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Abstract: For k ≥ 2 , consider the k -Fibonacci sequence (F
(k)
n )n≥2−k having initial conditions 0, . . . , 0, 1 (k terms)

and each term afterwards is the sum of the preceding k terms. Some well-known sequences are special cases of this

generalization. The Fibonacci sequence is a special case of (F
(k)
n )n≥2−k with k = 2 and Tribonacci sequence is

(F
(k)
n )n≥2−k with k = 3 . In this paper, we use Baker’s method to show that 4, 16, 64, 208, 976, and 1936 are all

k -Fibonacci numbers of the form (3a ± 1)(3b ± 1) , where a and b are nonnegative integers.

Key words: k -Fibonacci numbers, linear form in logarithms, reduction method

1. Introduction
The Fibonacci sequence plays a very important role in mathematics and has many interesting applications in
other disciplines such as Mathematics, Statistics, Biology, Physics, Finance, Architecture, Computer Science,
etc. We can see [13] for the history, properties, and rich applications of Fibonacci sequence. In the literature
there exist a lot of generalizations of the Fibonacci sequence, see for example [9, 12]. In [20], G. Ozdemir
and Y. Simsek introduced the Fibonacci type polynomials in two variables and generalized by G. Ozdemir, Y.
Simsek and G. Milovanović in [21] to a higher order. Several interesting properties, as well as their connections
with other polynomials and numbers of the Bernoulli, Euler, Apostol–Bernoulli, Apostol–Euler, Genocchi were
obtained.

Let k ≥ 2 be a positive integer. In this work, we consider a generalization of Fibonacci sequence, which
is called the k -generalized Fibonacci sequence or, for simplicity, the k -Fibonacci sequence. The k -Fibonacci

sequence (F
(k)
n )n≥2−k is given by the recurrence

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k for all n ≥ 2,

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1 . We note that F

(k)
n is the

nth k -Fibonacci number. This sequence generalizes the usual Fibonacci sequence. We obtain the Fibonacci
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sequence for k = 2 . The generating function of nth k -Fibonacci number is given by

∞∑
n=0

F (k)
n xn =

x

1− x− x2 − · · · − xk
.

For more details about this sequence, see [7, 10, 16, 17, 19, 24].
Finding the k -Fibonacci numbers of special forms attracts the attention of many researchers. For

instance, in [5], the authors found all the k -Fibonacci numbers which are powers of 2. The problem of finding

the repdigits in the k -Fibonacci sequence was treated in [4]. Recently, in [11] we showed that F
(4)
6 is the only

k -Fibonacci number which is the product of two Fermat numbers.
In this paper, we investigate the problem of finding the k -Fibonacci numbers which are of the form

(3a ± 1)(3b ± 1) , where a and b are nonnegative integers. Therefore, we will show the following result.

Theorem 1.1 All the solutions of the Diophantine equation

F (k)
n = (3a ± 1)(3b ± 1) (1.1)

in positive integers n, k, a , and b with k ≥ 2 and 1 ≤ a ≤ b , are

F
(k)
4 = (31 − 1)2(31 − 1), k ≥ 3, F

(k)
6 = (31 − 1)(32 − 1) = (31 + 1)2, k ≥ 5,

F
(k)
8 = (32 − 1)2, k ≥ 7, F

(6)
12 = (31 + 1)(35 + 1),

F
(4)
10 = (32 − 1)(33 − 1), F

(6)
13 = (32 − 1)(35 − 1).

To show Theorem 1.1, the strategy will be as follows. First, we rewrite Equation (1.1) in two different
ways in order to obtain two different linear forms in logarithms of algebraic numbers which are both nonzero
and small. Then, we apply a result due to Matveev [14] to bound n polynomially in terms of k. For the case
2 ≤ k ≤ 400 , we will use the reduction algorithm due to Baker-Davenport (version Dujella-Pethő [8]) to reduce
the upper bounds to a suitable size that we can easily treat. When k > 400 , we will use some estimates from
[5] based on the fact that the dominant root of F (k) is exponentially close to 2 , so one can replace this root by
2 in future calculations with linear forms in logarithms and will end up with absolute upper bounds for all the
variables, which we will then reduce using again the reduction method.

