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Abstract: The aim of the article is to study the Betti numbers of the tangent cone of Gorenstein monomial curves in
affine 4-space. If Cs is a noncomplete intersection Gorenstein monomial curve whose tangent cone is Cohen—-Macaulay,
we show that the possible Betti sequences are (1,5,5,1), (1,5,6,2) and (1,6,8,3).
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1. Introduction
Let S denote the numerical semigroup generated by the positive integers ny < ns < ... < ng with
ged(ng,...,ng) = 1. Consider the polynomial rings R = k[x1,...,x4] and k[t] over the field k. The semigroup
ring k[S] = k[t™,...,t"] is the k—subalgebra of k[t]. ¢ : R — k[S] C k[t] with ¢(z;) = t™ is the k—algebra
homomorphism for i = 1,...,d and its kernel g is called the toric ideal of S'.

Let m = (¢™,...,t") be the maximal ideal of the one-dimensional local ring k[[¢t™,...,¢"]]. When
k is algebraically closed, the semigroup ring k[S] = k[t",...,¢"¢] is isomorphic to the coordinate ring R/Ig
of Cg and the coordinate ring gr, (k[[t",...,t"]]) of the tangent cone of Cs at the origin is isomorphic
to the ring R/Is, . Here, Ig, is generated by the polynomials f. which are the homogeneous summands of
f € Is and is called the defining ideal of the tangent cone of C's. A monomial curve Cg is Gorenstein if the
associated local ring k[[t",...,t"4]] is Gorenstein. k[[t",...,t"¢]] is Gorenstein if and only if the semigroup
S is symmetric [8]. We recall that the numerical semigroup S is symmetric if and only if for all 2 € Z either
x €S or F(S)—x €S, where F(S) denote the Frobenius number of S.

Finding an explicit minimal free resolution of a standard k— algebra is one of the core areas in commuta-
tive algebra. Since it is very difficult to obtain a description of the differential in the resolution, we can get some

information about the numerical invariants of the resolution such as Betti numbers. The i-th Betti number of
an R-module M, B;(M), is the rank of the free modules appearing in the minimal free resolution of M where

0— R — .. — R — RPo

and the Betti sequence of M, (M), is (Bo(M), B1(M),...,Br—1(M)). Stamate [10] gave a broad survey on
the Betti numbers of the numerical semigroup rings and stated the problem of describing the Betti numbers
and the minimal free resolution for the tangent cone when S is 4-generated semigroup which is symmetric,

or equivalently, C's is a Gorenstein monomial curve in affine 4-space [see [10], Problem 9.9.]. The case has
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been addressed for Cohen-Macaulay tangent cone of a monomial curve in A*(k) corresponding to a pseudo-
symmetric numerical semigroup in [11]. In this paper, we solve the problem for Cohen-Macaulay tangent cone
of a monomial curve in A*(k) corresponding to a noncomplete intersection symmetric numerical semigroup. All

computations have been done using SINGULAR™.

2. The noncomplete intersection Gorenstein monomial curves

For the rest of the paper, we assume that Cg is a Gorenstein noncomplete intersection monomial curve in A*.

Now, we recall Bresinsky’s theorem, which gives the explicit description of the defining ideal of Cg.

Theorem 2.1 [4] Let Cs be a monomial curve having the parametrization
r1 = tnl, Ty = th, xr3 = tns, Ty = e

where S =< ni,n9,n3g,ng > is a numerical semigroup minimally generated by ny,no,n3,ny. The semigroup
< ni,ng,ng,ng > is symmetric and Cg is a noncomplete intersection curve if and only if Is is generated by
the set
— (o5} «13 .14 — a2 «21 024 — a3 «31 ,,032
{fi =27 —agPaytt, fo=x5® —aMa*t, f3 = x5 —aptag®?,

Qg2

—_ (e %] Q43 _ 43,0021 @32 14
fo=ayt — a5 ag*, fs = w3 — 5%y }

where the polynomials f; ’s are unique up to isomorphism with 0 < oy; < a; with an; €< Ny, ..o, Ny, ...,y >

such that «;’s are minimal for 1 <i <4, where n; denotes that n; §< ny, ..., Ny, ... Ny >.

