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1. Introduction
In [12], Lyapunov obtained the following remarkable result: If q ∈ C ([0,∞),R) and x(t) is a solution of second
order linear problem

x′′ + q (t)x = 0 (1.1)

with Dirichlet boundary condition
x (a) = x (b) = 0, (1.2)

where a, b ∈ R with b > a and x (t) ̸≡ 0 for t ∈ (a, b) , then the Lyapunov inequality

b∫
a

|q (s)|ds ≥ 4

b− a
(1.3)

holds. Thus, the Lyapunov inequality (1.3) provides a lower bound for the distance between two consecutive
zeros of x . The inequality (1.3) is best possible in the sense that the constant 4 in the left hand side of (1.3)
cannot be replaced by a larger number ([11, p. 267]). This result has found many applications in areas like
eigenvalue problems, stability, oscillation theory, disconjugacy, etc. Since then, there have been several results
to improve and generalize the linear equation (1.1) in many directions [1–4, 13–16].

More recently, by replacing x′′ and a relativistic acceleration
(

x′
√
1−x′2

)′
in Eq. (1.1), Yang et al. [16]

have proved that if we assume that

q ∈ A =

q ∈ L1
loc ((a, b) , [0,∞)) : ∞ >

b∫
a

(s− a) (b− s) q (s) ds

 (1.4)
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and second order nonlinear problem (
x′

√
1− x′2

)′

+ q(t)x = 0, 1 > |x′| , (1.5)

with Dirichlet boundary condition (1.2) has a positive solution, then the Lyapunov-type inequality

b∫
a

(s− a) (b− s) q (s) ds > b− a (1.6)

holds.
In 2012, Wang [14] considered the following (n+ 1)st order nonlinear differential equation(∣∣∣x(n)

∣∣∣p−2

x(n)

)′

+ q(t)
∣∣∣x∣∣∣p−2

x = 0, (1.7)

where p > 1 , q (t) ∈ C ([0,∞),R) , and x (t) is a solution of (1.7) satisfying the antiperiodic boundary conditions

x(k) (a) + x(k) (b) = 0, k = 0, 1, ..., n, (1.8)

where a, b ∈ R with b > a and x (t) ̸≡ 0 for t ∈ (a, b) and so it is obtained the following inequality

b∫
a

|q(s)|ds > 2

(
2

b− a

)n(p−1)

. (1.9)

In 2015, Wang et al. [13] considered the following (n+ 1)st order nonlinear differential equation(∣∣∣x(n)
∣∣∣p−2

x(n)

)′

+

n∑
i=0

qi(t)
∣∣∣x(i)

∣∣∣p−2

x(i) = 0, (1.10)

where p > 1 , qk (t) ∈ C ([0,∞),R) , k = 0, 1, ..., n , n ∈ N , and x (t) is a solution of (1.10) satisfying the
antiperiodic boundary conditions (1.8) and so they obtained the following inequality

b∫
a

|qn(s)|ds+
n−1∑
i=0

(
(b− a)Sn−i

)(p−1)/2
b∫

a

|qi(s)|ds > 2, (1.11)

where

Sn =

(
22n − 1

)
(b− a)

2n−1

22n−1π2n
ζ (2n) , n = 1, 2, ..., (1.12)

and ζ (z) =
+∞∑
i=1

1
iz , Re(z) > 1 is the Riemann zeta function, and the constants {Sn} are sharp.

Remark 1.1 If we take q0 (t) = q (t) and qk (t) = 0 , k = 1, 2, ..., n in (1.10), then, from

1 >
22

(
22n − 1

)
π2n

>
2
(
22n − 1

)
ζ (2n)

π2n
, n > 1, (1.13)

the inequality (1.11) is sharper than (1.9) when n > 1 [13].
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We now consider the (n+ 1)st order nonlinear differential equation of the form ∣∣x(n)
∣∣p−2

x(n)(
1−

∣∣x(n)
∣∣p )(p−1)/p


′

+

n−1∑
i=0

qi(t)

∣∣x(i)
∣∣p−2

x(i)(
1 +

∣∣x(i)
∣∣p )(p−1)/p

= 0, (1.14)

where p > 1 , qk (t) ∈ C ([0,∞),R) , k = 0, 1, ..., n − 1 , n ∈ N , and x (t) is a solution of (1.14) satisfying the
antiperiodic boundary conditions (1.8).

