverse monoid
all idempotents are D -equivalent. The Bruck–Reilly extension of a monoid and bicyclic semigroups are natural
examples of bisimple inverse monoids. In this section we provide an insight to the results of [5] by considering
bisimple inverse monoids. We see that a bisimple inverse monoid is the Zappa–Szép product of its R -class of
identity and L -class of identity. We notice that when H is a congruence on S, then we obtain a semidirect
product instead of a Zappa–Szép product. Kunze’s result on Bruck–Reilly extension of a monoid, thus can be
viewed as a bisimple inverse monoid containing a monoid transversal of H -classes of L1 .

The following theorem shows that a bisimple inverse monoid can be decomposed as a Zappa–Szép product
of submonoids.

Theorem 5.2 Suppose S is a bisimple inverse monoid. Suppose there is a submonoid L such that L ⊆ L1

and |L ∩H| = 1 for every H -class H ⊆ L1 . Then Z = L ▷◁ R1 is a Zappa–Szép product of L and R1 under
the actions defined by:

r · l = d where d ∈ L and d R rl

and
rl = d−1rl where d ∈ L, and d R rl

for l ∈ L and r ∈ R1 . Further S ∼= Z .

Proof Let r ∈ R1 and l, d ∈ L with d R rl . We note that as d R rl and R is a left congruence, so

d−1d R d−1rl ⇒ 1 R d−1rl.

Now as rl = dd−1rl , we have that
rlL d−1rl.

We now check the axioms of a Zappa–Szép product.
(ZS1) Let l ∈ L and r, s ∈ R1 . Then

rs · l = d where d ∈ L and d R rsl −→ (1)

Also
r · (s · l) = r · u = v where u, v ∈ L and u R sl, v R ru.

Now
v R ru R rsl R d. −→ (2)

From (1) and (2) and the fact |L ∩Hd| = |L ∩Hv| = 1 , we see that (ZS1) holds.
(ZS2) For l, k ∈ L and r ∈ R1 ,

r · lk = d where d ∈ L, and d R rlk
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and
(r · l)(rl · k) = u(u−1rl · k) = uv

where u ∈ L with u R rl and v ∈ L with v R u−1rlk .
We therefore have

uvRuu−1rlk since R is left congruence
⇒ uvR rl(rl)−1rlk since uu−1 = rl(rl)−1 as rlRu
⇒ uvR rlk
⇒ uvR d.

Thus uv = d as u, v and d ∈ L . Hence (ZS2) holds.
(ZS3) For l, k ∈ L and r ∈ R1 ,

rlk = d−1rlk where d ∈ L and d R rlk

and
(rl)k = (u−1rl)k where u ∈ L and uR rl

= v−1u−1rlk where v ∈ L and vRu−1rlk
= (uv)−1rlk.

Now as v R u−1rlk and R is a left congruence, so using the argument from (ZS2), we see that uv R rlk R d

and uv = d and hence (ZS3) holds.
(ZS4) Let l ∈ L and r, s ∈ R1 . Then

(rs)l = d−1rsl where d ∈ L and d R rsl

and
rs·lsl = ruu−1sl where u ∈ L and uR sl

= v−1ruu−1sl where v ∈ L and vR ru
= v−1rsl(sl)−1sl because uR sl
= v−1rsl.

From u R sl we have
v R ru R rsl R d,

so that v = d and thus (ZS4) holds and hence L ▷◁ R1 is a Zappa-Szép product of L and R1 .
Now we have to show that Z ∼= S . For this define a map φ : Z −→ S by (l, r)φ = lr . This map is

obviously well defined. We check that it is one-one, onto and a homomorphism.
Let (l, r) , (l′, r′) ∈ Z be such that

(l, r)φ = (l′, r′)φ,

so that
lr = l′r′.

Now we see that
lr R l · 1 = l and l′r′ R l′ · 1 = l′.

Thus using lr = l′r′ , we get l R l′ and so l = l′ . Also

lr = l′r′ = lr′ ⇒ l−1lr = l−1lr′ ⇒ r = r′
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because l−1l = 1 . Thus (l, r) = (l′, r′) and hence φ is one-one.
Now to show φ is onto, let s ∈ S . Then there exists u ∈ L such that s R u .
As R is a left congruence, u−1s R u−1u = 1 . Also s R u , we have that uu−1s = s , and so u−1sL s .