Theorem 2.1 implies that for any noncomplete intersection Gorenstein monomial curve Cg, the variables
can be renamed to obtain generators exactly of the given form, and this means that there are six isomorphic

possible permutations which can be considered within three cases:

L fi=(1,(3,4)

(a) f2 = (23 (174))af3 = (37 (1a2))7f4 = (4v (273))af5 = ((173)a (274))
(b) f2 = (2a (173))af3 = (37 (2’4))7f4 = (4a (172))af5 ((174)v (273))

(a) fa= (2a (374))7f3 = (37 (174))vf4 = (4a (172))7f5
(b) f2 = (2a (1’4))vf3 = (37 (2a4))’f4 = (4a (1’3))af5

((2,4),(1,3))
((1,3),(4,2))

3. fi=(1,(2,4)

(a) fo= (2a (173))7f3 = (37 (174))>f4 = (4a (273))7f5 = ((1’2)’ (374))
(b) fo= (2a (374))7f3 = (37 (172))vf4 = (4a (173)>7f5 = ((2,3), (174»

*SINGULAR 2.0. A Computer Algebra System for Polynomial Computations. Available at http://www.singular.uni-kl.de.
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Here, the notations f;=(3,(j,k)) and f5=((3,7), (k,1)) denote the generators f;=x% — x5 72%* and fs=
i k

J

%) Xjk 01

i I x,"x;*. Thus, given a Gorenstein monomial curve Cg, if we have the extra condition n; < ny <

L X
ng < ng, then the generator set of its defining ideal Ig is exactly given by one of these six permutations.

The study of the Cohen—Macaulayness of tangent cones of monomial curves constitutes an important
problem [1],[2]. In [3], Arslan and Mete determined the common arithmetic conditions satisfied by the generators
of the defining ideals of C's and under these conditions they found the generators of the tangent cone of Clg.
In [2], they provided necessary and sufficient conditions for the Cohen—Macaulayness of the tangent cone of Cg

in all six permutations and gave the following theorem:

Theorem 2.2 [2] (1) Suppose that Is is given as in the Case 1(a). Then R/Ig, is Cohen—Macaulay if and

only if as < apy + ang.

(2) Suppose that Ig is given as in Case 1(b). (i) Assume that aza < e and a1y < asy. Then R/Ig, is
Cohen-Macaulay if and only if
1. ag < ag1 + Qo3
2. ays+ a3 < ag +asq and
3. azt+aiz3 <ap+azs+az—aiy.
(ii) Assume that ays < asa. Then R/Ig, is Cohen-Macaulay if and only if
1. as < a1 +ans
2. ays+ a1z < g +asq and
3. either a3y < a1y and as + a3 < o1 + iz — Qg9 + 2034
or a1qg < azq and az +a13 < o +azz +azq — 1.

(8) Suppose that Is is given as in Case 2(a). (i) Assume that aoy < agq and oyz < aos. Then R/Ig, s
Cohen—Macaulay if and only if
1. az < agr+asz
2. a1z +azy < oy + gz and
3. ag+oarp < ag + a3 — oz + gy
(it) Assume that asq < any. Then R/Ig, is Cohen—Macaulay if and only if
1. az < agp +asg
2. ajg+ asy < ay + sz and
3. either aoz < agz and g + a1 < a1 + 20093 + oy — iy
or a13 < agz and az + a1z < ap + a3 — 13 + g

(4) Suppose that Igs is given as in Case 2(b). (i) Assume that azs < s and a2 < asgy. Then R/Ig, is
Cohen—Macaulay if and only if
1. as < agy +ags and
2. ag+a3 <oy +azp —ap+ass.
(ii) Assume that sy < azq. Then R/Ig, is Cohen—Macaulay if and only if
1. as < a9y + agy and
2. either azy < aqo and asz + a1z < ayy + 2a3s + g4 — Aoy
or ajg < age and az + a1z < a1 +azz — a2 +asg.

(5) Suppose that Is is given as in the Case 3(a). Then R/Ig, is Cohen—Macaulay tangent cone if and only if

as < o1 + o3 and a3 < gy + a3y
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(6) Suppose that Is is given as in Case 3(b). (i) Assume that aaz < oz and a1y < agy. Then R/Ig, is
Cohen—Macaulay if and only if

1. o1z +ou3 < a3+ oy and

2. agt+ a2 <o+ a3+ g — Qg

(ii) Assume that ays < asz. Then R/Ig, is Cohen—Macaulay if and only if

1. ayo + a3 < asgyp + asy and

2. either agy < ayg and ag + a1g < a3y + 2004 + oz — 0us

or a1y < gy and ag + o < g 4 g3 + oy — o1y

Recently, Katsabekis gave the remaining standard bases for Is in [7] using above conditions for the Cohen-

Macaulayness of the tangent cone of Cg.

