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Abstract: There is a rich literature on estimation of second and third Hankel determinants for normalised analytic
functions in geometric function theory. It is also, therefore, natural to explore the concept of the Hermitian–Toeplitz
determinants for such functions. In this paper, the sharp lower and upper estimations for third-order Hermitian-Toeplitz
determinant for functions with bounded turning of order α , are obtained.
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1. Introduction

Finding the sharp estimates on the coefficient’s functionals has been one of the major research area of geometric
function theory since the advent of the Bieberbach conjecture for normalised univalent functions and then theory
of the univalent functions developed around this conjecture. Later, among the coefficient functionals, the major
area have been the estimation of bound on the Fekete–Szegö functional(1933) and the Hankel determinants.
Although the estimation of bound on Hankel determinant started during 1960’s, since the Bieberbach conjecture
was unsolved, not so many researchers took interest in investigating the bound on the Hankel determinants,
except a few articles [17, 28]. In the last few years investigation of the Hankel determinant gained much attention
and brief survey of those work until 2013 can be found in the introduction of the paper [24]. Much recent history
of development in this direction can be found in [1, 3, 4, 7, 9, 13, 16, 26, 31]. Wide variety of applications of
Toeplitz–plus–Hankel systems arise in linear filtering theory, discrete inverse scattering, and discretization of
certain integral equations arising in mathematical physics [30]. The paper [6] gives the higher-order asymptotic
formulas for the eigenvalues of large Hermitian–Toeplitz matrices with moderately smooth symbols which trace
out a simple loop on the real line and related applications in physics. The determinant of Hermitian–Toeplitz
matrices finds its applications in signal processing [29], see also [20].

The class of normalised analytic functions of the form f(z) = z+a2z
2+a3z

3+a4z
4+ · · · defined on the

open unit disk D := {z ∈ C : |z| < 1} is represented by the symbol A . The collection of functions in A which
are univalent also is denoted by S . Recently, Ali et al. [2] introduced symmetric Toeplitz determinant Tq,n(f)
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defined by

Tq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an

∣∣∣∣∣∣∣∣∣
and estimated the bounds on T2,n(f), T3,1(f), T3,2(f) and T2,3(f) for certain subclasses of analytic functions.
Actuated by above work, recently Cudna et al. [12] considered Hermitian–Toeplitz determinants with its entries
as coefficients of a normalised analytic function as follows:

HT
q,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

ān+1 an · · · an+q−2

...
...

...
...

ān+q−1 ān+q−2 · · · an

∣∣∣∣∣∣∣∣∣ , where an ∈ C.

Further, they investigated the sharp lower and upper bound for third order Hermitian–Toeplitz determinants
for the classes of starlike and convex functions of order α (0 ≤ α < 1) . It should be noted that the
determinant HT

q,n(f) is rationally invariant. Moreover, if an are real, then HT
q,n(f) is Hermitian and therefore,

the determinant HT
q,n(f) is a real number, see [12]. From the above definition, it is easy to verify that

HT
2,1(f) = 1− |a2|2 and

HT
3,1(f) =

∣∣∣∣∣∣
1 a2 a3
ā2 1 a2
ā3 ā2 1

∣∣∣∣∣∣ = 2Re(a22ā3)− 2|a2|2 − |a3|2 + 1.

Kumar et al. [22] gave a generalisation to the results investigated in [12] by investigating those results for
Janowski starlike and convex functions. Kumar [20] investigated lower and upper bounds on the second and
third order Hermitian–Toeplitz determinants for certain subclasses of close-to-convex functions. Some more
results in this direction may be found in [10, 21]. The book [5] edited by Bättcher and Grudsky contains a
chapter on Toepltix matrices which describes the condition on a Toeplitz matrix with entries from a given
sequence of complex numbers under which the Toeplitz matrix induces a bounded operator on space certain
space. For more details on Toeplitz matrices one refer to [8, 23]. A review on Toplitz matrices is also available
in [15].