2. The tools
This section is devoted to collect a few definitions, notations, proprieties and results which will be used in the
rest of this work.

2.1. Linear forms in logarithms

For any nonzero algebraic number η of degree d over Q , whose minimal polynomial over Z is a
∏d

j=1

(
X − η(j)

)
,

we denote by

h(η) =
1

d

log |a|+
d∑

j=1

logmax
(
1, |η(j)|

)
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the usual absolute logarithmic height of η . In particular, if η = p/q is a rational number with gcd(p, q) = 1

and q > 0 , then h(η) = logmax{|p|, q} . The following properties of the logarithmic height function h(·) , which
will be used in the next sections without special reference, are known:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (2.1)

h(ηγ±1) ≤ h(η) + h(γ), (2.2)

h(ηs) = |s|h(η), (s ∈ Z). (2.3)

The first tool that we need is the following result due to Matveev [14]; also see Bugeaud, Mignotte and
Siksek [6, Theorem 9.4].

Theorem 2.1 Let η1, . . . , ηs be real algebraic numbers and let b1, . . . , bs be nonzero integers. Let dK be the
degree of the number field Q(η1, . . . , ηs) over Q and let Aj be a positive real number satisfying

Aj = max{dKh(ηj), | log ηj |, 0.16} for j = 1, . . . , s.

Assume that
B ≥ max{|b1|, . . . , |bs|}.

If ηb11 · · · ηbss − 1 ̸= 0 , then

|ηb11 · · · ηbss − 1| ≥ exp(−1.4 · 30s+3 · s4.5 · d2K(1 + log dK)(1 + logB)A1 · · ·As).

2.2. The reduction algorithm

Here, we present a variant of the reduction method of Baker and Davenport due to Dujella and Pethő [8]. The
version presented here is also a slight variant.

Lemma 2.2 Let M be a positive integer, p/q be a convergent of the continued fraction of the irrational γ such
that q > 6M , and let A,C, µ be some real numbers with A > 0 and B > 1 . Let

ε = ||µq|| −M · ||γq||,

where || · || denotes the distance from the nearest integer. If ε > 0 , then there is no solution of the inequality

0 < uγ − v + µ < AB−w

in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

The above lemma cannot be applied when µ is a linear combination of 1 and γ , since then ε < 0 . In this case,
we use the following nice property of continued fractions (see Theorem 8.2.4 and top of page 263 in [18])

Lemma 2.3 Let pi/qi be the convergents of the continued fraction [a0, a1, . . .] of the irrational number γ . Let
M be a positive integer and put aM := max{ai|0 ≤ i ≤ N + 1} where N ∈ N is such that qN ≤ M < qN+1 . If
x, y ∈ Z with x > 0 , then

|xγ − y| > 1

(aM + 2)x
, for all x < M.
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2.3. Useful lemmas
We conclude this section by recalling two lemmas that we need in this work:

Lemma 2.4 [22, Lemma 7] If m ≥ 1 , T > (4m2)m and T > y/(log y)m . Then,

y < 2mT (log T )m.

Lemma 2.5 [23, Lemma 2.2] Let d, x ∈ R and 0 < d < 1 . If |x| < d , then

|log(1 + x)| < − log(1− d)

d
|x|.

2.4. On k -Fibonacci sequence
In this subsection, we recall some facts and properties of the k -Fibonacci sequence which will be used later.
The characteristic polynomial of this sequence is

Ψk(x) = xk − xk−1 − · · · − x− 1.