3. Betti sequences of Cohen—Macaulay tangent cones

In this section, we determine the Betti sequences of the tangent cone of Cg whose tangent cone is Cohen—
Macaulay. Buchsbaum-Eisenbud criterion [5] and the following Lemma (see also [6]) will be used in the all

proofs.

Lemma 3.1 [11] Assume that the multiplicity of the monomial curve is mn;. Suppose that the k-algebra
homomorphism m; : R — R = kl[x1,...,%;,...,xq] is defined by m;i(z;) = T; = 0 and m;(zj) = x; for
i # j, and set I = m;(Is,). If the tangent cone gr, (k[[t™,...,t"]]) is Cohen-Macaulay, then the Betti
sequences of grm(k[[t™,...,t"]]) and of R/I are the same.

This is a very effective result to reduce the number of cases for finding the Betti numbers of the tangent
cones.

Case 1(a): Suppose that I is minimally generated by the polynomials
fl — x?l _ l.gls.xztm’ f2 — xSQ _ xlllmxzu’ f3 — l,g3 _ 37(11311'332,

—_ (e} Q42,043 —_ a@21 ,,043 @32 14
Jo =o't —xyPag®, Js =7 xg™ — a5y

where a1 = a1 + 31, (g = (32 + Qiq9, (03 = (V13 + (43, Q4 = (14 + Qo4 The condition nq < ng < ng < N4

implies a1 > a3 + a1q, g < o + ayz and ag < asy + ass.

Cs has Cohen—Macaulay tangent cone only under the condition as < g1 + 24 by [2]. Mete and Zengin
[9] gave the explicit minimal free resolution for the tangent cone of Cs and showed that the Betti sequence of

its tangent cone is (1,5,6,2).

Case 1(b) : Suppose that Ig is minimally generated by the polynomials

«@13,,014 — () «@21 ,,023 — (0%:3 a32
Ty s Jo =5 — 2P ag®, f3=x3° —xy

_ o 34
fi =T — I3 s

Ty

— (e} Q41 Q42 — a21 Q34 Q42,013
Jo=agt —aiay®, Js =7 xy® — P ay
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where a1 = a1 + @41, as = ags + ayo, az = a3 + a3, ag = a4 + ags. The condition 1y < no < nz < ny
implies a1 > a13 + a4 and oy < a41 + ayg2. Under the restriction as < a9y 4+ ass by Theorem 2.2 and
one possible condition a3 < ags + asq, the Betti sequences for the Cohen—Macaulay tangent cone of Cg are

(1,5,5,1) and (1,5,6,2), as given in [9]. Here, the other possible condition a3 > asz + ags will be considered.

Theorem 3.2 The Betti sequence of the tangent cone R/Is, of Cg is (1,6,8,3), if Is is given as in Case
1(b) when az > ass + asy.

Proof Suppose that Ig is given as in the Case 1(b) when a3 > ass + asq.
(i) By Proposition 2.7 in [7], if a3z < a4 and ayq4 < asg, then,

G ={f1, f2, f3, far f5, fo = 2§20 — afragoeagai— oy
(ii) By Proposition 2.9 in [7],

(1) if age < azp and asy < 14, then

s 2
G = {f1, fo, f3fa, f5, fo = a§3 T3 — g{2rggez - azgiooy

(2) if a2 < age and g < asgq, then
G - {f17 f23 f37 f47 f57 f6 - $§3+a13 - x?1w332x234_a14}

are standard bases for Is. Since I = m;(Is,) which sends z; to 0, the generators of the defining ideal of I is
generated by

G* . (J:g131'gl47 ng , ngQ zzS‘l, 1,247 1,342 z?lS , $g3+a13).
Now, consider the case (i). Since the Betti sequences of R/Is, and R/I are the same which follows from
Lemma 3.1, we will show that the sequence,