Thus there exist u ∈ L and u−1s ∈ R1 such that

(u, u−1s)φ = uu−1s = s.

Hence φ is onto.
Let (l, r) , (l′, r′) ∈ Z , then

(
(l, r)(l′, r′)

)
φ = (l(r · l′), rl′r′)φ

= (lu, u−1rl′r′)φ where u ∈ L and uR rl′

= luu−1rl′r′

= lrl′r′

= (l, r)φ(l′, r′)φ.

Hence φ is a homomorphism and hence an isomorphism. 2

Remark 5.3 As S is monoid, it is easy to check that axioms (ZS5)–(ZS8) of Zappa–Szép product also hold.

Corollary 5.4 Suppose S is a combinatorial bisimple inverse monoid. Let L = L1 be the L-class of the
identity and R = R1 be the R -class of the identity. Then Z = L ▷◁ R is a Zappa–Szép product of L and R

under the actions defined by:
r · l = d where d R rl

and
rl = u where uL rl

for l ∈ L and r ∈ R . Further Z ∼= S .

Proof As S is combinatorial, it is clear that L = L1 has the property required for Theorem 5.2. It is also
clear that action of R on L coincides with that in Theorem 5.2.

Now let l ∈ L and r ∈ R , and suppose that r · l = d , d ∈ L and so that d R rl . Then

1 = d−1d R d−1rl

and as rl = dd−1rl , we have rlL d−1rl .
It follows that action of L on R coincides with that in Theorem 5.2. 2

We now show that if H is a congruence, then we get a semidirect product instead of a Zappa–Szép
product.

Theorem 5.5 Suppose S is a bisimple inverse monoid. Suppose there is a submonoid L such that L ⊆ L1 and
|L ∩H| = 1 for every H -class H ⊆ L1 . Suppose in addition that H is congruence. Let R = {u−1 : u ∈ L} .
Then R is a submonoid of R1 , |R∩H| = 1 for all H ⊆ R1 and H1 ⋉R is a semidirect product isomorphic to
R1 under the action defined by

r · h = rhr−1 for r ∈ R and h ∈ H1 .
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Proof This action is well defined, as we see that

rhr−1 H r1r−1 = rr−1 = 1

giving rhr−1 ∈ H .

It is easy to check that R is submonoid of R1 and |R ∩H| = 1 for all H ⊆ R1 .
Now we check the axioms of a semidirect product.
(1) For 1 ∈ R and h ∈ H1 ,

1 · h = 1h1−1 = h.

(2) Let r, s ∈ R and h ∈ H1 . Then

r · (s · h) = r · (shs−1) = r(shs−1)r−1 = rsh(rs)−1 = rs · h.

(3) For r ∈ R and h, k ∈ H1 ,
(r · h)(r · k) = rhr−1rkr−1.

As rh H rL r−1r , so rhr−1r = rh and thus

(r · h)(r · k) = rhkr−1 = r · hk.

Thus H1 ⋉R is semidirect product of H1 and R .
Define α : H1 ⋉R −→ R1 by (h, r)α = hr . Clearly α is well defined as hr H r . Now let (h, r), (k, s) ∈

H1 ⋉R , then
(h, r)α = (k, s)α
⇒ hr = ks.

Now hr H r and ks H s . So hr = ks gives r H s and so r = s . Also

hr = ks ⇒ hr = kr ⇒ hrr−1 = krr−1 ⇒ h = k

because rr−1 = 1 . Thus α is one-one.
To show that α is onto, let t ∈ R1 . For r ∈ R with r H t , we see that

1 R r and 1r = r,

so by Green’s Lemma ρr : H1 → Hr is a bijection. Therefore

t = uρr for some u ∈ H1

= ur
= (u, r)α.

Thus α is onto.
Now let (h, r), (k, s) ∈ H1 ⋉R . Then(

(h, r)(k, s)
)
α = (hrkr−1, rs)α

= hrkr−1rs
= hrks because rkL r−1r
= (h, r)α(k, s)α.
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Thus α is a homomorphism and hence H1 ⋉R ∼= R1 .
2

The left (right) dual of Theorem 5.5 also holds as we see in the following.