The polynomial Ψk(x) is irreducible over Q[x] and has just one root α(k) outside the unit circle (see, for
example, [16], [17] and [24]). It is real and positive so it satisfies α(k) > 1 . The other roots are strictly inside
the unit circle. Furthermore, in [24] Wolfram showed that

2(1− 2−k) < α(k) < 2, for all k ≥ 2. (2.4)

To simplify the notation, in general, we omit the dependence on k of α(k) and use α . For s ≥ 2 , let

fs(x) :=
x− 1

2 + (s+ 1)(x− 2)
. (2.5)

In [2], Bravo, Gomez and Luca proved that the inequalities

1/2 < fk(α) < 3/4 and
∣∣∣fk(α(i))

∣∣∣ < 1, 2 ≤ i ≤ k

hold, where α := α(1), . . . , α(k) are all the zeros of Ψk(x) . So, the number fk(α) is not an algebraic integer.
In addition, they proved that the logarithmic height of f satisfies

h(fk(α)) < log(k + 1) + log 4, for all k ≥ 2. (2.6)

With the above notation, Dresden and Du showed in [7] that we have

F (k)
n =

k∑
i=1

fk(α
(i))α(i)n−1 and

∣∣∣F (k)
n − fk(α)α

n−1
∣∣∣ < 1

2
, (2.7)

for all n ≥ 1 and k ≥ 2 . Furthermore, for n ≥ 1 and k ≥ 2 , it was shown in [5] that

αn−2 ≤ F (k)
n ≤ αn−1. (2.8)

In [5], Bravo and Luca obtained the following inequality

F (k)
n ≤ 2n−2, for all n ≥ 2. (2.9)

Moreover, if n ≥ k + 2 , then the above inequality is strict.
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3. Proof of Theorem 1.1
In this section, we will show Theorem 1.1 in four steps.

3.1. Setup

It is known that the first k + 1 nonzero terms in (F
(k)
n )n≥2−k are powers of two, namely

F
(k)
1 = 1 and F (k)

n = 2n−2, 2 ≤ n ≤ k + 1.

So, in this case, Equation (1.1) turns into

2n−2 = (3a ± 1)(3b ± 1).

Hence 3a ± 1 and 3b ± 1 are both powers of 2. From [15], it is known that the only solution of the Catalan’s
equation xa − yb = 1 is (x, y, a, b) = (3, 2, 2, 3) . Thus, 3a ± 1 and 3b ± 1 belong to the set {2, 4, 8} . Therefore,
in this case, the only solutions of Diophantine equation (1.1) are given by

4 = (31 − 1)2, 16 = (31 + 1)2 = (31 − 1)(32 − 1) and 64 = (32 − 1)2.

From now we suppose that n ≥ k + 2 and so n ≥ 4 .
Next we will give a relation between n and a+ b . Using inequality (2.8), we get that

3a+b−1 ≤ (3a − 1)(3b − 1) ≤ (3a ± 1)(3b ± 1) = F (k)
n ≤ αn−1

and

αn−2 ≤ F (k)
n = (3a ± 1)(3b ± 1) ≤ 3a+b

(
1 +

1

3b
+

1

3a
+

1

3a+b

)
≤ 3a+b+1.

Hence, we obtain

(a+ b− 1)
log 3

logα
+ 1 ≤ n ≤ (a+ b+ 1)

log 3

logα
+ 2.

Furthermore, using the fact that 3/2 < α < 2 for k ≥ 2 (see (2.4)), we deduce that

1.58(a+ b)− 0.59 < n < 2.71(a+ b) + 3.71. (3.1)

3.2. An inequality for n versus k

In this subsection, we will show the following lemma, that allows us to have an upper bound of n in relation to
k .

