т $̈$ вітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math
(2021) 45: $2603-2613$
© TÜBİTAK
doi:10.3906/mat-2105-32

On the Betti numbers of the tangent cones for Gorenstein monomial curves

Pınar METE* ${ }^{\text {(}}$
Department of Mathematics, Balıkesir University, Balıkesir, 10145 Turkey

$\begin{array}{lllll}\text { Received: } 11.05 .2021 & \text { Accepted/Published Online: 05.10.2021 } & \text { Final Version: } 29.11 .2021\end{array}$

Abstract

The aim of the article is to study the Betti numbers of the tangent cone of Gorenstein monomial curves in affine 4 -space. If C_{S} is a noncomplete intersection Gorenstein monomial curve whose tangent cone is Cohen-Macaulay, we show that the possible Betti sequences are $(1,5,5,1),(1,5,6,2)$ and $(1,6,8,3)$.

Key words: Gorenstein monomial curves, tangent cones, Betti numbers

1. Introduction

Let S denote the numerical semigroup generated by the positive integers $n_{1}<n_{2}<\ldots<n_{d}$ with $\operatorname{gcd}\left(n_{1}, \ldots, n_{d}\right)=1$. Consider the polynomial rings $R=k\left[x_{1}, \ldots, x_{d}\right]$ and $k[t]$ over the field k. The semigroup ring $k[S]=k\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]$ is the k-subalgebra of $k[t] . \varphi: R \rightarrow k[S] \subset k[t]$ with $\varphi\left(x_{i}\right)=t^{n_{i}}$ is the k-algebra homomorphism for $i=1, \ldots, d$ and its kernel I_{S} is called the toric ideal of S.

Let $m=\left(t^{n_{1}}, \ldots, t^{n_{d}}\right)$ be the maximal ideal of the one-dimensional local ring $k\left[\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]\right]$. When k is algebraically closed, the semigroup ring $k[S]=k\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]$ is isomorphic to the coordinate ring R / I_{S} of C_{S} and the coordinate ring $\operatorname{gr}_{m}\left(k\left[\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]\right]\right)$ of the tangent cone of C_{S} at the origin is isomorphic to the ring $R / I_{S_{*}}$. Here, $I_{S_{*}}$ is generated by the polynomials f_{*} which are the homogeneous summands of $f \in I_{S}$ and is called the defining ideal of the tangent cone of C_{S}. A monomial curve C_{S} is Gorenstein if the associated local ring $k\left[\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]\right]$ is Gorenstein. $k\left[\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]\right]$ is Gorenstein if and only if the semigroup S is symmetric [8]. We recall that the numerical semigroup S is symmetric if and only if for all $x \in \mathbb{Z}$ either $x \in S$ or $F(S)-x \in S$, where $F(S)$ denote the Frobenius number of S.

Finding an explicit minimal free resolution of a standard k-algebra is one of the core areas in commutative algebra. Since it is very difficult to obtain a description of the differential in the resolution, we can get some information about the numerical invariants of the resolution such as Betti numbers. The i-th Betti number of an R-module $M, \beta_{i}(M)$, is the rank of the free modules appearing in the minimal free resolution of M where

$$
0 \rightarrow R^{\beta_{k-1}} \rightarrow \ldots \rightarrow R^{\beta_{1}} \rightarrow R^{\beta_{0}}
$$

and the Betti sequence of $M, \beta(M)$, is $\left(\beta_{0}(M), \beta_{1}(M), \ldots, \beta_{k-1}(M)\right)$. Stamate [10] gave a broad survey on the Betti numbers of the numerical semigroup rings and stated the problem of describing the Betti numbers and the minimal free resolution for the tangent cone when S is 4 -generated semigroup which is symmetric, or equivalently, C_{S} is a Gorenstein monomial curve in affine 4 -space [see [10], Problem 9.9.]. The case has

[^0]
METE/Turk J Math

been addressed for Cohen-Macaulay tangent cone of a monomial curve in $\mathbb{A}^{4}(k)$ corresponding to a pseudosymmetric numerical semigroup in [11]. In this paper, we solve the problem for Cohen-Macaulay tangent cone of a monomial curve in $\mathbb{A}^{4}(k)$ corresponding to a noncomplete intersection symmetric numerical semigroup. All computations have been done using SINGULAR*.

2. The noncomplete intersection Gorenstein monomial curves

For the rest of the paper, we assume that C_{S} is a Gorenstein noncomplete intersection monomial curve in \mathbb{A}^{4}. Now, we recall Bresinsky's theorem, which gives the explicit description of the defining ideal of C_{S}.

Theorem 2.1 [4] Let C_{S} be a monomial curve having the parametrization

$$
x_{1}=t^{n_{1}}, x_{2}=t^{n_{2}}, x_{3}=t^{n_{3}}, x_{4}=t^{n_{4}}
$$

where $S=<n_{1}, n_{2}, n_{3}, n_{4}>$ is a numerical semigroup minimally generated by $n_{1}, n_{2}, n_{3}, n_{4}$. The semigroup $<n_{1}, n_{2}, n_{3}, n_{4}>$ is symmetric and C_{S} is a noncomplete intersection curve if and only if I_{S} is generated by the set

$$
\begin{aligned}
\left\{f_{1}\right. & =x_{1}^{\alpha_{1}}-x_{3}^{\alpha_{13}} x_{4}^{\alpha_{14}}, f_{2}=x_{2}^{\alpha_{2}}-x_{1}^{\alpha_{21}} x_{4}^{\alpha_{24}}, f_{3}=x_{3}^{\alpha_{3}}-x_{1}^{\alpha_{31}} x_{2}^{\alpha_{32}} \\
f_{4} & \left.=x_{4}^{\alpha_{4}}-x_{2}^{\alpha_{42}} x_{3}^{\alpha_{43}}, f_{5}=x_{3}^{\alpha_{43}} x_{1}^{\alpha_{21}}-x_{2}^{\alpha_{32}} x_{4}^{\alpha_{14}}\right\}
\end{aligned}
$$

where the polynomials f_{i} 's are unique up to isomorphism with $0<\alpha_{i j}<\alpha_{j}$ with $\alpha_{i} n_{i} \in<n_{1}, \ldots, \hat{n}_{i}, \ldots, n_{4}>$ such that α_{i} 's are minimal for $1 \leq i \leq 4$, where \hat{n}_{i} denotes that $n_{i} \notin<n_{1}, \ldots, \hat{n}_{i}, \ldots, n_{4}>$.

