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Abstract: In this work, we apply Leray-Schauder continuation principle to establish the existence of at least one solution
to the third order p-Laplacian boundary value problem on an unbounded domain of the form

(w(t)φp(u
′′(t)))′ = K(t, u(t), u′(t), u′′(t)), t ∈ (0,∞)

u(0) = 0, u′(0) =

m∑
i=1

αi

∫ ξi

0

u(t)dt, lim
t→∞

(w(t)φp(u
′′(t)) = 0

under the nonresonant condition
∑m

i=1 αiξ
2 ̸= 2.

Key words: Nonresonance, p-Laplacian, unbounded domain, third-order, boundary value problem

1. Introduction
The purpose of this paper is to obtain existence of at least one solution for the third order p -Laplacian boundary
value problem

(w(t)φp(u
′′(t)))′ = K(t, u(t), u′(t), u′′(t)), t ∈ (0,∞) (1.1)

u′(0) =

m∑
i=1

αi

∫ ξi

0

u(t)dt, u(0) = 0, lim
t→∞

(w(t)φp(u
′′(t))) = 0 (1.2)

where
φp(s) =| s |p−2 s, K : [0,∞)×ℜ3 → ℜ is a Caratheodory function with respect to L1[0,∞) , αi ∈ ℜ(1 ≤ i ≤ m) ,

0 < ξ1 < ξ2 < ... < ξm < 1 . w(t) > 0, t ∈ [0,∞), w ∈ C[0,∞) ∩ C1[0,∞),
1

w
∈ L1[0,∞) and

∑m
i=1 αiξ

2 ̸= 2.

The condition
∑m

i=1 αiξ
2 ̸= 2 is critical since we require a trivial kernel for the differential operator. The

boundary value problem (1.1)–(1.2) is then said to be at nonresonance. In [6] we proved the existence of
solutions for the boundary value problem.

(q(t)u′′(t))′ = f(t, u(t), u′(t), u′′(t)), t ∈ (0,∞) (1.3)

u′(0) =

m∑
i=1

αi

∫ ξi

0

u(t)dt, u(0) = 0, lim
t→∞

q(t)u′′(t) = 0 (1.4)
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under the resonant condition
∑m

i=1 αiξ
2
i = 2 .

The method of investigation in [6] was based on coincidence degree arguments. In this work, we shall utilise
topological degree methods based on the Leray-Schauder degree theory [10]. The contribution of this paper is
to extend the results of (1.3)–(1.4) to a p -Laplacian boundary value problem where the differential operator
has trivial solutions.

Boundary value problems on an unbounded domain with integral boundary conditions have various
applications. For example they are used to model, the steady flow of gas through a semi-infinite porous
medium, theory of drain flows, blood flow models. Boundary value problems with p - Laplacian operators also
have applications in non-Newtonian mechanics, nonlinear elasticity, glaciology, etc.
For some recent works where Leray-Schauder principle has been applied for boundary value problems on
unbounded domain or half-line see [1, 2, 4, 6–8] and references therein.

This paper is organized as follows. In Section 2 we present some background definitions, theorems and
a-priori estimates that will be used in the proof of the main existence results. In Section 3 we prove the main
existence result. Section 4 will be devoted to providing an example to demonstrate our results.

2. Preliminaries
In what follows, we shall use the following definition and lemmas.

Definition 2.1 The mapping f : [0,∞)×ℜn → ℜ is an L1[0,∞)- Caratheodory if the following conditions hold

(i) for each z ∈ Rn, f(t, z) is Lebesgue measurable;

(ii) for a.e t ∈ (0,∞), f(t, z) is a continuous on ℜn ;

(iii) for each r > 0 there exists αr ∈ (0,∞) such that for a.e t ∈ [0,∞) and every z such that | z |≤ r we
have | f(t, z) |≤ αr(t)

Let AC[0,∞) denote the space of absolutely continuous functions on [0,∞) . In what follows we shall utilise
the following spaces

X =
{
u ∈ C2[0,∞), (wφp(u

′′)))′ ∈ AC[0,∞),

lim
t→∞

e−t | u(i)(t) | exists for 0 ≤ i ≤ 2, (wφp(u
′′))′ ∈ L1[0,∞)

}
,

(2.1)

∥ u ∥= max

[
sup

t∈[0,∞)

e−t | u(t) |, sup
t∈[0,∞)

e−t | u′(t) |, sup
t∈[0,∞

e−t | u′′(t) |

]
. (2.2)

Thus X is a Banach Space . Let Z = L1[0,∞) with the norm

∥ y ∥1=
∫ ∞

0

| y(t) | dt, y ∈ Z (2.3)

Define the mapping N : X → Z by

Nu(t) = K(t, u(t), u′(t), u′′(t)), t ∈ [0,∞) (2.4)
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In this work, we shall utilise the Leray-Schauder continuation principle which has been applied in many papers
in the literature. However since [0,∞) is not compact, the compactness principle on the bounded interval [0, 1]
cannot be applied here. We shall rely on the following compactness criterion.