Lemma 3.1 If (a, b, k, n) is a solution in integers of equation (1.1) with k ≥ 2 and n ≥ k + 2 , then we have
the following inequality

n < 1.36× 1029k8 log5 k. (3.2)

Proof We rewrite equation (1.1) as

3a+b = F (k)
n ∓ 3a ∓ 3b − 1. (3.3)
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Thus, from estimate (2.7), we obtain

∣∣fk(α)αn−1 − 3a+b
∣∣ = ∣∣∣fk(α)αn−1 − F (k)

n ± 3a ± 3b + 1
∣∣∣ ≤ 1

2
+ 3a + 3b + 1.

Dividing both sides by 3a+b , we get

|Γ1| ≤
1

2 · 3a+b
+

1

3b
+

1

3a
+

1

3a+b
<

2.5

3a
, (3.4)

where
Γ1 := fk(α) · αn−1 · 3−(a+b) − 1. (3.5)

If Γ1 = 0 , then we obtain
fk(α) = α−(n−1) · 3a+b.

Thus fk(α) is an algebraic integer, which is not possible. Therefore Γ1 ̸= 0 . We can apply Theorem 2.1 to Γ1

given by (3.5). To do this, we consider

(η1, b1) := (fk(α), 1), (η2, b2) := (α, n− 1), (η3, b3) := (3,−a− b).

The algebraic numbers η1, η2, η3 are elements of the field K := Q(α) and dK = k . The facts that

h(η1) ≤ log(k + 1) + log 4 < 3.6 log k, for all k ≥ 2,

1/2 < fk(α) < 3/4, h(η2) = (logα)/k < (log 2)/k and h(η3) = log 3

enable us to take
A1 := 3.6k log k, A2 := log 2 and A3 := k log 3.

Finally, inequality (3.1) implies that we can take B := n . Therefore, inequality (3.4) and Theorem 2.1 tell us
that

exp
(
−3.93× 1011k4 log k(1 + log k)(1 + log n)

)
< |Γ1| <

2.5

3a
. (3.6)

By the facts 1 + log k < 2.5 log k and 1 + log n < 1.8 log n which hold for all k ≥ 2 and n ≥ 4 respectively, we
obtain

a log 3 < 1.78× 1012k4 log2 k log n. (3.7)

We go back to Equation (1.1) and we rewrite it as

F
(k)
n

3a ± 1
∓ 1 = 3b (3.8)

and consequently

∣∣∣∣fk(α)αn−1

3a ± 1
− 3b

∣∣∣∣ =
∣∣∣∣∣fk(α)αn−1 − F

(k)
n

3a ± 1
± 1

∣∣∣∣∣ ≤ 1

2(3a ± 1)
+ 1 < 1.25.

Dividing through 3b , we obtain ∣∣∣Γ(±)
2

∣∣∣ < 1.25

3b
, (3.9)
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where

Γ
(±)
2 :=

fk(α)

3a ± 1
· αn−1 · 3−b − 1. (3.10)

If Γ
(±)
2 = 0 , then we get

fk(α) = α−(n−1) · 3b · (3a ± 1),

which is not possible since the right-hand side is an algebraic integer while the left-hand side is not. So,

Γ
(±)
2 ̸= 0 . Now, we will apply Theorem 2.1 to Γ

(±)
2 by taking

(η1, b1) := (fk(α)/(3
a ± 1), 1), (η2, b2) := (α, n− 1), (η3, b3) := (3,−b).

Clearly, K := Q(α) contains η1, η2, η3 and has the degree dK = k . As calculated before we take

A2 := log 2, A3 := k log 3, and B := n.

We need to compute A1 . The estimates (2.6) and (3.7) together with the proprieties (2.1)–(2.3) imply that the
inequalities

h(η1) ≤ h(fk(α)) + h(3a) + h(1) + log 2
< log(k + 1) + log 4 + a log 3 + log 2

< 1.79× 1012k4 log2 k log n

hold for all k ≥ 2 . Since

η1 :=
fk(α)

3a ± 1
<

11

8
and η−1

1 =
3a ± 1

fk(α)
< 2 · 3a+1,

then by (3.7) we have
|log η1| < (a+ 1) log 3 + log 2 < 1.79× 1012k4 log2 k log n.

