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Abstract: In this work we consider the periodic standing wave solutions for a Klein–Gordon–Zakharov system. We find
the conditions on the parameters, for which the periodic waves of dnoidal type are linear stable/unstable.
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1. Introduction
In this paper we consider the following Klein–Gordon–Zakharov (KGZ) system{

utt − uxx + u+ uv + β|u|2u = 0
vtt − vxx = 1

2 (|u|
2)xx,

(1.1)

where β is a real parameter, u is a complex valued function and v is a real valued function. The system (1.1)
describes the interaction of a Langmuir wave and an ion sound wave in plasma [2, 7].

Theoretically and practically, existence and stability properties of standing wave are a relevant question.
Orbital stability of solitary waves for the KGZ system was studied in [8]. General abstract framework of

spectral stability to second order Hamiltonian systems have been developed in [1, 5, 6] recently. In [5, 6], the
stability problem of second order in time nonlinear differential equations on the hole line have been studied. The
authors applied the abstract results to the Boussinesq, Klein–Gordon, and Klein–Gordon–Zakharov equations.

The question of stability in the periodic case is much more complicated. The spectrum of the linearized
operator, which depends on the choice of the function space, is well-known. The spectrum consists of the
isolated eigenvalues in the space of periodic functions, while the spectrum is continuous in the space of bounded
functions. The orbital stability of periodic standing waves for system (1.1) was considered in [3] in case of
β = 0 . Using the theory developed in [5], the linear stability of periodic traveling waves for system (1.1) is
studied in [4] when β = 0 .

In this article, we investigate the linear stability of periodic standing waves of dnoidal type. For that
purpose, we use the theory developed in [6]. This theory requires some spectral information about the operator
of the linearization with the standing waves. The required spectral properties have been achieved by using
Floquet theory.
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This article is organised as follows. In Section 2, we construct periodic waves of dnoidal type for system
(1.1). In Section 3, we set up the linearized problem and consider the spectral properties of the operator of
linearization. In Section 4, we compute the index that give the condition for stability/instability.

2. Periodic standing waves

In this section we construct periodic waves of the form u(t, x) = eiωtφ(x) , v(t, x) = ψ(x) for Klein–Gordon–
Zakharov system (1.1). Plugging in (1.1), we get the following system{

−φ′′ + σφ+ φψ + βφ3 = 0
−ψ′′ − 1

2 (φ
2)′′ = 0,

(2.1)

where σ = 1−ω2 . Integrating twice in the second equation of (2.1) and taking the constants of integrations to
be zero, we get ψ = − 1

2φ
2 . Now, first equation in (2.1) is reduced to the equation

−φ′′ + σφ−
(
1

2
− β

)
φ3 = 0. (2.2)

Integrating once the above equation, we get

φ′2 =
1− 2β

4

(
−φ4 +

4

1− 2β
σφ2 +

4a

1− 2β

)
, (2.3)

where a is a constant of integration. Hence, the periodic solutions of (2.3) are given by the periodic trajectories
H(φ,φ′) of the Hamiltonian vector field dH = 0 , where

H(x, y) = y2 +
1− 2β

4
x4 − σx2.

The level set H(x, y) = a contains two periodic trajectories if σ > 0, 1−2β > 0, a < 0 and it is unique if a > 0 .
Below we consider the case a < 0 and σ > 0 , and β < 1

2 . Denoted by φ0 > φ1 > 0 the positive solutions of
−ρ4 + 4

1−2βσρ
2 + a = 0 . Then φ1 ≤ φ ≤ φ0 and the solution φ is given by

φ(x) = φ0dn(αx, κ), (2.4)

where

φ2
0 + φ2

1 =
4σ

1− 2β
, α =

√
1

2
(
1

2
− β)φ0, κ2 =

φ2
0 − φ2

1

φ2
0

=
2φ2

0 − 4σ
1−2β

φ2
0

. (2.5)

Since the elliptic function dn has a fundamental period 2K(κ) , then the fundamental period of the solution
(2.4) is

2T =
2K(κ)

α
, T ∈ I =

(√
2π

2
√
σ
,∞

)
. (2.6)

Here and below K(k) and E(k) are, as usual, the complete elliptic integrals of the first and second kinds
in a Legendre form.
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3. Linearized equation

In this section we study the spectrum of linear operators arising in the linearization of system (1.1). We take
the perturbation in the form

u(t, x) = eiωt(φ(x) + p(t, x)), v(t, x) = ψ(x) + q(t, x), (3.1)

where p(t, x) is a complex valued function, q(t, x) is a real valued function and which are periodic with the
same period as waves. Plugging in the system (1.1), using (2.1), and ignoring all quadratic and higher order
terms yield the following linear equation for (p, q){

ptt + 2iωpt + σp− pxx + φq + (− 1
2 + β)φ2p+ 2βφ2Rep = 0

qtt − qxx − 1
2 (2φRep)xx = 0.