In this paper, we prove new Lyapunov-type inequalities for the problem (1.14) with (1.8) including
p -relativistic operator

φp (u) =
|u|p−2

u(
1− |u|p

)(p−1)/p
, 1 > |u| , (1.15)

and q -prescribed curvature operator

φq (u) =
|u|q−2

u(
1 + |u|q

)(q−1)/q
, u ∈ R, (1.16)

[5, 8–10]. Note that if we take p = q = 2 , then they turn out to be the relativistic and the prescribed curvature
operator φ2 , which have been attracting much attention in differential geometry and partial differential equation.
It has many important applications in physics, biology and other inter disciplines [6, 7]. To the best of our
knowledge, this is the first paper using the p -relativistic operator φp and q -prescribed curvature operator φq

to study the above problem.

2. Main results
Firstly, we state some lemmas which we will use in the proof of our main results.

Lemma 2.1 [13, Lemma 3.2] If x (t) is a nontrivial solution of the problem (1.14) with (1.8), then we have√
(b− a)Sn−kMn ≥ Mk, k = 0, 1, ..., n− 1, (2.1)

where Sn is given in (1.12) and

Mn = sup
a≤t≤b

∣∣∣x(n) (t)
∣∣∣ . (2.2)

Lemma 2.2 [14, Lemma 3.2] If x (t) is a nontrivial solution of the problem (1.14) with (1.8), then we have

1

2

(
b− a

2

)(n−k)(p−1)
b∫

a

∣∣∣x(n) (s)
∣∣∣p ds ≥ ∣∣∣x(n−1) (t)

∣∣∣ ∣∣∣x(k) (t)
∣∣∣p−1

(2.3)

for k = 0, 1, ..., n− 1 .

The proof of Lemma 2.2 is similar to that of Lemma 3.2 given by Wang [14], and hence is omitted.
Now, we give main results obtained which are inspired by the results obtained by Wang et al. [13] and

Wang [14].
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Theorem 2.3 If x(t) is a nontrivial solution of the problem (1.14) with (1.8), then the following inequality

n−1∑
i=0

(
(b− a)Sn−i

)(p−1)/2
b∫

a

|qi(s)|ds > 2 (2.4)

holds, where Sn is given in (1.12).

Proof Assume that x (t) is a solution of Eq. (1.14) satisfying the antiperiodic boundary conditions x(k) (a)+

x(k) (b) = 0 , k = 0, 1, ..., n , where a, b ∈ R with b > a and x (t) ̸≡ 0 for t ∈ (a, b) . Now, we define

H (t, s) =

 1/2 , a ≤ s ≤ t,

−1/2 , t ≤ s ≤ b.
(2.5)

Multiplying both sides of (1.14) by the function H , integrating from a to b , and using the antiperiodic boundary
conditions (1.8) with i = n , we have

∣∣x(n) (t)
∣∣p−2

x(n) (t)(
1−

∣∣x(n) (t)
∣∣p )(p−1)/p

=

b∫
a

H (t, s)

 ∣∣x(n) (s)
∣∣p−2

x(n) (s)(
1−

∣∣x(n) (s)
∣∣p )(p−1)/p


′

ds

= −
n−1∑
i=0

b∫
a

H (t, s) qi(s)

∣∣x(i)(s)
∣∣p−2

x(i)(s)(
1 +

∣∣x(i)(s)
∣∣p )(p−1)/p

ds. (2.6)

Taking absolute value of (2.6) and using Lemma 2.1, we get∣∣∣x(n) (t)
∣∣∣p−1

≤
∣∣x(n) (t)

∣∣p−1(
1−

∣∣x(n) (t)
∣∣p )(p−1)/p

≤
n−1∑
i=0

b∫
a

|H (t, s)| |qi(s)|
∣∣x(i)(s)

∣∣p−1(
1 +

∣∣x(i)(s)
∣∣p )(p−1)/p

ds

=
1

2

n−1∑
i=0

b∫
a

|qi(s)|
∣∣x(i)(s)

∣∣p−1(
1 +

∣∣x(i)(s)
∣∣p )(p−1)/p

ds

≤ 1

2

n−1∑
i=0

b∫
a

|qi(s)|
∣∣∣x(i)(s)

∣∣∣p−1

ds

<
1

2

n−1∑
i=0

Mp−1
i

b∫
a

|qi(s)|ds

≤ Mp−1
n

2

n−1∑
i=0

(
(b− a)Sn−i

)(p−1)/2
b∫

a

|qi(s)|ds (2.7)
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and so

Mp−1
n

2

n−1∑
i=0

(
(b− a)Sn−i

)(p−1)/2
b∫

a

|qi(s)|ds > Mp−1
n , (2.8)

where Sn and Mn are given in (1.12) and (2.2), respectively. Now, we claim that Mn > 0 . In fact, if it is not
true, then we have Mn = 0 or x(n)(t) = 0 for t ∈ [a, b] . By the antiperiodic boundary conditions (1.8), we
obtain x (t) = 0 for t ∈ [a, b] , which contradicts to the assumption that x (t) is a nontrivial solution of (1.14)
with (1.8). Therefore, we obtain Mn > 0 . Dividing both sides of the inequality (2.8) by Mp−1

n , we obtain

n−1∑
i=0

(
(b− a)Sn−i

)(p−1)/2
b∫

a

|qi(s)|ds > 2. (2.9)

2

Theorem 2.4 If x(t) is a nontrivial solution of the problem (1.14) with (1.8), then the following inequality

n−1∑
i=0

(
b− a

2

)(n−i)(p−1)
b∫

a

|qi (s)|ds > 2 (2.10)

holds.