Now we consider the class of analytic functions f whose derivative have positive real part of order
α (0 ≤ α < 1) i.e. Re f ′(z) > α (z ∈ D) . The collection of such functions is denoted by R(α) . The
class is important in the sense that the functions in this class are univalent. More precisely, the condition
Re f ′(z) > 0 (z ∈ D) gives an important sufficient condition for univalency of normalised analytic functions,
see [14]. The p−valent analogue of this class was considered in [18, 19] and investigated the bounds on second
and third Hankel determinants. A generalisation of their work was done by Cho et al. [11]. The work reported
in the papers [12] and [2] inculcates us to estimate sharp lower and upper bounds on the third-order Hermitian–
Toeplitz determinant for functions in the class R(α) .

Now we introduce the class of functions with positive real part which is going to be an important tool
for calculating the bounds. Let P(α) denote the class of analytic functions of the form p(z) = 1+ p1z+ p2z

2 +
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p3z
3+ · · · with p(0) = 1 and Re p(z) > α (0 ≤ α < 1) . It is easy to see that f ∈ R(α) if and only if p ∈ P(α) .

Also, let P(0) =: P.

Lemma 1.1 [25] If p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · ∈ P, then

2p2 = p21 + (4− p21)ζ, p1 ≥ 0 (1.1)

for some ζ ∈ C such that |ζ| ≤ 1 .

2. Third order Hermitian–Toeplitz determinant

It is well-known that for f(z) = z + a2z
2 + a3z

3 + · · · ∈ R(α) , the sharp bound |a2| ≤ 1 − α holds. Now the
sharp upper bound for HT

2,1(f) = 1 − |a2|2 is naturally 1, however, the sharp lower bound is 1 − (1 − α)2 i.e.
α(2− α) . The equality in the upper bound holds for the function

f̃0(z) = z. (2.1)

Equality in lower bound holds in case of the function

f̃1(z) =

∫ z

0

(
(1− α)

1− t

1 + t
+ α

)
dt = z − (1− α)z2 +

2(1− α)

3
z3 + · · · . (2.2)

We state this result as a theorem:

Theorem 2.1 Let f(z) = z + a2z
2 + a3z

3 + · · · ∈ R(α) . Then the following sharp estimations hold:

(2− α)α ≤ HT
2,1(f) ≤ 1.

Example 2.2 For the function f̃0(z) = z, z ∈ D , we have a2 = a3 = a4 = 0 and clearly f ∈ R . Thus we have
HT

2,1(f) = 1 . The function f̃1 is also an example in the class R(α) which gives HT
2,1(f) = α(2 − α) which is

the lower bound in case of Theorem 2.1.

We now investigate the sharp lower and upper bound on third order Hermitian–Toeplitz determinant.

Theorem 2.3 Let f(z) = z + a2z
2 + a3z

3 + · · · ∈ R(α) . Then the following sharp estimations hold:

1 ≥ HT
3,1(f) ≥

{
(2α2−7α+1)

2

8(3α−1) , 0 ≤ α < 1
18 ;

− 1
9 (2α+ 1)

(
6α2 − 10α+ 1

)
, 1

18 ≤ α < 1.

Proof Since f(z) = z+a2z
2+a3z

3+· · · ∈ R(α) , it follows that there exists p(z) = 1+p1z+p2z
2+p3z

3+· · · ∈ P ,
such that

f ′(z) = (1− α)p(z) + α. (2.3)

Comparing the coefficients of similar power terms in (2.3), we have

a2 =
(1− α)p1

2
and a3 =

(1− α)p2
3

. (2.4)
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With the aid of (2.4), we have

HT
3,1(f) = 1 + 2Re(a22a3)− 2|a2|2 − |a3|2

= 1 +
1

6
(1− α)3 Re p21p̄2 −

1

2
(1− α)2|p1|2 −

1

9
(1− α)2|p2|2.