Corollary 5.6 Let S be a bisimple inverse monoid. Suppose there is a submonoid R such that R ⊆ R1 and
|R ∩H| = 1 for every H -class H ⊆ R1 . Suppose in addition that H is congruence. Let L = {u−1 : u ∈ R} .
Then L is a submonoid of L1 , |L ∩H| = 1 for all H ⊆ L1 and L ⋊H1 is semidirect product isomorphic to
L1 under the action defined by

hl = l−1hl for h ∈ H and l ∈ L.

Deduction 5.1 From Corollary 5.6 we deduce Kunze’s result proved in [9]. Kunze showed that if S is a monoid,
θ an endomorphism of S and N is the set of natural numbers under addition, then a semidirect product N⋊ S

can be formed under the multiplication,

(k, s)(l, t) = (k + l, (sθl)t).

Now we see that
L1 = {(l, s, 0) : l ∈ N0, s ∈ S},

so that if we put
L = {(l, e, 0) : l ∈ N0} ∼= N0,

then L is submonoid of L1 such that |L ∩H| = 1 for all H ⊆ L1 . Further,

H1 = {(0, s, 0) : s ∈ H}.

For (l, e, 0) ∈ L and (0, s, 0) ∈ H1 ,

(0, s, 0)(l,e,0) = (l, e, 0)−1(0, s, 0)(l, e, 0)
= (0, sθl, 0) ∈ H1.

Thus L⋊H1 is semidirect product under multiplication defined by(
(k, e, 0), (0, s, 0)

)(
(l, e, 0), (0, t, 0)

)
=

(
(k, e, 0)(l, e, 0), (0, s, 0)(l,e,0)(0, t, 0)

)
=

(
(k + l, e, 0), (0, sθlt, 0)

)
.

We are now going to prove a result corresponding to Theorem 5.5 in the case where H is not a congruence
and thus we show that the R -class of identity is itself a Zappa–Szép product, rather than a semidirect product.

Theorem 5.7 Let S be a bisimple inverse monoid. Suppose there is a submonoid L such that L ⊆ L1 and
|L ∩H| = 1 for every H -class H ⊆ L1 . Let R = {u−1 : u ∈ L} . Then R is a submonoid of R1 , |R ∩H| = 1

for every H ⊆ R1 and H1 ▷◁ R is Zappa–Szép product isomorphic to R1 under the action of R on H1 defined
by

r · h = rht−1 where tL rh and t ∈ R.

and action of H1 on R by
rh = t where tL rh and t ∈ R.
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From here we see that if H is a congruence, then

rh H r1 = r

and thus we get back to our semidirect product as in Theorem 5.5.

Proof From Theorem 5.5 we know that R is a submonoid of R1 and |R ∩H| = 1 for every H ⊆ R1 . Now
we have to prove that H1 ▷◁ R is a Zappa–Szép product isomorphic to R1 .

First of all we see that action of R on H1 is well defined as

rht−1 L tt−1 = 1

and
rht−1 R rht−1t = rh R r1 = r R 1,

so that rht−1 H 1 , that is, rht−1 ∈ H1 .
We now check that the axioms of a Zappa–Szép product hold.
(ZS1) For r, s ∈ R and h ∈ H1 ,

rs · h = rsht−1 where t ∈ R and tL rsh

and
r · (s · h) = r · shu−1 where u ∈ R and uL sh

= rshu−1v−1 where v ∈ R and vL rshu−1

= rsh(vu)−1.

Now as vL rshu−1 , we have vuL rshu−1u . But shLu−1u , so that vuL rshL t by choice of t .
As v, u, vu, t ∈ R , we must have vu = t , so that (ZS1) holds.
(ZS2) Let r ∈ R and h, k ∈ H1 . Then

r · hk = rhku−1 where u ∈ R and uL rhk

and
(r · h)(rh · k) = (rhv−1)(v · k) where v ∈ R and vL rh

= rhv−1vkx−1 where x ∈ R and xL vk
= rhkx−1 because rhL v−1v.

Now xL vkL rhkLu ⇒ xLu , so that x = u and thus (ZS2) holds.
(ZS3) For r ∈ R and h, k ∈ H1 ,

rhk = t where t ∈ R and tL rhk

and
(rh)k = uk where u ∈ R and uL rh

= v where v ∈ R and vLuk.

So vLukL rhkL t implies that v = t .
Thus (ZS3) also holds.
(ZS4) For r, s ∈ R and k ∈ H1 ,

(rs)k = t where t ∈ R and tL rsk
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and
rs·ksk = rsku

−1

u where u ∈ R and uL sk
= vu where v ∈ R and vL rsku−1.