Lemma 2.2 [1] Let H ⊂ X . Then H is relatively compact in X if the following conditions are satisfied

(i) H is bounded in X ;

(ii) The family W i =
{
ψi : ψi(t) = e−tui(t), t ≥ 0, u ∈ H

}
is equicontinuous on any compact subinterval of

[0,∞) for i = 0, 1, ...n− 1 ;

(iii) The family W i =
{
ψi : ψi(t) = e−tui(t), t ≥ 0, u ∈ H

}
is equiconvergent at infinity for i = 0, 1...n− 1 .

We shall need the following constants

A = e−1

∥∥∥∥ 1w
∥∥∥∥

1

p− 1

1

+ e−1

∥∥∥∥ 1w
∥∥∥∥

1

p− 1

1

∑m
i=1 | αi | ξ2i

| 2−
∑m

i=1 αiξ2i |
(2.5)

B =

∥∥∥∥ 1w
∥∥∥∥

1

p− 1

1

+

∥∥∥∥ 1w
∥∥∥∥

1

p− 1

1

∑m
i=1 | αi | ξ2i

| 2−
∑m

i=1 | αi | ξ2i |
(2.6)

C =

∥∥∥∥ 1w
∥∥∥∥

1

p− 1

∞
. (2.7)

Lemma 2.3 Let h ∈ Z . Then the unique solution of the equation.

(w(t)φp(u
′′)))′ = h(t), t ∈ [0,∞) (2.8)

subject to (1.2) is

u(t) =−
∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drds

−2t

2−
∑m

i=1 αiξ2i

m∑
i=1

αi

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drdsdt.

(2.9)

Proof From (2.8) and (1.2) we derive

φp(u
′′(t)) = − 1

w(t)

∫ ∞

t

h(τ)dτ,

u′′ = −φq

(
1

w(t)

)
φq

∫ ∞

t

h(τ)dτ

and hence

u(t) = −
∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drds+ tu′(0).
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Therefore from (1.2) we obtain

u′(0) =
−2
∑m

i=1 αi

2−
∑m

i=1 αiξ2i

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drdsdt.

Hence (2.9) follows. 2

Lemma 2.4 Let h ∈ Z . Then the solution (2.9) satisfies

e−t | u(t) |≤ A ∥ h ∥

1

p− 1
1 , (2.10)

e−t | u′(t) |≤ B ∥ h ∥

1

p− 1
1 (2.11)

and

e−t | u′′(t) |≤ C ∥ h ∥

1

p− 1
1 . (2.12)

Hence,

∥ u ∥≤ max(A,B,C) ∥ h ∥

1

p− 1
1 . (2.13)

Proof From (2.9) we obtain

e−t | u(t) |= e−t

∣∣∣∣− ∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
−2t

∑m
i=1 αi

2−
∑m

i=1 αiξ2i

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drdsdt

∣∣∣∣
≤ sup

t∈[0,∞
e−t

[ ∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| h(τ) | dτ
)
drds

+
2t
∑m

i=1 | αi |
| 2−

∑
i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| h(τ) | dτ
)
drdsdt

]

≤
[

sup
t∈[0,∞)

e−tt ∥ 1

w
∥

1

p− 1
1

+ 2 sup
t∈[0,∞)

e−tt

∑m
i=1 | αi |

| 2−
∑m

i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
drdsdt

]
∥ h ∥

1

p− 1
1

=

e−1 ∥ 1

w
∥

1

p− 1
1 +e−1 ∥ 1

w
∥

1

p− 1
1

∑m
i=1 | αi | ξ2

| 2−
∑m

i=1 αiξ2i |

 ∥ h ∥

1

p− 1
1 ,
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using (2.5), we get

e−t | u(t) |= A ∥ h ∥

1

p− 1
1 (2.14)

e−t | u′(t) | = e−t

∣∣∣∣−∫ t

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
dr,

−
2
∑m

i=1 αi

2−
∑

i=1 αiξ2i

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drdsdt

∣∣∣∣
≤ sup

t∈0,∞)

e−t

[ ∫ t

0

φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| h(τ) |
)
dτ)dr

+
2
∑m

i=1 | αi |
| 2−

∑
i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| h(τ)dτ |
)
drdsdt

]