It is well-known that the class P(α) and R(α) are rotationally invariant. For this reason, we shall limit ourselves
to a consideration of nonnegative value of p1 . Also since |p1| ≤ 2 , we can very much assume 0 ≤ p1 ≤ 2 and
let p21 =: x , and so x ∈ [0, 4] . Also throughout this proof we also use the notation y := |ξ| ∈ [0, 1] wherever be
needed. Now replacing p2 with its equivalent expression using (1.1) from Lemma 1.1 and simplifying, we get

HT
3,1(f) =1 +

(1− α)3

12
p41 −

p21
2
(1− α)2 +

(1− α)3

12
p21(4− p21)Re ζ

− (1− α)2

36

(
|p1|4 + (4− p21)|ζ|2 + 2p21(4− p21)Re ζ

)
. (2.5)

In view of this fact and assumptions, we can write (2.5), as

HT
3,1(f) =1 +

(2− 3α)(1− α)2

36
x2 − (1− α)2

2
x− (1− α)2(4− x)2

36
|ζ|2 + (1− α)2(1− 3α)(4− x)x

36
Re ζ

=: F (α, x, |ζ|,Re ζ). (2.6)

We now proceed further in the proof through several steps.
Case I(a): For α = 0 , from (2.6) we have F (0, x, |ζ|,Re ζ) ≤ F (0, x, |ζ|, |ζ|) =: Υ(x, y) , where

Υ(x, y) = 1 +
x2

18
− x

2
− (4− x)2

36
y2 +

(4− x)x

36
y, (x, y) ∈ [0, 1]× [0, 1]. (2.7)

On the boundary line segments of the rectangular region [0, 4] × [0, 1] , we have Υ(0, y) = 1 − 4y/9 ≤ 1,

Υ(4, y) = −1/9, y ∈ (0, 1). Since Υ′(x, 0) = (2x− 9)/18 < 0 , it follows that

Υ(x, 0) =
x2

18
− x

2
+ 1 ≤ Υ(0, 0) = 1, ∀x ∈ (0, 4).

Further when y = 1 , we find that F (x, 1) = 5
9 − x

6 ≤ 5
9 , ∀x ∈ (0, 4). It is matter of simple calculation now to

verify that the function Υ has no critical point in the domain (0, 4)× (0, 1) . Therefore, keeping the conclusions
of the above discussion together, we arrive at

HT
3,1(f) ≤ max

{
1,−1

9
,
5

9

}
= 1. (2.8)

Now we find the minimum in the case α = 0 . From (2.7), we have

HT
3,1(f) = F (0, x, |ζ|,Re ζ)

≥ F (x, 1,−1) =
1

18

(
x2 − 7x+ 10

)
≥ −1

8
.
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Therefore,

HT
3,1(f) ≥ −1

8
. (2.9)

Thus, for α = 0 , from (2.8) and (2.9), we have

−1

8
≤ |HT

3,1(f)| ≤ 1. (2.10)

The upper bound is sharp in case of the function f̃0 given in (2.1), whereas the equality in lower bound holds
for the function f2 given by

f̃2(z) =

∫ z

0

1− t2

1− 2
√
7/8 t+ t2

dt = z +
1

2

√
7

2
z2 +

1

2
z3 +

1

8

√
7

2
z4 +

1

20
z5 + · · · (z ∈ D). (2.11)

Case I(b) For α = 1/3 , we have

F (1/3, x, |ζ|,Re ζ) = 1 +
1

81
x2 − 2

9
x− 1

81
(4− x)2|ζ|2

≤ 1

81
(x− 9)2

≤ 1.

For minimum, consider

F (1/3, x, |ζ|,Re ζ) = 1 +
1

18
x2 − 2

9
x− 1

81
(4− x)2|ζ|2

≥ 5

81
(13− 2x)

≥ 25

81
.

Thus, we have, for α = 1/3 :
25

81
≤ HT

3,1(f) ≤ 1. (2.12)

The lower bound equals in case of the function f̃1 defined in (2.2). The upper bound is sharp in case of the
function f̃0 defined in (2.1).
Case (II): If 0 < α < 1/3 , then HT

3,1(f) = F (α, x, |ζ|,Re ζ) ≤ F (α, x, |ζ|, |ζ|) = G(x, y), where

G(x, y) := 1 +
1

36
(2− 3α)(1− α)2x2 +

1

36
(1− 3α)(1− α)2(4− x)xy − 1

36
(1− α)2(4− x)2y2 − 1

2
(1− α)2x.