Theorem 2.1 implies that for any noncomplete intersection Gorenstein monomial curve C_{S}, the variables can be renamed to obtain generators exactly of the given form, and this means that there are six isomorphic possible permutations which can be considered within three cases:

1. $f_{1}=(1,(3,4))$
(a) $f_{2}=(2,(1,4)), f_{3}=(3,(1,2)), f_{4}=(4,(2,3)), f_{5}=((1,3),(2,4))$
(b) $f_{2}=(2,(1,3)), f_{3}=(3,(2,4)), f_{4}=(4,(1,2)), f_{5}=((1,4),(2,3))$
2. $f_{1}=(1,(2,3))$
(a) $f_{2}=(2,(3,4)), f_{3}=(3,(1,4)), f_{4}=(4,(1,2)), f_{5}=((2,4),(1,3))$
(b) $f_{2}=(2,(1,4)), f_{3}=(3,(2,4)), f_{4}=(4,(1,3)), f_{5}=((1,3),(4,2))$
3. $f_{1}=(1,(2,4))$
(a) $f_{2}=(2,(1,3)), f_{3}=(3,(1,4)), f_{4}=(4,(2,3)), f_{5}=((1,2),(3,4))$
(b) $f_{2}=(2,(3,4)), f_{3}=(3,(1,2)), f_{4}=(4,(1,3)), f_{5}=((2,3),(1,4))$
[^1]Here, the notations $f_{i}=(i,(j, k))$ and $f_{5}=((i, j),(k, l))$ denote the generators $f_{i}=x_{i}^{\alpha_{i}}-x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}}$ and $f_{5}=$ $x_{i}^{\alpha_{k i}} x_{j}^{\alpha_{l j}}-x_{k}^{\alpha_{j k}} x_{l}^{\alpha_{i l}}$. Thus, given a Gorenstein monomial curve C_{S}, if we have the extra condition $n_{1}<n_{2}<$ $n_{3}<n_{4}$, then the generator set of its defining ideal I_{S} is exactly given by one of these six permutations.

The study of the Cohen-Macaulayness of tangent cones of monomial curves constitutes an important problem [1],[2]. In [3], Arslan and Mete determined the common arithmetic conditions satisfied by the generators of the defining ideals of C_{S} and under these conditions they found the generators of the tangent cone of C_{S}. In [2], they provided necessary and sufficient conditions for the Cohen-Macaulayness of the tangent cone of C_{S} in all six permutations and gave the following theorem:

Theorem 2.2 [2] (1) Suppose that I_{S} is given as in the Case 1(a). Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if $\alpha_{2} \leq \alpha_{21}+\alpha_{24}$.
(2) Suppose that I_{S} is given as in Case 1(b). (i) Assume that $\alpha_{32}<\alpha_{42}$ and $\alpha_{14} \leq \alpha_{34}$. Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if

1. $\alpha_{2} \leq \alpha_{21}+\alpha_{23}$
2. $\alpha_{42}+\alpha_{13} \leq \alpha_{21}+\alpha_{34}$ and
3. $\alpha_{3}+\alpha_{13} \leq \alpha_{1}+\alpha_{32}+\alpha_{34}-\alpha_{14}$.
(ii) Assume that $\alpha_{42} \leq \alpha_{32}$. Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if
4. $\alpha_{2} \leq \alpha_{21}+\alpha_{23}$
5. $\alpha_{42}+\alpha_{13} \leq \alpha_{21}+\alpha_{34}$ and
6. either $\alpha_{34}<\alpha_{14}$ and $\alpha_{3}+\alpha_{13} \leq \alpha_{21}+\alpha_{32}-\alpha_{42}+2 \alpha_{34}$ or $\alpha_{14} \leq \alpha_{34}$ and $\alpha_{3}+\alpha_{13} \leq \alpha_{1}+\alpha_{32}+\alpha_{34}-\alpha_{14}$.
(3) Suppose that I_{S} is given as in Case 2(a). (i) Assume that $\alpha_{24}<\alpha_{34}$ and $\alpha_{13} \leq \alpha_{23}$. Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if
7. $\alpha_{3} \leq \alpha_{31}+\alpha_{34}$
8. $\alpha_{12}+\alpha_{34} \leq \alpha_{41}+\alpha_{23}$ and
9. $\alpha_{2}+\alpha_{12} \leq \alpha_{1}+\alpha_{23}-\alpha_{13}+\alpha_{24}$.
(ii) Assume that $\alpha_{34} \leq \alpha_{24}$. Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if
10. $\alpha_{3} \leq \alpha_{31}+\alpha_{34}$
11. $\alpha_{12}+\alpha_{34} \leq \alpha_{41}+\alpha_{23}$ and
12. either $\alpha_{23}<\alpha_{13}$ and $\alpha_{2}+\alpha_{12} \leq \alpha_{41}+2 \alpha_{23}+\alpha_{24}-\alpha_{34}$ or $\alpha_{13} \leq \alpha_{23}$ and $\alpha_{2}+\alpha_{12} \leq \alpha_{1}+\alpha_{23}-\alpha_{13}+\alpha_{24}$.
(4) Suppose that I_{S} is given as in Case 2(b). (i) Assume that $\alpha_{34}<\alpha_{24}$ and $\alpha_{12} \leq \alpha_{32}$. Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if
13. $\alpha_{2} \leq \alpha_{21}+\alpha_{24}$ and
14. $\alpha_{3}+\alpha_{13} \leq \alpha_{1}+\alpha_{32}-\alpha_{12}+\alpha_{34}$.
(ii) Assume that $\alpha_{24} \leq \alpha_{34}$. Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if
15. $\alpha_{2} \leq \alpha_{21}+\alpha_{24}$ and
16. either $\alpha_{32}<\alpha_{12}$ and $\alpha_{3}+\alpha_{13} \leq \alpha_{41}+2 \alpha_{32}+\alpha_{34}-\alpha_{24}$ or $\alpha_{12} \leq \alpha_{32}$ and $\alpha_{3}+\alpha_{13} \leq \alpha_{1}+\alpha_{32}-\alpha_{12}+\alpha_{34}$.
(5) Suppose that I_{S} is given as in the Case 3(a). Then $R / I_{S_{*}}$ is Cohen-Macaulay tangent cone if and only if $\alpha_{2} \leq \alpha_{21}+\alpha_{23}$ and $\alpha_{3} \leq \alpha_{31}+\alpha_{34}$.
(6) Suppose that I_{S} is given as in Case 3(b). (i) Assume that $\alpha_{23}<\alpha_{43}$ and $\alpha_{14} \leq \alpha_{24}$. Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if
17. $\alpha_{12}+\alpha_{43} \leq \alpha_{31}+\alpha_{24}$ and
18. $\alpha_{2}+\alpha_{12} \leq \alpha_{1}+\alpha_{23}+\alpha_{24}-\alpha_{14}$.
(ii) Assume that $\alpha_{43} \leq \alpha_{23}$. Then $R / I_{S_{*}}$ is Cohen-Macaulay if and only if
19. $\alpha_{12}+\alpha_{43} \leq \alpha_{31}+\alpha_{24}$ and
20. either $\alpha_{24}<\alpha_{14}$ and $\alpha_{2}+\alpha_{12} \leq \alpha_{31}+2 \alpha_{24}+\alpha_{23}-\alpha_{43}$
or $\alpha_{14} \leq \alpha_{24}$ and $\alpha_{2}+\alpha_{12} \leq \alpha_{1}+\alpha_{23}+\alpha_{24}-\alpha_{14}$.
Recently, Katsabekis gave the remaining standard bases for I_{S} in [7] using above conditions for the CohenMacaulayness of the tangent cone of C_{S}.

