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1. Introduction
The Hermite–Hadamard inequality discovered by C. Hermite and J. Hadamard see, e.g., [12], [25, p.137]) is one
of the most well established inequalities in the theory of convex functions with a geometrical interpretation and
many applications. These inequalities state that if f : I → R is a convex function on the interval I of real
numbers and a, b ∈ I with a < b , then

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f (a) + f (b)

2
. (1.1)

Both inequalities hold in the reversed direction if f is concave. We note that Hermite–Hadamard inequality may
be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. Hermite–
Hadamard inequality for convex functions has received renewed attention in recent years and a remarkable
variety of refinements and generalizations have been studied (see, for example, [3], [8]-[15], [16], [23], [24], [32],
[37], [38], [42]).

A formal defination for coordinated convex function may be stated as follows: Let us now consider a
bidemensional interval ∆ =: [a, b] × [c, d] in R2 with a < b and c < d . A mapping f : ∆ → R is said to be
convex on ∆ if the following inequality:

f(tx+ (1− t) z, ty + (1− t)w) ≤ tf (x, y) + (1− t) f (z, w)

holds, for all (x, y) , (z, w) ∈ ∆ and t ∈ [0, 1] . A function f : ∆ → R is said to be on the co-ordinates on ∆ if
the partial mappings fy : [a, b] → R, fy (u) = f (u, y) and fx : [c, d] → R, fx (v) = f (x, v) are convex where
defined for all x ∈ [a, b] and y ∈ [c, d] (see [11]).
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Definition 1.1 A function f : ∆ → R will be called coordinated canvex on ∆ , for all t, s ∈ [0, 1] and
(x, y), (u,w) ∈ ∆, if the following inequality holds:

f(tx+ (1− t) y, su+ (1− s)w)

≤ tsf(x, u) + s(1− t)f(y, u) + t(1− s)f(x,w) + (1− t)(1− s)f(y, w). (1.2)

Clearly, every convex function is coordinated convex. Furthermore, there exists coordinated convex
function which is not convex (see, [11]). For several recent results concerning Hermite–Hadamard’s inequality
for some convex function on the coordinates on a rectangle from the plane R2, we refer the reader to ([1], [2],[4],
[11], [17], [18], [19]-[22], [29],[33], [35], [36], [39], [40]).

Now, we give the definitions Riemann–Liouville fractional integrals for two variable functions:

Definition 1.2 [29] Let f ∈ L1([a, b] × [c, d]). The Riemann–Liouville fractional integrals Jα,β
a+,c+, Jα,β

a+,d−,

Jα,β
b−,c+ and Jα,β

b−,d− are defined by

Jα,β
a+,c+f(x, y) =

1

Γ(α)Γ(β)

x∫
a

y∫
c

(x− t)
α−1

(y − s)
β−1

f(t, s)dsdt, x > a, y > c,

Jα,β
a+,d−f(x, y) =

1

Γ(α)Γ(β)

x∫
a

d∫
y

(x− t)
α−1

(s− y)
β−1

f(t, s)dsdt, x > a, y < d,

Jα,β
b−,c+f(x, y) =

1

Γ(α)Γ(β)

b∫
x

y∫
c

(t− x)
α−1

(y − s)
β−1

f(t, s)dsdt, x < b, y > c,

and

Jα,β
b−,d−f(x, y) =

1

Γ(α)Γ(β)

b∫
x

d∫
y

(t− x)
α−1

(s− y)
β−1

f(t, s)dsdt, x < b, y < d.

Similar the above definitons, we can give the following integrals:

Jα
a+f(x, c) =

1

Γ(α)

x∫
a

(x− t)
α−1

f(t, c)dt, x > a

Jα
a+f(x, d) =

1

Γ(α)

x∫
a

(x− t)
α−1

f(t, d)dt, x > a,

Jβ
c+f(a, y) =

1

Γ(β)

y∫
c

(y − s)
β−1

f(a, s)ds, y > c,
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and

Jβ
d−f(b, y) =

1

Γ(β)

d∫
y

(s− y)
β−1

f(b, s)ds, y < d.

One can find some recent Hermite–Hadamard type inequalities for function of one and two variables via
Riemann–Liouville fractional integrals in ([1], [5], [6], [7], [26], [27], [28], [30], [31], [34], [36], [39], [41], [43]-[45]).

The aim of this paper is to establish an important inequalities for coordinated convex functions and as a
result of these inequalities we give the extension of Hermite–Hadamard type inequalities for Riemann–Liouville
fractional integral and logarithmic integral. The results presented in this paper provide extensions of those
given in [11] and [29].

In [42], Zabandan gave the following important inequalities associated with the Hermite–Hadamard
inequalities and he gave a few inequalities regarding the special cases of these inequalities.

Theorem 1.3 Let f : [a, b] → R be a positive convex function on [a, b] and h : [0, 1] → R be a positive function
such that h ∈ L([0, 1]) . Then the following inequalities hold

f

(
a+ b

2

)
≤ 1

2Ih (b− a)

b∫
a

[
h

(
x− a

b− a

)
+ h

(
b− x

b− a

)]
f(x)dx ≤ f (a) + f (b)

2
(1.3)

where Ih =
1∫
0

h (t) dt.

2. Main results
Throughout this section, we will use the following sympols

H1(x) = h1

(
b− x

b− a

)
+ h1

(
x− a

b− a

)
,

H2(y) = h2

(
d− y

d− c

)
+ h2

(
y − c

d− c

)
and

Ih1
=

1∫
0

h1 (t) dt and Ih2
=

1∫
0

h2 (s) ds.