On the boundary line segments of the rectangular region [0, 4]× [0, 1] , we have

G(0, y) =1− 4

9
(1− α)2y2 ≤ 1,∀y ∈ [0, 1]

G(4, y) =
1

9

(
−12α3 + 14α2 + 8α− 1

)
,∀y ∈ [0, 1]

G(x, 0) =
1

36
(2− 3α)(1− α)2x2 − 1

2
(1− α)2x+ 1.
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Now computation reveals that G(x, 0) has no maximum in (0, 4) and G(4, 0) =
(
−12α3 + 14α2 + 8α− 1

)
/9.

Further, as before, it can be verified that the function

G(x, 1) = − 1

18
(2α+ 1)

(
3α2x+ α(4− 6x) + 3x− 10

)
has no critical point inside (0, 4) , and G(0, 1) = −(2α− 5)(2α+ 1)/9. Consider the case when the function G

is defined inside the rectangular region (x, y) ∈ (0, 4) × (0, 1) . It is a matter of routine calculation to see that
the function G has no maximum inside this region. For α ∈ (0, 1/3) , on the basis of above discussion, we have

HT
3,1(f) ≤ max

{
1,

1

9

(
−12α3 + 14α2 + 8α− 1

)}
= 1.

The equality attained for the function defined by (2.2).
We now find the minimum of HT

3,1(f) for the case 0 < α < 1/3 . In this case,we have HT
3,1(f) =

F (α, x, |ζ|,Re ζ) ≥ F (α, x, |ζ|,−|ζ|) ≥ F (α, x, 1,−1) =: h(x). Here we see that

h′(x) =
1

18
(a− 1)2(6a− 7)− 1

9
(a− 1)2(3a− 1)x = 0

if and only if

x = x2 =
6α− 7

2(3α− 1)
.

We now consider two subcases, namely (a) 0 < α < 1/18 ; and (b) 1/18 ≤ α < 1/3 .
(a) It is easy to check that x2 ∈ (0, 4) for 0 < α < 1/18 . Further, the values of h at the critical point is given
by

h(x2) =

(
2α2 − 7α+ 1

)2
8(3α− 1)

, 0 < α <
1

18
.

Also at the end points of the line segment 0 ≤ x ≤ 4 , we have

h(0) = 1− 4

9
(1− α)2 and h(4) =

1

9

(
−12α3 + 14α2 + 8α− 1

)
.

From the above, for 0 < α < 1/18 , we conclude that

HT
3,1(f) ≥ min{h(0), h(4), h(x2)} = h(x2).

Thus, for 0 < α < 1/18 , we have (
2α2 − 7α+ 1

)2
8(3α− 1)

≤ HT
3,1(f) ≤ 1. (2.13)

The equality for the lower bound is attained for the function

f̃5(z) =

∫ z

0

(
(1− α)

1− t2

1− u0t+ t2
+ α

)
dt, where u0 =

√
6α− 7

2(3α− 1)

= z +
1− α

2
√
2

√
6α− 7

3α− 1
z2 +

(α− 1)(2α+ 1)

2(3α− 1)
z3 + · · · .
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(b) For 1/18 ≤ α < 1/3 , we find that h has no critical point in (0, 4) , hence the minimum will be attained at
the end points. From the above, for 1/18 ≤ α < 1/3 , we conclude that

HT
3,1(f) ≥ min

{
1− 4

9
(1− α)2,

1

9

(
−12α3 + 14α2 + 8α− 1

)}
=

1

9

(
−12α3 + 14α2 + 8α− 1

)
.