3. Betti sequences of Cohen-Macaulay tangent cones

In this section, we determine the Betti sequences of the tangent cone of C_{S} whose tangent cone is CohenMacaulay. Buchsbaum-Eisenbud criterion [5] and the following Lemma (see also [6]) will be used in the all proofs.

Lemma 3.1 [11] Assume that the multiplicity of the monomial curve is n_{i}. Suppose that the k-algebra homomorphism $\pi_{i}: R \rightarrow \bar{R}=k\left[x_{1}, \ldots, \overline{x_{i}}, \ldots, x_{d}\right]$ is defined by $\pi_{i}\left(x_{i}\right)=\overline{x_{i}}=0$ and $\pi_{j}\left(x_{j}\right)=x_{j}$ for $i \neq j$, and set $\bar{I}=\pi_{i}\left(I_{S_{*}}\right)$. If the tangent cone $\operatorname{gr}_{m}\left(k\left[\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]\right]\right)$ is Cohen-Macaulay, then the Betti sequences of $g r_{m}\left(k\left[\left[t^{n_{1}}, \ldots, t^{n_{d}}\right]\right]\right)$ and of \bar{R} / \bar{I} are the same.

This is a very effective result to reduce the number of cases for finding the Betti numbers of the tangent cones.

Case 1(a): Suppose that I_{S} is minimally generated by the polynomials

$$
\begin{gathered}
f_{1}=x_{1}^{\alpha_{1}}-x_{3}^{\alpha_{13}} x_{4}^{\alpha_{14}}, \quad f_{2}=x_{2}^{\alpha_{2}}-x_{1}^{\alpha_{21}} x_{4}^{\alpha_{24}}, \quad f_{3}=x_{3}^{\alpha_{3}}-x_{1}^{\alpha_{31}} x_{2}^{\alpha_{32}}, \\
f_{4}=x_{4}^{\alpha_{4}}-x_{2}^{\alpha_{42}} x_{3}^{\alpha_{43}}, \quad f_{5}=x_{1}^{\alpha_{21}} x_{3}^{\alpha_{43}}-x_{2}^{\alpha_{32}} x_{4}^{\alpha_{14}}
\end{gathered}
$$

where $\alpha_{1}=\alpha_{21}+\alpha_{31}, \alpha_{2}=\alpha_{32}+\alpha_{42}, \alpha_{3}=\alpha_{13}+\alpha_{43}, \alpha_{4}=\alpha_{14}+\alpha_{24}$. The condition $n_{1}<n_{2}<n_{3}<n_{4}$ implies $\alpha_{1}>\alpha_{13}+\alpha_{14}, \alpha_{4}<\alpha_{42}+\alpha_{43}$ and $\alpha_{3}<\alpha_{31}+\alpha_{32}$.
C_{S} has Cohen-Macaulay tangent cone only under the condition $\alpha_{2} \leq \alpha_{21}+\alpha_{24}$ by [2]. Mete and Zengin [9] gave the explicit minimal free resolution for the tangent cone of C_{S} and showed that the Betti sequence of its tangent cone is $(1,5,6,2)$.

Case 1(b): Suppose that I_{S} is minimally generated by the polynomials

$$
\begin{gathered}
f_{1}=x_{1}^{\alpha_{1}}-x_{3}^{\alpha_{13}} x_{4}^{\alpha_{14}}, \quad f_{2}=x_{2}^{\alpha_{2}}-x_{1}^{\alpha_{21}} x_{3}^{\alpha_{23}}, \quad f_{3}=x_{3}^{\alpha_{3}}-x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}} \\
f_{4}=x_{4}^{\alpha_{4}}-x_{1}^{\alpha_{41}} x_{2}^{\alpha_{42}}, \quad f_{5}=x_{1}^{\alpha_{21}} x_{4}^{\alpha_{34}}-x_{2}^{\alpha_{42}} x_{3}^{\alpha_{13}}
\end{gathered}
$$

where $\alpha_{1}=\alpha_{21}+\alpha_{41}, \alpha_{2}=\alpha_{32}+\alpha_{42}, \alpha_{3}=\alpha_{13}+\alpha_{23}, \alpha_{4}=\alpha_{14}+\alpha_{34}$. The condition $n_{1}<n_{2}<n_{3}<n_{4}$ implies $\alpha_{1}>\alpha_{13}+\alpha_{14}$ and $\alpha_{4}<\alpha_{41}+\alpha_{42}$. Under the restriction $\alpha_{2} \leq \alpha_{21}+\alpha_{23}$ by Theorem 2.2 and one possible condition $\alpha_{3} \leq \alpha_{32}+\alpha_{34}$, the Betti sequences for the Cohen-Macaulay tangent cone of C_{S} are $(1,5,5,1)$ and $(1,5,6,2)$, as given in [9]. Here, the other possible condition $\alpha_{3}>\alpha_{32}+\alpha_{34}$ will be considered.

Theorem 3.2 The Betti sequence of the tangent cone $R / I_{S_{*}}$ of C_{S} is $(1,6,8,3)$, if I_{S} is given as in Case 1(b) when $\alpha_{3}>\alpha_{32}+\alpha_{34}$.