(3.2)

To introduce the new function h with mean zero value, so that q(t, x) = hx(t, x) .{
ptt + 2iωpt + σp− pxx + φhx + (− 1

2 + β)φ2p+ 2βφ2Rep = 0
httx − hxxx − 1

2 (2φRep)xx = 0.
(3.3)

Integrating by x in second equation and using that h is a function with mean zero value, we get{
ptt + 2iωpt + σp− pxx + φhx + (− 1

2 + β)φ2p+ 2βφ2Rep = 0
htt − hxx − φ′Rep− φRepx = 0.

(3.4)

Splitting real and imaginary parts of complex valued function p as p = F + iG and h = R , allows us to rewrite
the linearized problem (3.4) as the following system Ftt − 2ωGt + σF − Fxx + φRx + (− 1

2 + β)φ2F + 2βφ2F = 0
Gtt + 2ωFt + σG−Gxx + (− 1

2 + β)φ2G = 0
Rtt −Rxx − φ′F − φFx = 0.

(3.5)

Now we can write the system (3.5) as linearized problem below

U⃗tt + 2ωJ U⃗t +HU⃗ = 0, U⃗ =

FR
G

 , (3.6)

where

J =

0 0 −1
0 0 0
1 0 0

 , H =

H1 A 0
A∗ H2 0
0 0 H3


and

H1 = −∂2x + σ + (− 1
2 + 3β)φ2, H2 = −∂2x

H3 = −∂2x + σ + (− 1
2 + β)φ2

A = φ∂x, A∗ = −φ∂x − φ′.

Note that H is selfadjoint H∗ = H and J is antisymmetric J ∗ = −J .
Denote

H0 =

(
H1 A
A∗ H2

)
.
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Now, we consider the spectral properties of the operator H on the L2[−T, T ] with periodic boundary
conditions.

Proposition 3.1 For 2β ̸= 1+ M(κ)
K(κ) where M(κ) = 1

κ2

E2(κ)−(1−κ2)K2(κ)
2(1−κ2)K(κ)−(2−κ2)E(κ) < 0 , the selfadjoint operator H0

has an eigenvalue at zero, which is simple. In addition, the unique (up to a multiplicative constant) eigenfunction
is given by

ψ⃗1 =

(
φ′

− 1
2φ

2 + 1
4T

∫ T
−T φ

2dx

)
.

Proof Let
(
f
g

)
be an eigenvector corresponding to a zero eigenvalue, that is H

(
f
g

)
= 0 . In other words,

−f ′′ + σf + (−1

2
+ 3β)φ2f + φg′ = 0

−g′′ − (φf)′ = 0. (3.7)

Integrating the second equation in x implies that for some constant c0 , we have

g′ = −φf + c0 (3.8)

whence the equation for f becomes

−f ′′ + σf + (−3

2
+ 3β)φ2f + c0φ = 0. (3.9)

We show that c0 = 0 and then f = dφ′ for some constant d . To that end, recall the defining equation for φ ,
differentiate it with respect to x , we get

−φ′′′ + σφ′ + (−3

2
+ 3β)φ2φ′ = 0. (3.10)

We introduce the second order differential operator

L = −∂2x + σ + (−3

2
+ 3β)φ2. (3.11)

Using that κ2sn2(y) + dn2(y) = 1 and formulas (2.4) and (2.5), we obtain

L = −∂2x + σ − 3(β − 1
2 )φ

2
0dn

2(αx, κ)

= α2
[
−∂2y + 6κ2sn2(y, κ)− (4 + κ2)

]
,

where y = αx .
It is well-known that the first five eigenvalues of Λ1 = −∂2y + 6k2sn2(y, k) , with periodic boundary

conditions on [0, 4K(k)] are simple. These eigenvalues and corresponding eigenfunctions are:

ν0 = 2 + 2k2 − 2
√
1− k2 + k4, φ0(y) = 1− (1 + k2 −

√
1− k2 + k4)sn2(y, k),

ν1 = 1 + k2, φ1(y) = cn(y, k)dn(y, k) = sn′(y, k),

ν2 = 1 + 4k2, φ2(y) = sn(y, k)dn(y, k) = −cn′(y, k),
ν3 = 4 + k2, φ3(y) = sn(y, k)cn(y, k) = −k−2dn′(y, k),

ν4 = 2 + 2k2 + 2
√
1− k2 + k4, φ4(y) = 1− (1 + k2 +

√
1− k2 + k4)sn2(y, k).
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It follows that the first three eigenvalues of the operator L , equipped with periodic boundary condition on
[−T, T ] are simple and zero is the second eigenvalue with corresponding eigenfunction φ′ .