Thus, for 1/18 ≤ α < 1/3 , we have

1

9

(
−12α3 + 14α2 + 8α− 1

)
≤ HT

3,1(f) ≤ 1. (2.14)

The equality in the lower bound occurs for the function f̃1 and that of upper bound for the function f̃0 .
Case (III): Now consider the case 1/3 < α < 1 . As before, we have HT

3,1(f) = F (α, x, |ζ|,Re ζ) ≤
F (α, x, |ζ|,−|ζ|) = H(x, y) , where

H(x, y) :=
1

36
(2− 3α)(1− α)2x2 − 1

36
(1− α)2(4− x)2y2 − 1

36
(1− 3α)(1− α)2(4− x)xy − 1

2
(1− α)2x+ 1.

On the boundary line segment of the rectangular region [0, 4]× [0, 1] , we have

H(0, y) = 1− 4

9
(1− α)2y2 ≤ 1

H(4, y) =
4

9
(2− 3α)(1− α)2 − 2(1− α)2 + 1

H(x, 0) =
1

36
(2− 3α)(1− α)2x2 − 1

2
(1− α)2x+ 1

H(x, 1) =
1

36
(2− 3α)(1− α)2x2 − 1

36
(1− α)2(4− x)2 − 1

2
(1− α)2x− 1

36
(1− 3α)(1− α)2(4− x)x+ 1.

The function H(x, 0) is decreasing and for all x ∈ (0, 4) and 1/3 < α < 1 and so G(x, 0) ≤ G(0, 0) = 1.

Moreover the function H(x, 1) has no critical point in (0, 4) . A similar computations show that the function
H has no critical point in (x, y) ∈ (0, 4)× (0, 1) . Therefore, on the basis of above discussion, we see that

HT
3,1(f) ≤ max

{
1,

1

9

(
−12α3 + 14α2 + 8α− 1

)
, 1− 4

9
(1− α)2

}
= 1.

For 1/3 < α < 1 equality occurs in case of the function f̃0 defined in (2.1).
We now proceed to find the minimum and for this we consider HT

3,1(f) = F (x, |ζ|,Re ζ) ≥ F (x, |ζ|, |ζ|) ≥

F (x, 1, 1) = h1(x). Now since h′
1(x) = −(2α + 1)

(
3α2 − 6α+ 3

)
/18 < 0 (1/3 < α < 1), it follows that the

minimum attained at the end point x = 4 and h1(4) = −
(
−12α3 + 14α2 + 8α− 1

)
/9. Therefore, we have

HT
3,1(f) ≥

1

9

(
−12α3 + 14α2 + 8α− 1

)
with equality for the function f̃1 defined in (2.2). Thus, in this case, we have

1

9

(
−12α3 + 14α2 + 8α− 1

)
≤ HT

3,1(f) ≤ 1. (2.15)
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The estimations given in (2.10), (2.12), (2.13), (2.14) and (2.15) end the proof. 2

Example 2.4 For the function f̃0(z) = z, z ∈ D , we have a2 = a3 = a4 = 0 and clearly f ∈ R . Thus we
have HT

3,1(f) = 1 , which is the upper bound as investigated in Theorem 2.3. The function f̃2 given by (2.11) is

also an example in the class R which gives HT
3,1(f) = −1/8 , which is the lower bound in case of Theorem 2.3

in the case when α = 0 .

Conclusion
It should be noted that the class R(α) is a subclass of S , so it is interesting to compare the lower and upper
bounds on Hermitian–Toeplitz determinants of second and third orders. Obradović and Tuneski [27] proved
that −3 ≤ HT

2,1(f) ≤ 1 and −1 ≤ HT
3,1(f) ≤ 8 . Here we find that the upper bound on T2,1(f) for both the

classes are same whereas the lower bound for the class R(α) is less than that of the class S . If we compare
the upper and lower bounds on HT

3,1(f) , we find that the corresponding bounds in case of the class R(α) lies
entirely in the range [–1, 8] of the bound for the class S . Thus, the bounds obtained in this paper very much
follow the expected outcomes which confirm the correctness of technicality and procedures adopted in proving
our results. It would be interesting to find the lower and upper bounds for HT

4,1(f) for the class R(α) .
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