≤

∥∥∥∥ 1w
∥∥∥∥

1

p− 1

1

+

∥∥∥∥ 1w
∥∥∥∥

1

p− 1

1

∑m
i=1 | αi | ξ2

| 2−
∑

i=1 αiξ2i |

 ∥ h ∥

1

p− 1
1 ,

and from (2.6), we have

e−t | u′(t) |= B ∥ h ∥

1

p− 1
1 , (2.15)

e−t | u′′(t) | = e−t

∣∣∣∣φq

(
1

w(t)

)
φq

(∫ ∞

t

h(τ)dτdτ

)
ds

∣∣∣∣
≤ sup

t∈[0,∞)

e−t | φq

(
1

| w(t) |

)
φq

(∫ ∞

t

| h(τ)dτ
)

≤
∥∥∥∥ 1w
∥∥∥∥

1

p− 1

∞
∥ h ∥

1

p− 1
1 ,

from (2.7), we have

e−t | u′′(t) |= C ∥ h ∥

1

p− 1
1 . (2.16)

Hence

∥ u ∥≤ max(A,B,C) ∥ h ∥

1

p− 1
1 = D ∥ h ∥

1

p− 1
1 . (2.17)

2

Define M : Z → X by

(Mh)(t) = −
∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drds

−2t
∑m

i=1 αi

2−
∑m

i=1 αiξ2i

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drdsdt.

2386



IYASE and IMAGA/Turk J Math

Then M is well defined for all h ∈ Z and is the unique solution of the differential equation

(w(t)φp(u
′′(t)))′ = h(t) a. e t ∈ (0,∞),

subject to the boundary condition (1.2).
Let T =MN : X → X be defined by

Tu(t) = −
∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drds

−2t
∑m

i=1 αi

2−
∑m

i=1 αiξ2i

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

h(τ)dτ

)
drdsdt

for a.e t ∈ [0,∞). Then T is well defined. We use the compactness criterion in Lemma 2.1 to prove that T is
compact.

Lemma 2.5 The mapping T : X → X is compact.

Proof Let H ⊂ X be bounded i.e there exists r > 0 such that | u |< r for all u ∈ H. Since K : [0,∞)×ℜ3 → ℜ
is L1[0,∞) Caratheodory there exists αr ∈ Z such that | Nu(t) |≤ αr(t) for all t ∈ [0,∞) and all u ∈ H.

For u ∈ H , we have

e−t | Tu(t) | = e−t

∣∣∣∣−∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

0

Nu(τ)dτ

)
drds

−
2t
∑m

i=1 αi

(2−
∑

i=1 αiξ2i )

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

Nu(τ)dτ

)
drdsdt

∣∣∣∣
≤ sup

t∈[0,∞)

e−t

[ ∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
φq

∫ ∞

r

(| Nu(τ) | dτ) drds

+
2t
∑m

i=1 | αi |
| 2−

∑m
i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| Nu(τ)dτ
)
drdsdt

]

≤ A ∥ αr ∥

1

p− 1
1 , (2.18)

e−t

∣∣∣∣ (Tu)′(t) ∣∣∣∣ = e−t

∣∣∣∣ −∫ t

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

Nu(τ)dτ

)
dr

−
2
∑m

i=1 αi

(2−
∑m

i=1 αiξ2i )

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

Nu(τ)dτ

)
drdsdt

∣∣∣∣
≤ sup

t∈[0,∞)

e−t

[∫ t

0

φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| Nu(τ) | dτ
)
dr

+
2
∑m

i=1 | αi |
| 2−

∑m
i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| Nu(τ) | dτ
)
drdsdt

]

≤ B ∥ αr ∥

1

p− 1
1 , (2.19)
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e−t

∣∣∣∣ (Tu)′′(t) ∣∣∣∣ = e−t

∣∣∣∣ −φq

(
1

w(t)

)
φq

(∫ ∞

t

Nu(τ)dτ

) ∣∣∣∣
≤ sup

t∈[0,∞)

e−tφq

(
1

| w(t) |

)
φq

(∫ ∞

t

| Nu(τ) | dτ
)

≤ C ∥ αr ∥

1

p− 1
1 . (2.20)