Proof Assume that x (t) is a solution of Eq. (1.14) satisfying the antiperiodic boundary conditions x(k) (a)+

x(k) (b) = 0 , k = 0, 1, ..., n , where a, b ∈ R with b > a and x (t) ̸≡ 0 for t ∈ (a, b) . Multiplying both sides of
(1.14) by x(n−1) (t) and integrating from a to b , we have

b∫
a

x(n−1) (s)

 ∣∣x(n) (s)
∣∣p−2

x(n) (s)(
1−

∣∣x(n) (s)
∣∣p )(p−1)/p


′

ds+

n−1∑
i=0

b∫
a

qi (s)x
(n−1) (s)

∣∣x(i) (s)
∣∣p−2

x(i) (s)(
1 +

∣∣x(i) (s)
∣∣p )(p−1)/p

ds = 0. (2.11)

Integrating by parts the first integral of equation (2.11) and using the antiperiodic boundary conditions (1.8),
we get

b∫
a

∣∣x(n) (s)
∣∣p(

1−
∣∣x(n) (s)

∣∣p )(p−1)/p
ds =

n−1∑
i=0

b∫
a

qi (s)x
(n−1) (s)

∣∣x(i) (s)
∣∣p−2

x(i) (s)(
1 +

∣∣x(i) (s)
∣∣p )(p−1)/p

ds. (2.12)
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By Lemma 2.2, we have

b∫
a

∣∣∣x(n) (s)
∣∣∣p ds ≤ b∫

a

∣∣x(n) (s)
∣∣p(

1−
∣∣x(n) (s)

∣∣p )(p−1)/p
ds

=

n−1∑
i=0

b∫
a

qi (s)x
(n−1) (s)

∣∣x(i) (s)
∣∣p−2

x(i) (s)(
1 +

∣∣x(i) (s)
∣∣p )(p−1)/p

ds

≤
n−1∑
i=0

b∫
a

|qi (s)|
∣∣x(n−1) (s)

∣∣ ∣∣x(i) (s)
∣∣p−1(

1 +
∣∣x(i) (s)

∣∣p )(p−1)/p
ds

≤
n−1∑
i=0

b∫
a

|qi (s)|
∣∣∣x(n−1) (s)

∣∣∣ ∣∣∣x(i) (s)
∣∣∣p−1

ds

<

n−1∑
i=0

max
a≤t≤b

∣∣∣x(n−1) (t)
∣∣∣ ∣∣∣x(i) (t)

∣∣∣p−1
b∫

a

|qi (s)|ds

≤ 1

2

b∫
a

∣∣∣x(n) (s)
∣∣∣p ds n−1∑

i=0

(
b− a

2

)(n−i)(p−1)
b∫

a

|qi (s)|ds. (2.13)

Now, we claim that
∫ b

a

∣∣x(n) (s)
∣∣p ds > 0 . In fact, if it is not true, then we have

∫ b

a

∣∣x(n) (s)
∣∣p ds = 0 or

x(n)(t) = 0 for t ∈ [a, b] . By the antiperiodic boundary conditions (1.8), we obtain x (t) = 0 for t ∈ [a, b] ,
which contradicts to the assumption that x (t) is a nontrivial solution of (1.14) with (1.8). Therefore, we have∫ b

a

∣∣x(n) (s)
∣∣p ds > 0 . Dividing both sides of the inequality (2.13) by

∫ b

a

∣∣x(n) (s)
∣∣p ds , we obtain

n−1∑
i=0

(
b− a

2

)(n−i)(p−1)
b∫

a

|qi (s)|ds > 2. (2.14)

2

Remark 2.5 If we take n = 1 in Eq. (1.14), then the inequality (2.4) is equal to (2.10). Note that as m

increases, the ratio R =

(
2(22m−1)ζ(2m)

π2m

)1/2

decreases rapidly (especially when m ≥ 2 , R is smaller than 1)

[15]. Therefore, the inequality (2.4) is sharper than (2.10) when n > 1 .

As immediate consequences of Theorems 2.3 and 2.4, the following result gives sufficient conditions for
the nonexistence of nontrivial solutions of the boundary value problem (1.14) with (1.8).