Proof Suppose that I_{S} is given as in the Case 1(b) when $\alpha_{3}>\alpha_{32}+\alpha_{34}$.
(i) By Proposition 2.7 in [7], if $\alpha_{32}<\alpha_{42}$ and $\alpha_{14} \leq \alpha_{34}$, then,

$$
G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{3}^{\alpha_{3}+\alpha_{13}}-x_{1}^{\alpha_{1}} x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}-\alpha_{14}}\right\}
$$

(ii) By Proposition 2.9 in [7],
(1) if $\alpha_{42} \leq \alpha_{32}$ and $\alpha_{34}<\alpha_{14}$, then

$$
G=\left\{f_{1}, f_{2}, f_{3} f_{4}, f_{5}, f_{6}=x_{3}^{\alpha_{3}+\alpha_{13}}-x_{1}^{\alpha_{21}} x_{2}^{\alpha_{32}-\alpha_{42}} x_{4}^{2 \alpha_{34}}\right\}
$$

(2) if $\alpha_{42} \leq \alpha_{32}$ and $\alpha_{14} \leq \alpha_{34}$, then

$$
G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{3}^{\alpha_{3}+\alpha_{13}}-x_{1}^{\alpha_{1}} x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}-\alpha_{14}}\right\}
$$

are standard bases for I_{S}. Since $\bar{I}=\pi_{i}\left(I_{S_{*}}\right)$ which sends x_{1} to 0 , the generators of the defining ideal of \bar{I} is generated by

$$
G_{*}=\left(x_{3}^{\alpha_{13}} x_{4}^{\alpha_{14}}, x_{2}^{\alpha_{2}}, x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}}, x_{4}^{\alpha_{4}}, x_{2}^{\alpha_{42}} x_{3}^{\alpha_{13}}, x_{3}^{\alpha_{3}+\alpha_{13}}\right)
$$

Now, consider the case (i). Since the Betti sequences of $R / I_{S_{*}}$ and \bar{R} / \bar{I} are the same which follows from Lemma 3.1, we will show that the sequence,

$$
0 \rightarrow R^{3} \xrightarrow{\varphi_{3}} R^{8} \xrightarrow{\varphi_{2}} R^{6} \xrightarrow{\varphi_{1}} R^{1} \rightarrow 0
$$

is a minimal free resolution of \bar{R} / \bar{I}, where

$$
\begin{aligned}
& \varphi_{1}=\left(x_{3}^{\alpha_{13}} x_{4}^{\alpha_{14}} \quad x_{2}^{\alpha_{2}} \quad x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}} \quad x_{4}^{\alpha_{4}} \quad x_{2}^{\alpha_{42}} x_{3}^{\alpha_{13}} \quad x_{3}^{\alpha_{3}+\alpha_{13}}\right), \\
& \varphi_{2}=\left(\begin{array}{cccccccc}
0 & -x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}-\alpha_{14}} & 0 & -x_{4}^{\alpha_{34}} & x_{2}^{\alpha_{42}} & x_{3}^{\alpha_{3}} & 0 & 0 \\
0 & 0 & -x_{4}^{\alpha_{34}} & 0 & 0 & 0 & x_{3}^{\alpha_{13}} & 0 \\
x_{4}^{\alpha_{14}} & x_{3}^{\alpha_{13}} & x_{2}^{\alpha_{42}} & 0 & 0 & 0 & 0 & 0 \\
-x_{2}^{\alpha_{32}} & 0 & 0 & x_{3}^{\alpha_{13}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -x_{4}^{\alpha_{14}} & 0 & -x_{2}^{\alpha_{32}} & x_{3}^{\alpha_{3}} \\
0 & 0 & 0 & 0 & 0 & -x_{4}^{\alpha_{14}} & 0 & -x_{2}^{\alpha_{42}}
\end{array}\right) \\
& \varphi_{3}=\left(\begin{array}{ccc}
x_{3}^{\alpha_{13}} & 0 & 0 \\
-x_{4}^{\alpha_{14}} & x_{2}^{\alpha_{42}} & 0 \\
0 & -x_{3}^{\alpha_{13}} & 0 \\
x_{2}^{\alpha_{32}} & 0 & 0 \\
0 & x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}-\alpha_{14}} & x_{3}^{\alpha_{3}} \\
0 & 0 & -x_{2}^{\alpha_{42}} \\
0 & x_{4}^{\alpha_{34}} & 0 \\
0 & 0 & x_{4}^{\alpha_{14}}
\end{array}\right) .
\end{aligned}
$$

Since $\varphi_{1} \varphi_{2}=\varphi_{2} \varphi_{3}=0$, the sequence above is a complex. One can easily check that $\operatorname{rank}\left(\varphi_{1}\right)=1$, $\operatorname{rank}\left(\varphi_{2}\right)=5$ and $\operatorname{rank}\left(\varphi_{3}\right)=3$. As the 5 -minors of φ_{2}, we get $x_{3}^{2 \alpha_{3}+3 \alpha_{13}}$ by deleting the row 6 , and the columns $1,3,5$, and $-x_{4}^{2 \alpha_{4}+\alpha_{14}}$ by deleting the row 4 and the columns $2,7,8$. These two determinants are relatively prime, so $I\left(\varphi_{2}\right)$ contains a regular sequence of length 2 . As the 3 -minors of φ_{3}, we have $x_{2}^{\alpha_{2}+\alpha_{42}}$ by deleting the rows $1,3,5,7,8$, and $-x_{3}^{\alpha_{3}+2 \alpha_{13}}$ by deleting the rows $2,4,6,7,8$, and finally, $-x_{4}^{\alpha_{4}+\alpha_{14}}$ by deleting the rows $1,3,4,5,6$ Since these are relatively prime, $I\left(\varphi_{3}\right)$ contains a regular sequence of length 3 .

The other cases (ii)-(1) and (2) can be done similarly and are hence omitted.