(2.18), (2.19) and (2.20) implies that

∥ Tu ∥≤ max(A,B,C) ∥ αr ∥

1

p− 1
1 = D ∥ αr ∥

1

p− 1
1 (2.21)

Thus T (H) is bounded in X .
To prove equicontinuity of T (H) , let t1, t2 ∈ [0, L] where L ∈ (0,∞) with t1 < t2 then∣∣∣∣ e−t2(Tu)(t2)−e−t1(Tu)(t1)

∣∣∣∣=∣∣∣∣ ∫ t2

t1

[
e−s(Tu)(s)

]′ ∣∣∣∣
=

∣∣∣∣ ∫ t2

t1

−e−s [Tu] (s)ds+

∫ t2

t1

e−s [Tu]
′
(s)ds

∣∣∣∣
≤
∫ t2

t1

e−s | Tu | (s)ds+
∫ t2

t1

e−s | [Tu]′ (s) | ds

≤ 2(t2 − t1) ∥ Tu ∥≤ 2D(t2 − t1) ∥ αr ∥

1

p− 1
1 → 0 as t1 → t2.

Similarly,

| e−t2(Tu)′(t2)− e−t1(Tu)′(t1) | =
∣∣∣∣ ∫ t2

t1

[
e−s(Tu)′(s)

]′
ds

∣∣∣∣
=

∣∣∣∣ ∫ t2

t1

[
−e−s(Tu)′(s) + e−s(Tu)′′(s)

]
ds

∣∣∣∣
≤ 2(t2 − t1) ∥ Tu ∥≤ 2(t2 − t1)D ∥ αr ∥

1

p− 1
1 → 0 as t1 → t2,

and

| e−t2φp(Tu)
′′(t2)− e−t1φp(Tu)

′′(t1) |=
∣∣∣∣− e−t2

1

w(t2)

∫ ∞

t2

Nu(τ)dτ + e−t1
1

w(t1)

∫ ∞

t1

Nu(τ)dτ

∣∣∣∣
=

∣∣∣∣( e−t1

w(t1)
− e−t2

w(t2)

)∫ ∞

t2

Nu(τ)dτ − e−t1

w(t1)

∫ ∞

t2

Nu(τ)dτ +
e−t1

w(t1)

∫ ∞

t1

Nu(τ)dτ

∣∣∣∣
≤
∣∣∣∣ e−t1

w(t1)
− e−t2

w(t2)

∣∣∣∣∥ αr ∥1 +
e−t1

| w(t1) |

∫ t2

t1

| αr(τ) | dτ → 0 as t1 → t2.

Therefore | e−t2(Tu)′′(t2)− e−t1(Tu)′′(t1) |→ 0 as t1 → t2.

The above computations shows that the set T (H) is equicontinuous on every compact subinterval of [0,∞)
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Next we show that T (H) is equiconvergent at infinity. For u ∈ H , we have

e−t |(Tu)(t) |≤ e−t

[∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| Nu(τ) | dτ
)

+ 2t

∑m
i=1 | αi |

| 2−
∑m

i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |
φq

(∫ ∞

0

| Nu(τ) | dτ
))

drdsdt

]

≤ e−tt

[
1

∥ w ∥

1

p− 1
1

∥ αr ∥

1

p− 1
1

+ 2 ∥ αr ∥

1

p− 1
1

∑m
i=1 | αi |

| 2−
∑m

i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
drdsdt

]
→ 0 as t→ ∞;

e−t |(Tu)′(t) |≤ e−t

[∫ t

0

φq

(
1

w(r)

)
φq

(∫ ∞

r

| Nu(τ) | dτ
)
dr

+ 2

∑m
i=1 | αi |

| 2−
∑m

i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |)

)
φq

(∫ ∞

r

| Nu(τ) | dτ
)
drdsdt

]

≤ e−t

[
1

∥ w ∥

1

p− 1
1

∥ αr ∥

1

p− 1
1

+ 2 ∥ αr ∥

1

p− 1
1

∑m
i=1 | αi |

| 2−
∑m

i=1 αiξ2i |

∫ ξi

0

∫ t

0

∫ s

0

φq

(
1

| w(r) |

)
drdsdt

]
→ 0 as t→ ∞,

and

e−t | (Tu)′′(t) | ≤ e−t

[
φq

(
1

| w(r) |

)
φq

(∫ ∞

r

| Nu(τ) | dτ
)

≤ e−t ∥ φq

(
1

w

)
∥∞∥ αr ∥

1

p− 1
1 → 0 as t→ ∞.