So v L rsku−1 and as L is right congruence, so we have

vuL rsku−1u.

But sk L u−1u , so vu L rsk L t and thus vu = t .
Hence (ZS4) holds and thus Z = H1 ▷◁ R is a Zappa–Szép product of H1 and R under multiplication

defined by:
(h, r)(k, s) = (hrkt−1, ts) where tL rk.

Define a map γ : Z → R1 by (h, r)γ = hr . Clearly γ is well defined.
Now let (h, r), (k, s) ∈ H1 ⋊R , then

(h, r)γ = (k, s)γ ⇒ hr = ks

We have that
hrL r and hr R h R r.

Thus hr H r and similarly ks H s . So hr = ks gives r H s and so r = s . Also

hr = ks ⇒ hr = kr ⇒ hrr−1 = krr−1 ⇒ h = k

as rr−1 = 1 . Thus γ is one-one.
It is easy to check that γ is onto and a homomorphism. Hence H1 ▷◁ R ∼= R1 . 2

Remark 5.8 As in Theorem 5.7, Z is Zappa–Szép product of monoids, so it is easy to check that axioms for
identities of Zappa–Szép product must also hold.

We end this paper with two examples of bisimple inverse monoids, but first we mention following result
which is folklore and is easy to prove.

Proposition 5.9 Let S and T be inverse monoids. Then S×T is an inverse monoid with (s, t)−1 = (s−1, t−1)

and for any (s, t), (u, v) ∈ S × T

(s, t) R (u, v) if and only if s R u and t R v

(s, t)L (u, v) if and only if sLu and tL v.

Further if S and T are bisimple, so is S × T . If H is a congruence on both S and T , then H is a
congruence on S × T .

Example 5.10 Let R∗ = {r ∈ R : r ≥ 0} . Also let

R∗ × R∗ = {(r, s) : r, s ∈ R∗}.
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Define a binary operation on R∗ × R∗ as follows:

(r, s)(p, q) =
(
r − s+ max(s, p), q − p+ max(s, p)

)
.

The proof that R∗ × R∗ is a bisimple inverse monoid with identity element (0, 0) is a folklore and a direct
generalisation of the result for the bicyclic monoid. Also H is the identity relation which implies that R∗ ×R∗

is combinatorial.
Next let I = (R∗ ×R∗)×G = {

(
(r, s), g

)
: (r, s) ∈ R∗ ×R∗, g ∈ G} be the direct product of R∗ ×R∗ and

G , where G is a group.
From Proposition 5.9 I is a bisimple inverse monoid with identity

(
(0, 0), e

)
. Any element

(
(r, s), g

)
∈ I

has inverse
(
(r, s)−1, g−1

)
.

Now for any
(
(r, s), g

)
,
(
(u, v), h

)
∈ I , we have from Proposition 5.9(

(r, s), g
)
R

(
(u, v), h

)
⇔ (r, s)R (u, v) and gRh
⇔ r = u and gRh

and (
(r, s), g

)
L
(
(u, v), h

)
⇔ (r, s)L (u, v) and gLh
⇔ s = v and gLh.

Next we see that
R1 = {

(
(0, r), h

)
: r ∈ R∗}

is the R -class of the identity and
H1 = {

(
0, 0), h

)
: h ∈ G}

is the H -class of the identity. Again from Proposition 5.9 H is a congruence on I . Take

R = {
(
(0, r), e

)
: r ∈ R∗}

From Theorem 5.5 it is easy to check that H1 ⋊R is a semidirect product under the action defined by(
(0, r), e

)
·
(
(0, 0), h

)
=

(
(0, r), e

)(
(0, 0), h

)(
(0, r), e

)−1
=

(
(0, 0), h

)
for r ∈ R and h ∈ H1 .

The following example shows that the Bicyclic semigroup B can be written as a Zappa–Szép product of
L -classes and R -classes.

Example 5.11 The bicyclic semigroup B is the Zappa-Szép product of L = L1 and R = R1 , where

L = {(m, 0) : m ∈ N0} ∼= N0

R = {(0, n) : n ∈ N0} ∼= N0.

The above example is a consequence of Corollary 5.4 as R and L act on each other from the left and right
respectively and B ∼= L ▷◁ R .