0— R3 25 RS 22, R6 2L Rl 4

is a minimal free resolution of R/I, where

_ @13, 014 «a Q3o o34 ay Q4o 013 agtaqs
p1 = (x313'x41 :1322 12“"2:)343 z§ x5 22:313 133 13)7
0 — 8203 0 —aget gge 33 0 0
0 0 —af3 0 0 0 ag 0
x4 zgt3 x5 42 0 0 0 0 0
Y2 = aszo @13 )
—a 0 0 ag 0 0 0 0
0 0 0 0 —zy1t 0 —z532 z33
0 0 0 0 0 -2t 0 —al®
zg 13 0 0
aig Qg2
—Ty T, 0
0 —zg1s 0
x532 0 0
$3 = a3 a34—Q1q ag
0 Ty Ty Tg
0 0 —xg 42
0 x4 0
aiy
0 0 Ty
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Since @193 = @3 = 0, the sequence above is a complex. One can easily check that rank(y1) = 1,
rank(ps) = 5 and rank(ps) = 3. As the 5-minors of ¢y, we get 23°373%13 by deleting the row 6, and
the columns 1, 3, 5, and —xio‘4+°‘“ by deleting the row 4 and the columns 2, 7, 8. These two determinants
are relatively prime, so I(p2) contains a regular sequence of length 2. As the 3-minors of 3, we have x%ﬁau
by deleting the rows 1, 3, 5, 7, 8, and fx§3+2‘“3 by deleting the rows 2, 4, 6, 7, 8, and finally, —z{*T*'* by
deleting the rows 1, 3, 4, 5, 6 Since these are relatively prime, I(p3) contains a regular sequence of length 3.

The other cases (ii)-(1) and (2) can be done similarly and are hence omitted. O

Case 2(a): Suppose that Ig is minimally generated by the polynomials

x12

— %1 Q23
fi =" —

I D) Q31
f2=x5? —

« « (0%
137 37424, f3:$33—171

Q34
T3 )

Ty

— %4 Q41 .42 — Q41 .23 @12 )34
fa=ay* — {25, fs =723 — x5y

where a1 = a3y + 41, ag = @12 + 42, a3 = Q13 + o3, a4 = g4 + agq. The condition n; < Ny < ng < ny
implies a1 > 13 + 13, s > a3+ agq and oy < ayq + ayz. Note that the assumption ag < agy + agq is one

of the necessary and sufficient conditions for the Cohen—Macaulayness of the tangent cone by Theorem 2.2.

Theorem 3.3 The Betti sequence of the tangent cone R/Is, of Cgs is (1,6,8,3), if Is is given as in Case

2(a).

Proof Suppose that Ig is given as in the Case 2(a).
(i) By Proposition 2.11 in [7], if a4 < g4 and @13 < asg, then

G= {f17f2af3>f47f51 f6 = x32+a12 - x?1x§23_a13x224}

(ii) By Proposition 2.13 in [7],

(1) if agg < agq and @z < aqs, then

G = {f1>f27f37 f47f5af6 _ x32+a12 _ x?41x§a23$2¥247a34}

(2) if agqa < agq and ay3 < aog, then
G = {flvaaf37f47f5a fG = 1.(2342+O¢12 - xflllxg23—0¢13xg24}

are standard bases for Ig. Since I = m;(Is,) which sends z; to 0, the generators of the defining ideal of I is

generated by

— Q12,13 Q23,24 asg Qg Q12,034 aztaiz
G, = (32", ad®P ey of® oyt x5 ™, x5 ).

Now, consider the case (i). Since the Betti sequences of R/Ig, and R/I are the same which follows from

Lemma 3.1, we will show that the sequence,
0— R RS 2 R6PL R 50
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is a minimal free resolution of R/I, where

p1 = (15121313 13231324 1‘?3 IZ4 mglzxzm $32+0¢12)’
Ig23 xg23_0¢13x224 xz‘34 1.32 0 0 0 0
0 —xgt? 0 0 —xgt pyte 0 0
—xo12 0 0 0 24 0 0 0
w2 = 2 4 o o ;
0 0 0 0 0 —xo23 rot? 0
0 0 —zgts 0 0 0 xy? z5?
0 0 0 —zo13 0 0 0 —x 3
zy 2 0 0
x?ll} 513234 0
0 _ngS_aliixZ24 x;Z
0 0 —g s
Y3 = @12 4
Tq 0 0
@12
0 Ty 0
«23
0 —T3 0
0 0 zgt3
Since @192 = @203 = 0, the sequence above is a complex. One can easily check that rank(e;) = 1,

rank(pz) = 1 and rank(ps) = 3.