Thus, we conclude that

max{kh(η1), |log η1| , 0.16} < 1.79× 1012k5 log2 k log n := A1.

Applying Theorem 2.1 and comparing the resulting inequality with (3.9), we get

b < 8× 1023k8 log3 k log2 n,

where we have used the facts 1 + log k < 2.5 log k and 1 + log n < 1.8 log n , which hold for k ≥ 2 and n ≥ 4 .
By inequality (3.1), we get

n < 2.71(a+ b) + 3.71 < 5.42b+ 3.71 < 4.34× 1024k8 log3 k log2 n.

Hence, we obtain
n

log2 n
< 4.34× 1024k8 log3 k. (3.11)

Taking m = 2 and T := 4.34× 1024k8 log3 k in Lemma 2.4 and as

56.73 + 8 log k + 3 log log k < 88.3 log k,
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for all k ≥ 2 , we get
n < 4(4.34× 1024k8 log3 k)(log(4.34× 1024k8 log3 k))2

< 1.736× 1025k8 log3 k(56.73 + 8 log k + 3 log log k)2

< 1.36× 1029k8 log5 k.

This establishes (3.2) and finishes the proof of Lemma 3.1. 2

3.3. The case 2 ≤ k ≤ 400

In this subsection, we study the problem when k ∈ [2, 400] by using Lemma 2.2. Consider

Λ1 := log(Γ1 + 1) = (n− 1) logα− (a+ b) log 3 + log(fk(α)). (3.12)

Since a ≥ 1 , then by (3.4), we have |Γ1| < 0.84 . Hence, applying Lemma 2.5 with d = 0.84 , we get

|Λ1| <
− log 0.16

0.84
· |Γ1| < 5.46 · 3−a. (3.13)

Replacing (3.12) into (3.13) and dividing through by log 3 , we obtain∣∣∣∣(n− 1)

(
logα

log 3

)
− (a+ b) +

log(fk(α))

log 3

∣∣∣∣ < 5 · 3−a. (3.14)

With the goal to apply Lemma 2.2 to (3.14), we take

γ :=
logα

log 3
, µ :=

log(fk(α))

log 3
, A := 5 and B := 3.

We have γ ̸∈ Q since if we assume the contrary, then there exist coprime integers a and b such that γ = a/b ,
then we get that αb = 3a . Let σ ∈ Gal(K/Q) such that σ(α) = αi , for some i ∈ {2, . . . , k} . Applying this to
the above relation and taking absolute values we get 1 < 3a = |αi| < 1 , which is a contradiction.

For each k ∈ [2, 400] , we find a good approximation of γ and a convergent pℓ/qℓ of the continued fraction
of γ such that qℓ > 6Mk and ε = ε(k) = ||µq|| − Mk||γq|| > 0 , where Mk := ⌊1.36 × 1029k8 log5 k⌋ , which
is is an upper bound of n − 1 from Lemma 3.1. After doing this, we use Lemma 2.2 on inequality (3.14). A

computer program with Mathematica revealed that the maximum value of log(Aq/ε)

logB
over all k ∈ [1, 400] is

249.2840 . . . , which is an upper bound of a by Lemma 2.2.
Now, we consider 1 ≤ a ≤ 249 and

Λ
(±)
2 := log(Γ

(±)
2 + 1) = (n− 1) logα− b log 3 + log(fk(α)/(3

a ± 1)). (3.15)

Since b ≥ 1 , then by (3.9), we have |Γ(±)
2 | < 0.42 . Thus, by Lemma 2.5 with d = 0.42 we deduce that

|Λ(±)
2 | < − log 0.58

0.42
· |Γ(±)

2 | < 1.63 · 3−b. (3.16)

Replacing (3.15) into (3.16) and dividing through by log 3 , we obtain∣∣∣∣(n− 1)

(
logα

log 3

)
− b+

log(fk(α)/(3
a ± 1))

log 3

∣∣∣∣ < 1.5 · 3−b. (3.17)
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To apply Lemma 2.2 to (3.17), this time for 1 ≤ a ≤ 249 we take

γ :=
logα

log 3
, µa :=

log(fk(α)/(3
a ± 1))

log 3
, (1 ≤ a ≤ 249), A := 1.5 and B := 3.