Now, in that φ ⊥ kerL form (3.10), we get

f = dφ′ − c0L
−1φ (3.12)

and form (3.8), we have
g′ = −dφφ′ + c0(φL

−1φ+ 1). (3.13)

Integrating the above equation, we get

c0(⟨L−1φ,φ⟩+ 2T ) = 0. (3.14)

It remains to estimate ⟨L−1φ,φ⟩ . We do it by constructing of Green function for the operator L .
We have Lφ′ = 0 . The function

ψ(x) = φ′(x)

∫ x 1

φ′2(s)
ds,

∣∣∣∣ φ′ ψ
φ′′ ψ′

∣∣∣∣ = 1

is also solution of Lψ = 0 . Formally, since φ′ has zeros using the identities

1

cn2(y, κ)
=

1

dn(y, κ)

∂

∂y

sn(x, κ)

cn(y, κ)
,

1

sn2(y, κ)
= − 1

dn(y, κ)

∂

∂y

cn(x, κ)

sn(y, κ)

and integrating by parts we get

ψ(x) =
1

α2κ2φ0

[
1− 2sn2(αx, κ)

dn(αx, κ)
− ακ2sn(αx, κ)cn(αx, κ)

∫ x

0

1− 2sn2(αs, κ)

dn2(αs, κ)
ds

]
.

Thus, we may construct Green function

L−1f = φ′
∫ x

0

ψ(s)f(s)ds− ψ(s)

∫ x

0

φ′(s)f(s)s+ Cfψ(x),

where Cf is chosen such that L−1f is periodic with same period as φ(x) .
After integrating by parts, we get

⟨L−1φ,φ⟩ = −⟨φ3, ψ⟩+ φ2(T ) + φ(0)2

2
⟨φ,ψ⟩+ Cφ⟨φ,ψ⟩. (3.15)

We have
⟨φ,ψ⟩ = 1

α3κ2 [E(κ)−K(κ)]

⟨φ3, ψ⟩ = φ2
0

2α3κ2 [(2− κ2)E(κ)− 2(1− κ2)K(κ)]

Cφ = − φ′′(T )
2ψ′(T ) ⟨φ,ψ⟩+

φ2(T )−φ2(0)
2 .

(3.16)

Finally, we get

⟨L−1φ,φ⟩ = φ2
0

2α3κ2
E2(κ)− (1− κ2)K2(κ)

2(1− κ2)K(κ)− (2− κ2)E(κ)
< 0.
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Using (2.5), we get

⟨L−1φ,φ⟩+ 2T =
1

α

[
M(κ)

1− 2β
+K(κ)

]
.

If 2β ̸= 1 + M(κ)
K(κ) , then the right side of the above equality is not zero, whence c0 = 0 and f = dφ′ .

Furthermore, g′ = −φf and after integration, we get

g = −dφ2 + constant.

In the above equation, constant uniquely determined by the fact that g has mean zero value, and whence

g = −1

2
φ2 +

1

4T

∫ T

−T
φ2dx.

2

Proposition 3.2 The operator H has the following spectral properties
1. Has negative simple eigenvalue

2. The kernel is two dimensional and spanned by ψ⃗1 =

 φ′

− 1
2φ

2 + 1
4T

∫ T
−T φ

2dx

0

 and ψ⃗2 = 1
||φ||

 0
0
φ


Proof Not that σ(H) = σ(H0) ∪ σ(H3) . From Proposition (3.1), we have that H0 has a one negative
eigenvalue, which is simple and kernel is one dimensional.

For the operator H3 we have

H1 = α2[−∂2y + 2k2sn2(y, k)− k2].

The spectrum of Λ2 = −∂2y +2k2sn2(y, k) is formed by bands [k2, 1]∪ [1+k2,+∞) . The first three eigenvalues
and the corresponding eigenfunctions with periodic boundary conditions on [0, 4K(k)] are simple and

ϵ0 = k2, θ0(y) = dn(y, k),

ϵ1 = 1, θ1(y) = cn(y, k),

ϵ2 = 1 + k2, θ2(y) = sn(y, k).

It follows that zero is an eigenvalue of H3 and it is the first eigenvalue with corresponding eigenfunction
φ(x) .

Hence, n(H) = 1 and dimKerH = 2 , and ψ⃗1, ψ⃗2 ∈ KerH . 2

4. Stability

Note that we restrict our consideration to the Hilbert space L2[−T, T ] × L2
0[−T, T ] × L2[−T, T ] , where

L2
0[−T, T ] = {f ∈ L2[−T, T ] :

∫ T
−T fdx = 0}.
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Definition 4.1 We say that the standing wave solution φ⃗ = (eiωtφ,− 1
2φ

2) is linear unstable, if there exists a

2T periodic function ψ⃗ ∈ D(H) and λ : ℜλ > 0 , so that

λ2ψ⃗ + 2zλJ ψ⃗ +Hψ⃗ = 0. (4.1)

Otherwise, we say that φ⃗ is stable.