2532



ZENAB/Turk J Math

Acknowledgements
The author is grateful to the Sukkur IBA University for the constant support and encouragement. Some of the
work in this article is taken from the PhD of the author [22], written under the guidance of Professor Victoria
Gould. The author is grateful to her and the Department of Mathematics of the University of York for their
support and guidance. The author is also thankful to the Schlumberger Foundation for funding her research
during her stay at the University of York.

References

[1] Brin MG. On the Zappa-Szép product. Communications in Algebra. 2005; 33 (2): 393-424. doi: 10.1081/AGB-
200047404

[2] Brownlowe N, Ramagge J, Robertson D, Whittaker MF. Zappa-Szép products of semigroups and their C∗ -algebras.
Journal of Functional Analysis. 2014; 266: 3937-3967. doi: 10.1016/j.jfa.2013.12.025

[3] Brownlowe N, Pask D, Ramagge J, Robertson D, Whittaker MF. Zappa-Szép product groupoids and C∗ -blends.
Semigroup Forum. 2017; 94: 500-519. doi: 10.1007/s00233-016-9775-z

[4] Casadio G. Construzione di gruppi come prodotto di sottogruppi permutabili. Rendiconti Di Matematica e Delle
Sue Applicazioni. 1941; 5: 348-360.

[5] Gould V, Zenab R. Semigroups with inverse skeletons and Zappa-Szép products. Categories and General Algebraic
Structures with Applications. 2013; 1: 59-89.

[6] Howie JM. Fundamentals of Semigroup Theory. Oxford, UK: Oxford University Press, 1995.

[7] Kaloujnine L, Krasner M. Produit complet des groupes de permutations et probléme d’extensions de groupes. II.
Acta Scientiarum Mathematicarum, Szeged. 1950; 13: 208-230.

[8] Krohn K, Rhodes J. Algebraic theory of machines. I: Prime decomposition theorem for finite semigroups and
machines. Transactions of American Mathematical Society. 1965; 116: 450-464.

[9] Kunze M. Zappa products. Acta Mathematica Hungarica. 1983; 41: 225-239.

[10] Lavers TG. Presentations of general products of monoids. Journal of Algebra. 1998; 204: 733-741.

[11] Mitchell B. Theory of categories. Academic Press, New York, 1965.

[12] Neumann BH. Decompositions of groups. Journal of London Mathematical Society. 1935; 10: 3-6.

[13] Neumann BH. Embedding theorems for semigroups. Journal of London Mathematical Society. 1960; 35: 184-192.

[14] Preston GB. Semidirect products of semigroups. Proceedings of the Royal Society of Edinburgh 1986; 102 A: 91-102.

[15] Rédei L. Das schiefe Produkt in der Gruppentheorie. Commentarii Mathematici Helvetici. 1947; 20: 225-264.

[16] Rédei L, Szép J. Die Verallgemeinerung der Theorie des Gruppenproduktes von Zappa-Casadio. Acta Scientiarum
Mathematicarum, Szeged. 1955; 16: 165–170.

[17] Szép J. On factorizable, not simple groups. Acta Scientiarum Mathematicarum, Szeged. 1950; 13: 239-241.

[18] Szép J. Über eine neue Erweiterung von Ringen. Acta Scientiarum Mathematicarum, Szeged. 1958; 19: 51-62.

[19] Szép J. Sulle strutture fattorizzabili. Atti della Accademia Nazionale dei Lincei. Serie Ottava. Rendiconti. Classe
di Scienze Fisiche, Matematiche e Naturali. (1962); 32: 649–652.

[20] Wazzan S. The Zappa-Szép product of semigroups. PhD, Heriot-Watt University, Edinburgh, United Kingdom,
2008.

[21] Zappa G. Sulla construzione dei gruppi prodotto di due sottogruppi permutabili tra loro. Atti Secondo Congresso
Università Italia Bologna. 1940; 119-125. Edizioni Rome, Cremonense (1942).

[22] Zenab R. Decomposition of semigroups into semidirect and Zappa-Szép products. PhD, University of York, United
Kingdom, 2014.

2533


	Introduction
	Direct products of monoids and semigroups
	Semidirect products of monoids and semigroups
	Zappa–Szép products of semigroups
	Zappa–Szép product of bisimple inverse monoids 