Case 2(a): Suppose that I_{S} is minimally generated by the polynomials

$$
\begin{gathered}
f_{1}=x_{1}^{\alpha_{1}}-x_{2}^{\alpha_{12}} x_{3}^{\alpha_{13}}, \quad f_{2}=x_{2}^{\alpha_{2}}-x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}}, \quad f_{3}=x_{3}^{\alpha_{3}}-x_{1}^{\alpha_{31}} x_{4}^{\alpha_{34}} \\
f_{4}=x_{4}^{\alpha_{4}}-x_{1}^{\alpha_{41}} x_{2}^{\alpha_{42}}, \quad f_{5}=x_{1}^{\alpha_{41}} x_{3}^{\alpha_{23}}-x_{2}^{\alpha_{12}} x_{4}^{\alpha_{34}}
\end{gathered}
$$

where $\alpha_{1}=\alpha_{31}+\alpha_{41}, \alpha_{2}=\alpha_{12}+\alpha_{42}, \alpha_{3}=\alpha_{13}+\alpha_{23}, \alpha_{4}=\alpha_{24}+\alpha_{34}$. The condition $n_{1}<n_{2}<n_{3}<n_{4}$ implies $\alpha_{1}>\alpha_{12}+\alpha_{13}, \quad \alpha_{2}>\alpha_{23}+\alpha_{24}$ and $\alpha_{4}<\alpha_{41}+\alpha_{42}$. Note that the assumption $\alpha_{3} \leq \alpha_{31}+\alpha_{34}$ is one of the necessary and sufficient conditions for the Cohen-Macaulayness of the tangent cone by Theorem 2.2.

Theorem 3.3 The Betti sequence of the tangent cone $R / I_{S_{*}}$ of C_{S} is $(1,6,8,3)$, if I_{S} is given as in Case 2(a).

Proof Suppose that I_{S} is given as in the Case 2(a).
(i) By Proposition 2.11 in [7], if $\alpha_{24}<\alpha_{34}$ and $\alpha_{13} \leq \alpha_{23}$, then

$$
G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{2}^{\alpha_{2}+\alpha_{12}}-x_{1}^{\alpha_{1}} x_{3}^{\alpha_{23}-\alpha_{13}} x_{4}^{\alpha_{24}}\right\}
$$

(ii) By Proposition 2.13 in [7],
(1) if $\alpha_{34} \leq \alpha_{24}$ and $\alpha_{23}<\alpha_{13}$, then

$$
G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{2}^{\alpha_{2}+\alpha_{12}}-x_{1}^{\alpha_{41}} x_{3}^{2 \alpha_{23}} x_{4}^{\alpha_{24}-\alpha_{34}}\right\}
$$

(2) if $\alpha_{34} \leq \alpha_{24}$ and $\alpha_{13} \leq \alpha_{23}$, then

$$
G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{2}^{\alpha_{2}+\alpha_{12}}-x_{1}^{\alpha_{1}} x_{3}^{\alpha_{23}-\alpha_{13}} x_{4}^{\alpha_{24}}\right\}
$$

are standard bases for I_{S}. Since $\bar{I}=\pi_{i}\left(I_{S_{*}}\right)$ which sends x_{1} to 0 , the generators of the defining ideal of \bar{I} is generated by

$$
G_{*}=\left(x_{2}^{\alpha_{12}} x_{3}^{\alpha_{13}}, x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}}, x_{3}^{\alpha_{3}}, x_{4}^{\alpha_{4}}, x_{2}^{\alpha_{12}} x_{4}^{\alpha_{34}}, x_{2}^{\alpha_{2}+\alpha_{12}}\right)
$$

Now, consider the case (i). Since the Betti sequences of $R / I_{S_{*}}$ and \bar{R} / \bar{I} are the same which follows from Lemma 3.1, we will show that the sequence,

$$
0 \rightarrow R^{3} \xrightarrow{\varphi_{3}} R^{8} \xrightarrow{\varphi_{2}} R^{6} \xrightarrow{\varphi_{1}} R^{1} \rightarrow 0
$$

is a minimal free resolution of \bar{R} / \bar{I}, where

$$
\begin{gathered}
\varphi_{1}=\left(\begin{array}{lc}
x_{2}^{\alpha_{12}} x_{3}^{\alpha_{13}} & x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}} \\
\varphi_{2}= & x_{3}^{\alpha_{3}} x_{4}^{\alpha_{4}} \\
\left(\begin{array}{ccccccc}
x_{3}^{\alpha_{23}} & x_{2}^{\alpha_{23}-\alpha_{13}} x_{4}^{\alpha_{24}} & x_{2}^{\alpha_{12}} x_{4}^{\alpha_{34}} & x_{2}^{\alpha_{2}+\alpha_{12}}
\end{array}\right), \\
0 & -x_{2}^{\alpha_{12}} \\
0 & 0 \\
x_{2}^{\alpha_{12}} & 0
\end{array} x_{2}^{\alpha_{2}}\right. \\
0
\end{gathered}
$$

Since $\varphi_{1} \varphi_{2}=\varphi_{2} \varphi_{3}=0$, the sequence above is a complex. One can easily check that $\operatorname{rank}\left(\varphi_{1}\right)=1$, $\operatorname{rank}\left(\varphi_{2}\right)=1$ and $\operatorname{rank}\left(\varphi_{3}\right)=3$.

As the 5 -minors of φ_{2}, we have $-x_{3}^{2 \alpha_{3}+\alpha_{13}}$ by removing the columns $2,7,8$ and the row 3 , and $-x_{4}^{2 \alpha_{4}+\alpha_{34}}$ by removing the columns $1,2,4$ and the row 4 . These two determinants are relatively prime, so $I\left(\varphi_{2}\right)$ contains a regular sequence of length 2 . As the 3 -minors of φ_{3}, we get $x_{2}^{\alpha_{2}+2 \alpha_{12}}$ by removing the rows $1,2,4,7,8$, and $x_{3}^{\alpha_{3}+\alpha_{13}}$ by removing the rows $1,3,4,5,6$, and finally $-x_{4}^{\alpha_{4}+\alpha_{34}}$ by removing the rows $3,5,6,7,8$. These three determinants constitute a regular sequence. Thus, $I\left(\varphi_{3}\right)$ contains a regular sequence of length 3 .

The other cases (ii)-(1) and (2) can be done similarly and are hence omitted.