As seen before γ ̸∈ Q . Again, for each (k, a) ∈ [2, 400] × [1, 249] , we find a good approximation of γ and a
convergent pℓ/qℓ of the continued fraction of γ such that qℓ > 6Mk and ε = ε(k) = ||µq|| − Mk||γq|| > 0 ,
where Mk := ⌊1.36× 1029k8 log5 k⌋ , which is is an upper bound of n− 1 from Lemma 3.1. After doing this, we
use Lemma 2.2 on inequality (3.17). A computer search with Mathematica revealed that the maximum value of
log(Aq/ε)

logB
over all (k, a) ∈ [1, 400]× [1, 249] is 250.158 . . . , which according to Lemma 2.2, is an upper bound

of b .
Hence, we deduce that the possible solutions (a, b, k, n) of equation (1.1) for which k ∈ [2, 400] satisfy

1 ≤ a ≤ b ≤ 250 . Therefore, we use inequalities (3.1) to obtain n ≤ 1380 .

Finally, we used Mathematica to compare F
(k)
n and (3a ± 1) · (3b ± 1) , for 4 ≤ n ≤ 1380 and

1 ≤ a ≤ b ≤ 250 , with n < 2.71(a+ b) + 3.71 and checked that equation (1.1) has also the solutions:

F
(6)
12 = (31 + 1)(35 + 1), F

(4)
10 = (32 − 1)(33 − 1), and F

(6)
13 = (32 − 1)(35 − 1).

3.4. The case k > 400

In this subsection, we will show that Equation (1.1) has no solutions when k > 400 .

3.4.1. An absolute upper bound on k

Lemma 3.2 If (a, b, k, n) is a solution of Diophantine equation (1.1) with k > 400 and n ≥ k+2 , then k and
n are bounded by

k < 1.19× 1025 and n < 3.51× 10238. (3.18)

Proof For k > 400 , it is easy to check that

n < 1.36× 1029k8 log5 k < 2k/2.

Thus, from [3], F
(k)
n can be rewritten into the form

F (k)
n = 2n−2(1 + ζ), where |ζ| < 1

2k/2
. (3.19)

Substituting (3.19) in (3.3), we obtain

∣∣3a+b − 2n−2
∣∣ = ∣∣2n−2ζ ∓ 3a ∓ 3b − 1

∣∣ ≤ 2n−2

2k/2
+ 3b+1.

This and the fact that 3a+b+1 < αn−2 < 2n−2 yields

|Γ3| <
1

2k/2
+

2

3a
<

3

2min{k/2,a} , where Γ3 := 3a+b · 2−n+2 − 1. (3.20)
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In order to apply Theorem 2.1 to Γ3 , we take

t := 2, (η1, b1) := (3, a+ b), (η2, b2) := (2,−n+ 2).

If Γ3 = 0 , then 3a+b = 2n−2 , which is impossible since b ≥ a ≥ 1 . Therefore, Γ3 ̸= 0 . Since η1, η2, η3 ∈ K := Q ,
then the degree is dK = 1 . We can choose B := n because a+ b ≤ n . On the other hand, as

h(η1) = log 3 and h(η2) = log 2,

then we take
A1 := log 3 and A2 := log 2.