Next, we give precise statements of the results in [6]. Let L2 = X+ ⊕ X− so that H acts invariantly

on both X± and J : X± → X∓ . We have a number of eigenvectors in the kernel of H and ψ⃗1 ∈ X+ and
ψ⃗2 ∈ X− . Moreover, we have the following assumptions:

Hu = Hu,H∗ = H, (4.2)

J u = J u,J ∗ = −J , ⟨ψ⃗1,J ψ⃗2⟩ = 0,J (H+ 1)−1 ∈ B(L2). (4.3)

In addition to (4.2) and (4.3), we assume the following for the spectrum of H


Hφ = −δ2φ,H |{φ}⊥≥ 0

Ker[H] = span[ψ⃗1, ψ⃗2]

ψ⃗1 ∈ X+, ψ⃗2 ∈ X−
(4.4)

The following theorem is proved in [6].

Theorem 4.2 Let H be a selfadjoint operator on a Hilbert space H . Assume that it satisfies the assumptions
(4.2), (4.3), and (4.4).

Then, if ⟨H−1[J ψ⃗2],J ψ⃗2⟩ ≥ 0 , one has a solution of to (4.1), that is instability in sense of Definition

4.1. Otherwise, supposing that ⟨H−1[J ψ⃗2], [J ψ⃗2]⟩ < 0 .
• the problem (4.1) has solution, if w satisfies the inequality

|z| < 1

2

√
−⟨H−1[J ψ⃗2], [J ψ⃗2]⟩

=: z∗(H) (4.5)

• the problem (4.1) does not has solutions (i.e. stability), if z satisfies the reverse inequality

|z| > z∗(H) (4.6)

Theorem 4.3 If 2β > 1 + M(κ)
K(κ) , then periodic waves φ⃗ are unstable. If 2β < 1 + M(κ)

K(κ) , then periodic waves

are unstable for |w| <
√

1
1+4N(κ) and stable if |w| >

√
1

1+4N(κ) , where

N(κ) = −2(2− κ2)K(κ)

E(κ)

M(κ)[
M(κ)
1−2β +K(κ)

] .
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Proof We have J ψ⃗2 = 1
||φ||

 −φ
0
0

 . Thus, ⟨ψ⃗1, Jψ⃗2⟩ = 0 . Obviously, assumptions (4.2) and (4.3) are

satisfied. From Propositions (3.1) and (3.2), we have that operator H satisfies the assumption (4.4). It remains

to estimate the index ⟨H−1[J ψ⃗2], [J ψ⃗2]⟩.

Let H

 f
g
h

 =

 −φ
0
0

 . Thus

∣∣∣∣∣∣
−f ′′ + σf +

(
− 1

2 + 3β
)
φ2f + φg′ = −φ

−φf − φ′f − g′′ = 0
H1h = 0.

(4.7)

We need to find only f . From the second equation of (4.7), we have g′′ = −(φf)′ . Integrating, we get

g′ = −φf + c1, (4.8)

where c1 is a constant of integration. Plugging in the first equation of (4.7), we get

−f ′′ + σf −
(
3

2
− 3β

)
φ2f = −c1φ− φ (4.9)

or
Lf = −(1 + c1)φ. (4.10)

Hence
f = dφ′ − (1 + c1)L

−1φ. (4.11)

Now, replacing in (4.8) and integrating, we get

c1 = − ⟨L−1φ,φ⟩
⟨L−1φ,φ⟩+ 2T

. (4.12)

We have

||φ||2 =

∫ T

−T
φ2
0dn

2(αx, κ)dx =
2φ2

0

α

∫ K(κ)

0

dn2(y, κ)dy =
2φ2

0

α
E(κ).

Finally, from (4.11) and (4.12), we have

⟨H−1[J ψ⃗2], [J ψ⃗2]⟩ = (1+c1)⟨L−1φ,φ⟩
||φ||2 = 2T

⟨L−1φ,φ⟩+2T
⟨L−1φ,φ⟩

||φ||2

= 1
σ

2(2−κ2)K(κ)
E(κ)

M(κ)

[M(κ)
1−2β +K(κ)]

.

(4.13)

If 2β > 1 + M(κ)
K(κ) , then ⟨H−1[J ψ⃗2], [J ψ⃗2]⟩ > 0 and hence we have instability.

If 2β < 1 + M(κ)
K(κ) , then ⟨H−1[J ψ⃗2], [J ψ⃗2]⟩ < 0 and hence we have instability if |w| <

√
1

1+4N(κ) and

stability if |w| >
√

1
1+4N(κ) . 2
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