Case 2(b): Suppose that I_{S} is minimally generated by the polynomials

$$
\begin{gathered}
f_{1}=x_{1}^{\alpha_{1}}-x_{2}^{\alpha_{12}} x_{3}^{\alpha_{13}}, \quad f_{2}=x_{2}^{\alpha_{2}}-x_{1}^{\alpha_{21}} x_{4}^{\alpha_{24}}, \quad f_{3}=x_{3}^{\alpha_{3}}-x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}} \\
f_{4}=x_{4}^{\alpha_{4}}-x_{1}^{\alpha_{41}} x_{3}^{\alpha_{43}}, \quad f_{5}=x_{1}^{\alpha_{41}} x_{2}^{\alpha_{32}}-x_{3}^{\alpha_{13}} x_{4}^{\alpha_{24}}
\end{gathered}
$$

where $\alpha_{1}=\alpha_{21}+\alpha_{41}, \alpha_{2}=\alpha_{12}+\alpha_{32}, \alpha_{3}=\alpha_{13}+\alpha_{43}, \alpha_{4}=\alpha_{24}+\alpha_{34}$. The condition $n_{1}<n_{2}<n_{3}<n_{4}$ implies $\alpha_{1}>\alpha_{12}+\alpha_{13}$ and $\alpha_{4}<\alpha_{41}+\alpha_{43}$.

Under the restriction $\alpha_{2} \leq \alpha_{21}+\alpha_{24}$ by Theorem 2.2 and one possible condition $\alpha_{3} \leq \alpha_{32}+\alpha_{34}$, the Betti sequences for the Cohen-Macaulay tangent cone of C_{S} are $(1,5,5,1)$ and $(1,5,6,2)$, as given in [9]. Here, the other possible condition $\alpha_{3}>\alpha_{32}+\alpha_{34}$ will be considered.

Theorem 3.4 The Betti sequence of the tangent cone $R / I_{S_{*}}$ of C_{S} is $(1,6,8,3)$, if I_{S} is given as in Case 2(b) when $\alpha_{3}>\alpha_{32}+\alpha_{34}$.

Proof Suppose that I_{S} is given as in the Case 2(b).
(i) By Proposition 2.16 in [7], if $\alpha_{34}<\alpha_{24}$ and $\alpha_{12} \leq \alpha_{32}$, then

$$
G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{3}^{\alpha_{3}+\alpha_{13}}-x_{1}^{\alpha_{1}} x_{2}^{\alpha_{32}-\alpha_{12}} x_{4}^{\alpha_{34}}\right\}
$$

(ii) By Proposition 2.18 in [7],
(1) if $\alpha_{24} \leq \alpha_{34}$ and $\alpha_{32}<\alpha_{12}$, then

$$
G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{3}^{\alpha_{3}+\alpha_{13}}-x_{1}^{\alpha_{41}} x_{2}^{2 \alpha_{32}} x_{4}^{\alpha_{34}-\alpha_{24}}\right\}
$$

(2) if $\alpha_{24} \leq \alpha_{34}$ and $\alpha_{12} \leq \alpha_{32}$, then

$$
G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{3}^{\alpha_{3}+\alpha_{13}}-x_{1}^{\alpha_{1}} x_{2}^{\alpha_{32}-\alpha_{12}} x_{4}^{\alpha_{34}}\right\}
$$

are standard bases for I_{S}. Since $\bar{I}=\pi_{i}\left(I_{S_{*}}\right)$ which sends x_{1} to 0 , then the generators of the defining ideal of \bar{I} is generated by

$$
G_{*}=\left(x_{2}^{\alpha_{12}} x_{3}^{\alpha_{13}}, x_{2}^{\alpha_{2}}, x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}}, x_{4}^{\alpha_{4}}, x_{3}^{\alpha_{13}} x_{4}^{\alpha_{24}}, x_{3}^{\alpha_{3}+\alpha_{13}}\right)
$$

Now, consider the case (i). Since the Betti sequences of $R / I_{S_{*}}$ and \bar{R} / \bar{I} are the same which follows from Lemma 3.1, we will show that the sequence,

$$
0 \rightarrow R^{3} \xrightarrow{\varphi_{3}} R^{8} \xrightarrow{\varphi_{2}} R^{6} \xrightarrow{\varphi_{1}} R^{1} \rightarrow 0
$$

is a minimal free resolution of \bar{R} / \bar{I}, where

$$
\begin{aligned}
& \varphi_{1}=\left(x_{2}^{\alpha_{12}} x_{3}^{\alpha_{13}} \quad x_{2}^{\alpha_{2}} \quad x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}} \quad x_{4}^{\alpha_{4}} \quad x_{3}^{\alpha_{13}} x_{4}^{\alpha_{24}} \quad x_{3}^{\alpha_{3}+\alpha_{13}}\right), \\
& \varphi_{2}=\left(\begin{array}{cccccccc}
x_{4}^{\alpha_{24}} & x_{2}^{\alpha_{32}} & x_{3}^{\alpha_{3}} & 0 & 0 & 0 & 0 & 0 \\
0 & -x_{3}^{\alpha_{13}} & 0 & 0 & 0 & 0 & x_{4}^{\alpha_{34}} & 0 \\
0 & 0 & 0 & 0 & -x_{3}^{\alpha_{13}} & 0 & -x_{2}^{\alpha_{12}} & -x_{4}^{\alpha_{24}} \\
0 & 0 & 0 & -x_{3}^{\alpha_{13}} & 0 & 0 & 0 & x_{2}^{\alpha_{32}} \\
-x_{2}^{\alpha_{12}} & 0 & 0 & x_{4}^{\alpha_{34}} & x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}-\alpha_{24}} & x_{3}^{\alpha_{3}} & 0 & 0 \\
0 & 0 & -x_{2}^{\alpha_{12}} & 0 & 0 & -x_{4}^{\alpha_{24}} & 0 & 0
\end{array}\right), \\
& \varphi_{3}=\left(\begin{array}{ccc}
x_{3}^{\alpha_{3}} & -x_{2}^{\alpha_{32}} x_{4}^{\alpha_{34}-\alpha_{24}} & 0 \\
0 & x_{4}^{\alpha_{34}} & 0 \\
-x_{4}^{\alpha_{24}} & 0 & 0 \\
0 & 0 & x_{2}^{\alpha_{32}} \\
0 & -x_{2}^{\alpha_{12}} & -x_{4}^{\alpha_{24}} \\
x_{2}^{\alpha_{12}} & 0 & 0 \\
0 & x_{3}^{\alpha_{13}} & 0 \\
0 & 0 & x_{3}^{\alpha_{13}}
\end{array}\right) .
\end{aligned}
$$