As the 5-minors of 5 , we have fazga”“” by removing the columns 2, 7, 8 and the row 3, and fxi‘“‘*'““
by removing the columns 1, 2, 4 and the row 4. These two determinants are relatively prime, so I(y2) contains
a regular sequence of length 2. As the 3-minors of 3, we get x§‘2+2a12 by removing the rows 1, 2, 4, 7, 8, and
z33T*% by removing the rows 1, 3, 4, 5, 6, and finally —23*7*3* by removing the rows 3, 5, 6, 7, 8. These
three determinants constitute a regular sequence. Thus, I(p3) contains a regular sequence of length 3.

The other cases (ii)-(1) and (2) can be done similarly and are hence omitted. O

Case 2(b) : Suppose that Ig is minimally generated by the polynomials

32 .34

e o (034 [e3 (o34 e
123,/.313’ f2:x22_x121x424’ f3:x33_$2 ./L'4 ,

fi=al" — a5

— y x41 .43 — @41 .32 @13 .24
fa =t — x5, fs = x5® — x5 ™.

where a1 = a9y + 41, @y = @12 + aszs, a3 = a3 + a3, aq = a4 + agq. The condition n; < Ny < nzg < ny
implies a1 > a2 + a3 and ay < ayg1 + ag3.

Under the restriction as < as; + agg by Theorem 2.2 and one possible condition a3 < ass + asq, the
Betti sequences for the Cohen—-Macaulay tangent cone of Cg are (1,5,5,1) and (1,5,6,2), as given in [9]. Here,

the other possible condition ag > ass + ass will be considered.

Theorem 3.4 The Betti sequence of the tangent cone R/Ig, of Cs is (1,6,8,3), if Is is given as in Case
2(b) when as > ass + asq.

Proof Suppose that Ig is given as in the Case 2(b).
(i) By Proposition 2.16 in [7], if a34 < a4 and aj2 < asz, then

G = {f17f23f3,f47f5; fﬁ = $g3+a13 - x?lxg?a—al’zxzéml}
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(ii) By Proposition 2.18 in [7],

(1) if aoy < azy and azs < ®12, then
. 2 _
G= {f17 f27 f37 f47 f5a f6 = $g3+a13 - $?41x20¢32$234 0424}7
(2) if asq < @34 and e < aga, then

G ={fi, fo f3. fa, f5, fo = w5® T — wap® ™ " afo}

are standard bases for Ig. Since I = m;(Is,) which sends z; to 0, then the generators of the defining ideal of

I is generated by

x13

— Q12,13 a2 Q32 .34 Qg Q24
G, = (x5 xg", x5?, 22w ™ oy ] ,

z§ 043+0z13).

L3

Now, consider the case (i). Since the Betti sequences of R/Is, and R/I are the same which follows from

Lemma 3.1, we will show that the sequence,
0— R 25 RS 22 RO 2L R 0

is a minimal free resolution of R/I, where

g01:(333123:?13 xgz 1332524&34 xf“ 1?13%?24 m§3+a13)7
xy 2 x53? zg® 0 0 0 0 0
0 —afi 0 0 0 0 2g3 0
0 0 0 0 —zo13 0 —zg1? —gy
271 o 0 0 —ag 0 0 0 a5z |
7xg¢12 0 0 x$34 x;32x234*0¢24 l,g:} 0 0
0 0 -1z 0 0 —z2 0 0
l,gd 7.’13332I2347a24 O
0 xy 34 0
—gg 0 0
0 0 x53?
¥3 = 0 _ Q12 _a2q
To Ty
zo1? 0 0
0 zg 13 0
«13
0 0 T
Since w12 = wop3 = 0, the sequence above is a complex. One can easily check that rank(yp) = 1
) )

rank(ps) = 5 and rank(ps) = 3. As the 5-minors of @o, we get —23**3%13 by removing the row 6 and
the columns 1, 7, 8, and xia”a“ by removing the row 4 and the columns 2, 3, 5. These two determinants are
relatively prime, so I(yps) contains a regular sequence of length 2. As the 3-minors of ¢3, we have —z52T*12
by removing the rows 1, 2, 3, 7, 8, and x§‘3+20‘13 by removing the rows 2, 3, 4, 5, 6, and finally, —z$*7*>* by
removing the rows 1, 4, 6, 7, 8. These three determinants constitute a regular sequence. Thus, I(y3) contains
a regular sequence of length 3.