This proves that T (H) is equiconvergent at infinity. Therefore from lemma 2.1 we conclude that T (H) is
compact. The continuity of T can be proven using the Lebesque dominated convergence theorem. This proves
our lemma. 2

3. Existence result
We are now ready to prove our main existence Theorem.
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Theorem 3.1 Let K : [0,∞)×ℜ3 → ℜ be an L1[0,∞) Caratheodory function. Suppose that there exist positive
functions ai, b : [0,∞) → [0,∞), ai, b ∈ L1[0,∞), i = 1, 2, 3 such that
| K(t, x, y, z) |≤ e−t(p−1)

[
a1(t) | u(t) |p−1 +a2(t) | u′(t) |p−1 +a3(t) | u′′(t) |p−1

]
+ b(t)

a.e t ∈ [0,∞) with Dp−1
∑3

i=1 ∥ ai ∥1< 1, where the constant D is defined in (2.21). Then the boundary value
problem (1.1) - (1.2) has at least one solution for every b ∈ L1[0,∞)

Proof Let u be any solution of the λ dependent differential equation

(w(t)φp(u
′′(t))))′ = λK(t, u(t), u′(t), u′′(t)) a.e t ∈ [0,∞), λ ∈ [0, 1] (3.1)

Subject to the boundary condition (1.2)
Then

∥ (w(t)φp(u
′′(t)))′ ∥1 = λ ∥ Nu ∥1

≤∥ a1 ∥1∥ u ∥p−1 + ∥ a2 ∥1∥ u ∥p−1 + ∥ a3 ∥1∥ u ∥p−1 + ∥ b ∥1

From (2.17) we obtain

≤ Dp−1
3∑

i=1

∥ ai ∥1∥ h ∥1 + ∥ b ∥1

= Dp−1
3∑

i=1

∥ ai ∥1∥ (w(t)φp(u
′′(t))))′ ∥1 + ∥ b ∥1

which yields (
1−

3∑
i=1

∥ ai ∥1 Dp−1

)
∥ (w(t)φp(u

′′(t)))′ ∥1≤∥ b ∥1

or

∥ (w(t)φp(u
′′(t)))′ ∥1≤

∥ b ∥1
1−Dp−1

∑3
i=1 ∥ ai ∥1

and from (2.17) we obtain

∥ u ∥≤ D ∥ (w(t)φp(u
′′(t)))′ ∥

1

p− 1
1 ≤ D

(
∥ b ∥1

1−Dp−1
∑3

i=1 ∥ ai ∥1

) 1

p− 1
. Therefore the set of solutions of

(3.1)–(1.2) are a - priori bounded by a constant independent of λ and of solutions. The theorem is therefore
proved. 2

4. Example
Consider the boundary value problem

[w(t)φp(u
′′(t))]

′
= e−2t

[
| u(t) |2

(t+ 5)2
+

| u′(t) |2

10(t+ 1)3
+ cos2t

| u′′(t) |2

10(t+ 1)4

]
+ b(t) (4.1)
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u′(0) =

2∑
i=1

αi

∫ ξi

0

u(t)dt, u(0) = 0, lim
t→∞

(w(t)φp(u
′′(t)) = 0 (4.2)

w(t) = et, p = 3, q =
3

2

where b ∈ Z, b(t) > 0

| K(t, u, u′, u′′) |= e−2t

[
| u |

(t+ 5)
,

| u′ |2

10(t+ 1)3
+ cos2t

| u′′ |2

10(t+ 1)4

]
+ b(t)

a1(t) =
1

(t+ 5)2
, a2(t) =

1

10(t+ 1)3
, a3(t) =

1

10(t+ 1)4

K(t, u, u′, u′′) ≤ e−2t

[
| u(t) |
(t+ 5)

+
| u′ |2

10(t+ 1)3
+

| u′′ |2

10(t+ 1)4

]
+ b(t)

∑3
i=1 ∥ ai ∥1=

1

5
+

1

20
+

1

30
=

17

60

α1 = 8, α2 = 7, ξ1 =
1√
32
, ξ2 =

1√
84∑3

i=1 αiξ
2
i =

1

4
+

1

12
=

1

3
̸= 2

A =
6

5
e−1, B =

6

5
, C = 1

D = max(A,B,C) =
6

5

Dp−1
∑3

i=1 ∥ ai ∥1= (
6

5
)2 × 17

60
=

51

125
< 1

Therefore by Theorem 3.1 problem (4.1)–( 4.2) has at least one solution for every b ∈ Z .
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