Since $\varphi_{1} \varphi_{2}=\varphi_{2} \varphi_{3}=0$, the sequence above is a complex. One can easily check that $\operatorname{rank}\left(\varphi_{1}\right)=1$, $\operatorname{rank}\left(\varphi_{2}\right)=5$ and $\operatorname{rank}\left(\varphi_{3}\right)=3$. As the 5 -minors of φ_{2}, we get $-x_{3}^{2 \alpha_{3}+3 \alpha_{13}}$ by removing the row 6 and the columns $1,7,8$, and $x_{4}^{2 \alpha_{4}+\alpha_{24}}$ by removing the row 4 and the columns $2,3,5$. These two determinants are relatively prime, so $I\left(\varphi_{2}\right)$ contains a regular sequence of length 2 . As the 3 -minors of φ_{3}, we have $-x_{2}^{\alpha_{2}+\alpha_{12}}$ by removing the rows $1,2,3,7,8$, and $x_{3}^{\alpha_{3}+2 \alpha_{13}}$ by removing the rows $2,3,4,5,6$, and finally, $-x_{4}^{\alpha_{4}+\alpha_{24}}$ by removing the rows $1,4,6,7,8$. These three determinants constitute a regular sequence. Thus, $I\left(\varphi_{3}\right)$ contains a regular sequence of length 3 .

The other cases (ii)-(1) and (2) can be done similarly and are hence omitted.

METE/Turk J Math

Case 3(a): Suppose that I_{S} is minimally generated by the polynomials

$$
\begin{gathered}
f_{1}=x_{1}^{\alpha_{1}}-x_{2}^{\alpha_{12}} x_{4}^{\alpha_{14}}, \quad f_{2}=x_{2}^{\alpha_{2}}-x_{1}^{\alpha_{21}} x_{3}^{\alpha_{23}}, \quad f_{3}=x_{3}^{\alpha_{3}}-x_{1}^{\alpha_{31}} x_{4}^{\alpha_{34}} \\
f_{4}=x_{4}^{\alpha_{4}}-x_{2}^{\alpha_{42}} x_{3}^{\alpha_{43}}, \quad f_{5}=x_{1}^{\alpha_{31}} x_{2}^{\alpha_{42}}-x_{3}^{\alpha_{23}} x_{4}^{\alpha_{14}}
\end{gathered}
$$

where $\alpha_{1}=\alpha_{21}+\alpha_{31}, \quad \alpha_{2}=\alpha_{12}+\alpha_{42}, \quad \alpha_{3}=\alpha_{23}+\alpha_{43}, \quad \alpha_{4}=\alpha_{14}+\alpha_{34}$. The condition $n_{1}<n_{2}<n_{3}<n_{4}$ implies $\alpha_{1}>\alpha_{12}+\alpha_{14}$ and $\alpha_{4}<\alpha_{42}+\alpha_{43}$.
C_{S} has Cohen-Macaulay tangent cone only under the conditions $\alpha_{2} \leq \alpha_{21}+\alpha_{23}$ and $\alpha_{3} \leq \alpha_{31}+\alpha_{34}$ by [2]. Mete and Zengin [9] gave the explicit minimal free resolution for the tangent cone of C_{S} and showed that the Betti sequence of its tangent cone is $(1,5,6,2)$.

Case 3(b): Suppose that I_{S} is minimally generated by the polynomials

$$
\begin{gathered}
f_{1}=x_{1}^{\alpha_{1}}-x_{2}^{\alpha_{12}} x_{4}^{\alpha_{14}}, \quad f_{2}=x_{2}^{\alpha_{2}}-x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}}, \quad f_{3}=x_{3}^{\alpha_{3}}-x_{1}^{\alpha_{31}} x_{2}^{\alpha_{32}} \\
f_{4}=x_{4}^{\alpha_{4}}-x_{1}^{\alpha_{41}} x_{3}^{\alpha_{43}}, \quad f_{5}=x_{2}^{\alpha_{12}} x_{3}^{\alpha_{43}}-x_{1}^{\alpha_{31}} x_{4}^{\alpha_{24}}
\end{gathered}
$$

Here, $\alpha_{1}=\alpha_{31}+\alpha_{41}, \quad \alpha_{2}=\alpha_{12}+\alpha_{32}, \quad \alpha_{3}=\alpha_{23}+\alpha_{43}, \quad \alpha_{4}=\alpha_{14}+\alpha_{24}$. The condition $n_{1}<n_{2}<n_{3}<n_{4}$ implies $\alpha_{1}>\alpha_{12}+\alpha_{14}, \quad \alpha_{2}>\alpha_{23}+\alpha_{24}, \quad \alpha_{3}<\alpha_{31}+\alpha_{32}$ and $\alpha_{4}<\alpha_{41}+\alpha_{43}$.

Theorem 3.5 The Betti sequence of the tangent cone $R / I_{S_{*}}$ of C_{S} is $(1,6,8,3)$, if I_{S} is given as in the Case 3(b).

Proof Suppose that I_{S} is given as in the Case 3(b).
(i) By Proposition 2.21 in [7], if $\alpha_{23}<\alpha_{43}$ and $\alpha_{14} \leq \alpha_{24}$, then

$$
\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{2}^{\alpha_{2}+\alpha_{12}}-x_{1}^{\alpha_{1}} x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}-\alpha_{14}}\right\}
$$

(ii) By Proposition 2.23 in [7],
(1) if $\alpha_{43} \leq \alpha_{23}$ and $\alpha_{24}<\alpha_{14}$ then

$$
\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{2}^{\alpha_{2}+\alpha_{12}}-x_{1}^{\alpha_{31}} x_{3}^{\alpha_{23}-\alpha_{43}} x_{4}^{2 \alpha_{24}}\right\}
$$

(2) if $\alpha_{43} \leq \alpha_{23}$ and $\alpha_{14} \leq \alpha_{24}$ then

$$
\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}=x_{2}^{\alpha_{2}+\alpha_{12}}-x_{1}^{\alpha_{1}} x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}-\alpha_{14}}\right\}
$$

are standard bases for I_{S}. Since $\bar{I}=\pi_{i}\left(I_{S_{*}}\right)$ which sends x_{1} to 0 , then the generators of the defining ideal of \bar{I} is generated by

$$
G_{*}=\left(x_{2}^{\alpha_{12}} x_{4}^{\alpha_{14}}, x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}}, x_{3}^{\alpha_{3}}, x_{4}^{\alpha_{4}}, x_{2}^{\alpha_{12}} x_{3}^{\alpha_{43}}, x_{2}^{\alpha_{2}+\alpha_{12}}\right)
$$