The other cases (ii)-(1) and (2) can be done similarly and are hence omitted. O
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Case 3(a): Suppose that Ig is minimally generated by the polynomials

— %1 @12 .14 — 02 @21 .23 — 03 31 .34
fi =2t — x5 a ™, fo = x5? — 2 wg®, fs = w3 — M ag™,
— Q4 Q42,0043 — Q31,042 Q23,014
fa =yt —ayag®, f5 = a7 ay® — w3 ay

where a; = a1 + 31, Q2 =12+ 0y, Q3 = a3+ ay3, a4 = a4+ aszq. The condition n; < no < ng < ny
implies a1 > ao + g and ay < ags + ay3.

Cs has Cohen—Macaulay tangent cone only under the conditions as < an; + ags and az < azy +asq by
[2]. Mete and Zengin [9] gave the explicit minimal free resolution for the tangent cone of Cg and showed that

the Betti sequence of its tangent cone is (1,5,6,2).

Case 3(b): Suppose that Ig is minimally generated by the polynomials

—_ (e} 12,014 —_ a2 «23 024 _ (o3 31 a32

Ji =2t —zytayt, Jo =5 —xgPay®, f3 =x3° — 2 ay™®,
p— (e} Q41 ,, 43 p— 12,043 @31 Q24
fa=xdt —xiMay", fs =25 xg® — i xy™t.

Here, a1 = a31 + 41, ag =aia+azs, az = asg+ag3, aqq = ais+ agy. The condition n; < ng < nzg < ng

implies a1 > a2 + a4, Qo > g+ oy, a3 < g+ aze and ay < ag + 3.

Theorem 3.5 The Betti sequence of the tangent cone R/Ig, of Cs is (1,6,8,3), if Is is given as in the Case

3(b).

Proof Suppose that Ig is given as in the Case 3(b).
(i) By Proposition 2.21 in [7], if aa3 < a4z and ajq4 < asy, then

{f17 f27 f37 f47 f57 f6 = x(212+0z12 - x?1x323x224—0¢14}7

(ii) By Proposition 2.23 in [7],

(1) if aus < ang and @y < aq4 then

{f17 f27 f37 f4a f5a f6 = $842+(112 - $?31wg23*a43xia24}’

(2) if Q43 S 23 and Q14 S Q24 then

{f1fo: fo. fa, fo, fo = 2327907 — ot agm a4}

are standard bases for Ig. Since I = m;(Is,) which sends z; to 0, then the generators of the defining ideal of

1 is generated by

p— @12 ,,,(14 @23 (24 (0%} (%) 12,043 (X2+(,¥12
G = (xyPay™, xg> o™, 23, vy, 25 x5* 25 )-

Now, consider the case (i). Since the Betti sequences of R/Is, and R/I are the same which follows from
Lemma 3.1, we will show that the sequence,

0— R 25 RS 22, RO P4 R 0
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is a minimal free resolution of R/I, where

p1 = (xlzllzxzcm x?zsmzzzx 1733 xZwL m;lzx?zm I32+0¢12) ,
zg‘43 x?231.2¢24*0414 xZ¢24 232 0 0 0 0
0 —xzg1? 0 0 0 0 gt gyt
s — 0 0 (l 0 zH1? 0 zg? [L 7
0 0 —Ty 12 0 0 0 0 —x 23
—zyt 0 0 0 x5 z5? 0 0
0 0 0 —gg 0 —zg s 0 0
mgz 0 xgzsmszam
0 xzu —m§‘43
0 —:c§23 0
| e 0 0
LA I 0 g2
zyt 0 0
0 0 x5 12
0 xy1? 0

Since 102 = pap3 = 0, the sequence above is a complex. It is easy to show that rank(p1) =1, rank(p2) =5

and

rank(ps) = 3. As the 5-minors of ¢y, we have —z3%37*4 by removing the row 3 and the columns 2, 3,

4, and xia‘*Jra“ by removing the row 4 and the columns 2, 5, 6. These two determinants are relatively prime,

so I(p2) contains a regular sequence of length 2. As the 3-minors of @3, we get —z

TOwWS

92+2012 By removing the

2,3, 4,5, 6, and 25°T** by removing the rows 1, 5, 6, 7, 8, and finally, 25*7** by removing the rows 1,

3, 4,7, 8. These three determinants constitute a regular sequence. Thus, I(y3) contains a regular sequence of
length 3.
The other cases (ii)-(1) and (2) can be done similarly and are hence omitted. O
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