Therefore, by Theorem 2.1, we have

|Γ3| > exp
(
−3.91× 107 log n

)
, (3.21)

where we have use the fact that 1 + log n < 2 log n for all n ≥ 2 . The comparison of (3.20) and (3.21) gives

min{k/2, a} < 5.65× 107 log n. (3.22)

Now, we distinguish two cases according to the value of min{k/2, a} .
Case 1: min{k/2, a} = k/2 . In this case it follows from (3.22) and Lemma 3.1 that

k < 1.13× 108 log
(
1.36× 1029k8 log5 k

)
.

Solving the above inequality gives

k < 3.13× 1010 and n < 1.04× 10120. (3.23)

Case 2: min{k/2, a} = a . In this case, it follows from (3.22) that

a < 5.65× 107 log n. (3.24)

We go back to Equation (3.8) and we use (3.19) to obtain

2n−2(ζ + 1)

3a ± 1
∓ 1 = 3b

giving ∣∣∣∣3b − 2n−2

3a ± 1

∣∣∣∣ = ∣∣∣∣∓1 +
2n−2ζ

3a ± 1

∣∣∣∣ ≤ 1 +
2n−2

(3a ± 1)2k/2
.

Multiplying both sides by (3a ± 1) · 2−(n−2) and using the facts that n ≥ k + 2 and a < k/2 , we get

∣∣∣Γ(±)
4

∣∣∣ ≤ 3a+1

2n−2
+

1

2k/2
<

4

2k/2
, where Γ

(±)
4 := (3a ± 1) · 3b · 2−n+2 − 1. (3.25)

So, the conditions are met to apply Theorem 2.1 with

t := 3, (η1, b1) := (3a ± 1, 1), (η2, b2) := (2,−n+ 2), (η3, b3) := (3, b).
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If Γ
(±)
4 = 0 , then (3a± 1) · 3b = 2n−2 . Thus, 3 divides 2n−2 which is false. Therefore, Γ(±)

4 ̸= 0 . As calculated
before, we take

dK := 1, A2 := log 2, A3 := log 3 and B := n.

Moreover, by (3.24), we have

h(η1) ≤ ah(3) + h(1) + log 2
≤ 5.65× 107 log n× log 3 + log 2
≤ 6.21× 107 log n.

Hence, we take A1 := 6.21× 107 log n . Using Theorem 2.1 and inequality (3.25), we get that

exp(−1.36× 1019(log n)2) <
4

2k/2

and so
k < 3.93× 1019(log n)2.

From this and Lemma 3.1, we conclude that

k < 1.19× 1025 and n < 3.51× 10238. (3.26)

So, in both cases, inequalities (3.26) hold. This completes the proof of Lemma 3.2. 2

3.4.2. Reducing the bound on k

To reduce the bound on k , we will use Lemmas 2.2 and 2.3 several times. First, consider

Λ3 := (a+ b) log 3− (n− 2) log 2 = log(Γ3 + 1).

Assume that a ≥ 2 . Thus from (3.20) we get |Λ3| < 0.75 . Hence, by Lemma 2.5 with d = 0.75 , one has

|Λ3| < − log(0.25)

0.75
· |Γ3| < 5.55 · 2−min{k/2,a}. (3.27)

So, we get ∣∣∣∣(n− 2)

(
log 2

log 3

)
− (a+ b)

∣∣∣∣ < 5.1 · 2−min{k/2,a}. (3.28)

To obtain a lower bound for the left-hand side of (3.28), we will apply Lemma 2.3 with

γ :=
log 2

log 3
̸∈ Q, x := n− 2 and y := a+ b.

Since n < 3.51× 10238 by Lemma 3.2, then we can take M := 3.51× 10238 . Let

[a0, a1, a2, a3, . . .] = [0, 1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2 . . .]

be the continued fraction of γ . Using Maple, it seen that q465 < M < q466 and since max
1≤i≤466

ai = a331 = 2436 ,

then by Lemma 2.3, we obtain ∣∣∣∣(n− 2)

(
log 2

log 3

)
− (a+ b)

∣∣∣∣ > 1

2438(n− 2)
. (3.29)
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Comparing estimates (3.28), (3.33), and by Lemma 3.2 we get

min{k/2, a} <
log

(
5.1× 2438× 3.51× 10238

)
log 2

< 807.