Now, consider the case (i). Since the Betti sequences of $R / I_{S_{*}}$ and \bar{R} / \bar{I} are the same which follows from Lemma 3.1, we will show that the sequence,

$$
0 \rightarrow R^{3} \xrightarrow{\varphi_{3}} R^{8} \xrightarrow{\varphi_{2}} R^{6} \xrightarrow{\varphi_{1}} R^{1} \rightarrow 0
$$

is a minimal free resolution of \bar{R} / \bar{I}, where

$$
\begin{aligned}
& \varphi_{1}=\left(x_{2}^{\alpha_{12}} x_{4}^{\alpha_{14}} \quad x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}} \quad x_{3}^{\alpha_{3}} \quad x_{4}^{\alpha_{4}} \quad x_{2}^{\alpha_{12}} x_{3}^{\alpha_{43}} \quad x_{2}^{\alpha_{2}+\alpha_{12}}\right), \\
& \varphi_{2}=\left(\begin{array}{cccccccc}
x_{3}^{\alpha_{43}} & x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}-\alpha_{14}} & x_{4}^{\alpha_{24}} & x_{2}^{\alpha_{2}} & 0 & 0 & 0 & 0 \\
0 & -x_{2}^{\alpha_{12}} & 0 & 0 & 0 & 0 & -x_{3}^{\alpha_{43}} & x_{4}^{\alpha_{14}} \\
0 & 0 & 0 & 0 & -x_{2}^{\alpha_{12}} & 0 & x_{4}^{\alpha_{24}} & 0 \\
0 & 0 & -x_{2}^{\alpha_{12}} & 0 & 0 & 0 & 0 & -x_{3}^{\alpha_{23}} \\
-x_{4}^{\alpha_{14}} & 0 & 0 & 0 & x_{3}^{\alpha_{23}} & x_{2}^{\alpha_{2}} & 0 & 0 \\
0 & 0 & 0 & -x_{4}^{\alpha_{14}} & 0 & -x_{3}^{\alpha_{43}} & 0 & 0
\end{array}\right), \\
& \varphi_{3}=\left(\begin{array}{ccc}
x_{2}^{\alpha_{2}} & 0 & x_{3}^{\alpha_{23}} x_{4}^{\alpha_{24}-\alpha_{14}} \\
0 & x_{4}^{\alpha_{14}} & -x_{3}^{\alpha_{43}} \\
0 & -x_{3}^{\alpha_{23}} & 0 \\
-x_{3}^{\alpha_{43}} & 0 & 0 \\
0 & 0 & x_{4}^{\alpha_{24}} \\
x_{4}^{\alpha_{14}} & 0 & 0 \\
0 & 0 & x_{2}^{\alpha_{12}} \\
0 & x_{2}^{\alpha_{12}} & 0
\end{array}\right)
\end{aligned}
$$

Since $\varphi_{1} \varphi_{2}=\varphi_{2} \varphi_{3}=0$, the sequence above is a complex. It is easy to show that $\operatorname{rank}\left(\varphi_{1}\right)=1, \operatorname{rank}\left(\varphi_{2}\right)=5$ and $\operatorname{rank}\left(\varphi_{3}\right)=3$. As the 5 -minors of φ_{2}, we have $-x_{3}^{2 \alpha_{3}+\alpha_{43}}$ by removing the row 3 and the columns 2 , 3 , 4 , and $x_{4}^{2 \alpha_{4}+\alpha_{14}}$ by removing the row 4 and the columns $2,5,6$. These two determinants are relatively prime, so $I\left(\varphi_{2}\right)$ contains a regular sequence of length 2 . As the 3 -minors of φ_{3}, we get $-x_{2}^{\alpha_{2}+2 \alpha_{12}}$ by removing the rows $2,3,4,5,6$, and $x_{3}^{\alpha_{3}+\alpha_{43}}$ by removing the rows $1,5,6,7,8$, and finally, $x_{4}^{\alpha_{4}+\alpha_{14}}$ by removing the rows 1 , $3,4,7,8$. These three determinants constitute a regular sequence. Thus, $I\left(\varphi_{3}\right)$ contains a regular sequence of length 3.

The other cases (ii)-(1) and (2) can be done similarly and are hence omitted.

References

[1] Arslan F. Cohen-Macaulayness of tangent cones. Proceedings of the American Mathematical Society 2000; 128: 2243-2251.
[2] Arslan F, Katsabekis A, Nalbandiyan M. On the Cohen-Macaulayness of tangent cones of monomial curves in $\mathbb{A}^{4}(K)$. Turkish Journal of Mathematics 2019; 43: 1425-1446.
[3] Arslan F, Mete P. Hilbert functions of Gorenstein monomial curves. Proceedings of the American Mathematical Society 2007; 135: 1993-2002.
[4] Bresinsky H. Symmetric semigroups of integers generated by four elements. Manuscripta Mathematica 1975; 17: 205-219.
[5] Buchsbaum D, Eisenbud D. What makes a complex exact? Journal of Algebra 1973; 323: 259-268.
[6] Herzog J, Stamate DI. On the defining equations of the tangent cone of a numerical semigroup ring. Journal of Algebra 2014; 418: 8-28.
[7] Katsabekis A. Hilbert series of tangent cones for Gorenstein monomial curves in $\mathbb{A}^{4}(K)$. Turkish Journal of Mathematics 2021; 45: 597-616.
[8] Kunz E. The value-semigroup of a one-dimensional Gorenstein ring. Proceedings of the American Mathematical Society 1970; 25: 748-751.
[9] Mete P, Zengin EE. Minimal free resolutions of the tangent cones for Gorenstein monomial curves. Turkish Journal of Mathematics 2019; 43: 2782-2793.
[10] Stamate DI. Betti numbers for numerical semigroup rings. Multigraded Algebra and Applications, Springer Proceedings in Mathematics and Statistics 2018; 238: 133-157.
[11] Şahin M, Şahin N. Betti numbers for certain Cohen-Macaulay tangent cones. Bulletin of the Australian Mathematical Society 2019; 99: 68-77.

[^0]: *Correspondence : pinarm@balikesir.edu.tr
 2010 AMS Mathematics Subject Classification: primary 13H10; secondary 13P10, 14H20

[^1]: *Singular 2.0. A Computer Algebra System for Polynomial Computations. Available at http://www.singular.uni-kl.de.