Corollary 2.6 (a) Assume

2 ≥
n−1∑
i=0

(
(b− a)Sn−i

)(p−1)/2
b∫

a

|qi(s)|ds, (2.15)
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where Sn is given in (1.12). The problem (1.14) with (1.8) has no nontrivial solution.
(b) Assume

2 ≥
n−1∑
i=0

(
b− a

2

)(n−i)(p−1)
b∫

a

|qi (s)|ds. (2.16)

The problem (1.14) with (1.8) has no nontrivial solution.

Now we give a sufficient condition for the uniqueness of the solution of the following nonhomogenous
boundary value problem

 |x(n)|p−2
x(n)(

1−|x(n)|p
)(p−1)/p

′

+
n−1∑
i=0

qi(t)
|x(i)|p−2

x(i)(
1+|x(i)|p

)(p−1)/p = f (t) , t ∈ (a, b) ,

x(k) (a) + x(k) (b) = 0, k = 0, 1, ..., n,

(2.17)

where p > 1 and f, qk ∈ C ([a, b] ,R) , k = 0, 1, ..., n−1, n ∈ N , as an application of Lyapunov-type inequalities
(2.4) and (2.10).

Theorem 2.7 If (2.15) or (2.16) holds, then nonhomogenous boundary problem (2.17) has a unique solution.

Proof To prove the uniqueness, it is sufficient to show that the homogeneous boundary value problem (1.14)
with (1.8) has only trivial solution. Assume on the contrary that x (t) ̸≡ 0 is a solution of the homogeneous
boundary value problem (1.14) with (1.8). Then by using Lyapunov-type inequality (2.4) or (2.10), we have

n−1∑
i=0

((b− a)Sn−i)
(p−1)/2

b∫
a

|qi(s)|ds > 2 (2.18)

or
n−1∑
i=0

(
b− a

2

)(n−i)(p−1)
b∫

a

|qi (s)|ds > 2 (2.19)

which gives contradiction to (2.15) or (2.16), respectively. Therefore the homogeneous boundary value problem
(1.14) with (1.8) has only trivial solution. Because of the theory of boundary value problems, the nonhomogenous
boundary problem (2.17) has a unique solution. 2

As an example of Theorem 2.7, we consider the following nonhomogenous boundary value problem

(
x′√

1−|x′|2

)′

+ x

4
√

1+|x|2
= − 1

sin2 t
+ sin t

4
√

1+sin2 t
, t ∈ (0, π) ,

x (0) + x (π) = 0,

x′ (0) + x′ (π) = 0.

(2.20)

Since the condition (2.16) is satisfied, the problem (2.20) has a unique solution. One such solution of the
problem (2.20) is x (t) = sin t . Note that |x′| is bounded with 1 and the homogeneous boundary value problem
corresponding to the problem (2.20) has only trivial solution.
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In the following part, we apply the obtained Lyapunov-type inequalities (2.4) and (2.10) to the eigenvalue
problems associated with the nonlinear boundary value problem

(
|x(n)|p−2

x(n)

(1−|x(n)|p)(p−1)/p

)′

+ λ
n−1∑
i=0

qi (t)
|x(i)|p−2

x(i)

(1−|x(i)|p)(p−1)/p = 0,

x(k) (a) + x(k) (b) = 0, k = 0, 1, ..., n,

(2.21)

where p > 1 , qk ∈ C ([a, b] ,R) , k = 0, 1, ..., n − 1 , n ∈ N , and λ ∈ R is an eigenvalue parameter. As direct
consequences of Theorems 2.3 and 2.4, we obtain the following result.

Theorem 2.8 (a) Assume λ is an eigenvalue of the boundary value problem (2.21). Then

|λ| > 2
n−1∑
i=0

((b− a)Sn−i)
(p−1)/2 ∫ b

a
|qi (s)|ds

, (2.22)

where Sn is given in (1.12).
(b) Assume λ is an eigenvalue of the boundary value problem (2.21). Then

|λ| > 2
n−1∑
i=0

(
b−a
2

)(n−i)(p−1) ∫ b

a
|qi (s)|ds

. (2.23)

Open Problem. Note that we have only considered the case p = q in the following (n+ 1)st order nonlinear
differential equation (

φp

(
x(n) (t)

))′
+

n−1∑
i=0

qi(t)φq

(
x(i) (t)

)
= 0, (2.24)

where p, q > 1 , qk ∈ C ([0,∞),R) , and the operators φp and φq are given in (1.15) and (1.16), respectively. It
is an open problem to obtain similar results for Eq. (2.24) without any restrictions on p and q .
Acknowledgement The author thanks the anonymous referee for his/her valuable suggestions and comments
that helped to improve the presentation of this paper.
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