Case 1: min{k/2, a} = k/2 . In this case, we get

k ≤ 1614. (3.30)

Case 2: min{k/2, a} = a . In this case, we obtain that a ≤ 806 . Now let us consider

Λ
(±)
4 := b log 3− (n− 2) log 2 + log(3a ± 1) = log(Γ

(±)
4 + 1).

Since k > 400 , then from (3.25) we have
∣∣∣Γ(±)

4

∣∣∣ < 0.01 . Hence, by Lemma 2.5, one gets

∣∣∣Λ(±)
4

∣∣∣ < − log(0.99)

0.01
·
∣∣∣Γ(±)

4

∣∣∣ < 4.03 · 2−k/2. (3.31)

Thus, we obtain ∣∣∣∣(n− 2)

(
log 2

log 3

)
− b− log(3a ± 1)

log 3

∣∣∣∣ < 3.7 · 2−k/2.

For a ̸= 1 and a ̸= 2 in the case (−) , we will apply Lemma 2.2 with the parameters

γ :=
log 2

log 3
̸∈ Q, µa := − log(3a ± 1)

log 3
, (1 ≤ a ≤ 806), A := 3.7 and B := 2.

Moreover, Lemma 3.2 implies that we can take M := 3.51 × 10238 . Using Mathematica, we find that
q610 ≈ 1.52 × 10318 satisfies the hypotheses of Lemma 2.2. Furthermore, by Lemma 2.2 we obtain k < 1280.

For the other cases, Λ
(±)
4 turns into

Λ
(±)
4 =

 b log 3− (n− 3) log 2, if a = 1 in the case (−),
b log 3− (n− 4) log 2, if a = 1 in the case (+),
b log 3− (n− 5) log 2, if a = 2 in the case (−).

Hence, we get ∣∣∣∣(n− ℓ)

(
log 2

log 3

)
− b

∣∣∣∣ < 3.7 · 2−k/2, where ℓ ∈ {3, 4, 5}. (3.32)

To obtain a lower bound for the left-hand side of (3.32), we will apply Lemma 2.3 with

γ :=
log 2

log 3
̸∈ Q, x := n− ℓ and y := b.

Since n < 3.51× 10238 by Lemma 3.2, then we can take M := 3.51× 10238 . Let

[a0, a1, a2, a3, . . .] = [0, 1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2 . . .]
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be the continued fraction of γ . Using Maple, it seen that q465 < M < q466 and since max
1≤i≤466

ai = a331 = 2436 ,

then by Lemma 2.3, we obtain that ∣∣∣∣(n− ℓ)

(
log 2

log 3

)
− b

∣∣∣∣ > 1

2438(n− ℓ)
. (3.33)

We compare estimates (3.28) and (3.33), and then we use Lemma 3.2 to obtain

k <
2 log

(
3.7× 2438× 3.51× 10238

)
log 2

< 1612.

So, the inequality k < 1614 holds always. With this new upper bound of k , we get

n < 1.38× 1056.

We now proceed as we did before but with M = 1.38 × 1056 and we obtain k < 390 , which contradicts our
assumption k > 400 . This completes the proof of Theorem 1.1.

4. Conclusion

For any integer k ≥ 2 , the sequence of the k -Fibonacci numbers (F
(k)
n )n≥2−k is defined by the k initial values

F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 , F

(k)
1 = 1 and such that each term afterwards is the sum of the k

preceding ones. In this paper, we investigate solutions of the Diophantine equation F
(k)
n = (3a ± 1)(3b ± 1) ,

where a and b are nonnegative integers. One can study equation used other generalized sequences of such form.
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