In this part, we will give the following inequalities by using convex functions of 2 -variables on the coordinates.

Theorem 2.1 Let f : ∆ ⊂ R2 → R is coordinated convex on ∆ := [a, b]×[c, d] in R2 with 0 ≤ a < b, 0 ≤ c < d

and f ∈ L1 (∆) and h1, h2 : [0, 1] → R be two positive functions such that h1, h2 ∈ L([0, 1]). Then, one has the
inequalities:

f

(
a+ b

2
,
c+ d

2

)
≤ 1

4Ih1
Ih2

(b− a) (d− c)

∫ b

a

∫ d

c

H1 (x)H2(y)f (x, y) dydx (2.1)

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.
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Proof According to (1.2) with x = ta+ (1− t)b , y = (1− t)a+ tb , u = sc+ (1− s)d, w = (1− s)c+ sd and
t = s = 1

2 , we find that

f

(
a+ b

2
,
c+ d

2

)

≤ 1

4
[f(ta+ (1− t)b, sc+ (1− s1)d) + f(ta+ (1− t)b, (1− s)c+ sd) (2.2)

+f((1− t)a+ tb, sc+ (1− s)d) + f((1− t)a+ tb, (1− s)c+ sd)] .

Thus, multiplying both sides of (2.2) by h1 (t)h2 (s) , then by integrating with respect to (t, s) on [0, 1]× [0, 1] ,
we obtain

f

(
a+ b

2
,
c+ d

2

)∫ 1

0

∫ 1

0

h1 (t)h2 (s) dsdt

≤ 1

4

[∫ 1

0

∫ 1

0

h1 (t)h2 (s) [f(ta+ (1− t)b, sc+ (1− s)d) + f(ta+ (1− t)b, (1− s)c+ sd)] dsdt

+

∫ 1

0

∫ 1

0

h1 (t)h2 (s) [f((1− t)a+ tb, sc+ (1− s)d) + f((1− t)a+ tb, (1− s)c+ sd)] dsdt

]
.

Using the change of the variable, we get

f

(
a+ b

2
,
c+ d

2

)∫ 1

0

∫ 1

0

h1 (t)h2 (s) dsdt

≤ 1

4 (b− a) (d− c)

{∫ b

a

∫ d

c

h1

(
b− x

b− a

)
h2

(
d− y

d− c

)
f (x, y) dydx

+

∫ b

a

∫ d

c

h1

(
b− x

b− a

)
h2

(
y − c

d− c

)
f (x, y) dydx

+

∫ b

a

∫ d

c

h1

(
x− a

b− a

)
h2

(
d− y

d− c

)
f (x, y) dydx

+

∫ b

a

∫ d

c

h1

(
x− a

b− a

)
h2

(
y − c

d− c

)
f (x, y) dydx

}

which the first inequality is proved. For the proof of the second inequality in (2.1), we first note that if f is a
coordinated convex on ∆ , then, by using (1.2) with x = a, y = b, u = c and w = d, it yields

f (ta+ (1− t)b, sc+ (1− s)d) ≤ tsf(a, c) + s(1− t)f(b, c) + t(1− s)f(a, d) + (1− t)(1− s)f(b, d)

f (ta+ (1− t)b, (1− s)c+ sd) ≤ t(1− s)f(a, c) + (1− t)(1− s)f(b, c) + tsf(a, d) + (1− t)sf(b, d)
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f ((1− t)a+ tb, sc+ (1− s)d) ≤ (1− t)sf(a, c) + stf(b, c) + (1− t)(1− s)f(a, d) + t(1− s)f(b, d)

and

f ((1− t)a+ tb, (1− s)c+ sd) ≤ (1− t)(1− s)f(a, c) + t(1− s)f(b, c) + (1− t)sf(a, d) + tsf(b, d).

By adding these inequalities, we have

f (ta+ (1− t)b, sc+ (1− s)d) + f (ta+ (1− t)b, (1− s)c+ sd)

+f ((1− t)a+ tb, sc+ (1− s)d) + f ((1− t)a+ tb, (1− s)c+ sd) (2.3)

≤ f(a, c) + f(b, c) + f(a, d) + f(b, d).

Then, multiplying both sides of (2.3) by h1 (t)h2 (s) and integrating with respect to (t, s) over [0, 1] × [0, 1],

we get

∫ 1

0

∫ 1

0

h1 (t)h2 (s) [f (ta+ (1− t)b, sc+ (1− s)d) + f (ta+ (1− t)b, (1− s)c+ sd)

+f ((1− t)a+ tb, sc+ (1− s)d) + f ((1− t)a+ tb, (1− s)c+ sd)] dsdt

≤ [f(a, c) + f(b, c) + f(a, d) + f(b, d)]

∫ 1

0

∫ 1

0

h1 (t)h2 (s) dsdt.

Here, using the change of the variable we have

1

4 (b− a) (d− c)

{∫ b

a

∫ d

c

h1

(
b− x

b− a

)
h2

(
d− y

d− c

)
f (x, y) dydx

+

∫ b

a

∫ d

c

h1

(
b− x

b− a

)
h2

(
y − c

d− c

)
f (x, y) dydx

+

∫ b

a

∫ d

c

h1

(
x− a

b− a

)
h2

(
d− y

d− c

)
f (x, y) dydx

+

∫ b

a

∫ d

c

h1

(
x− a

b− a

)
h2

(
y − c

d− c

)
f (x, y) dydx

}

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

∫ 1

0

∫ 1

0

h1 (t)h2 (s) dsdt.

The proof is completed. 2

Remark 2.2 If in Theorem 2.1,
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i) we choose h1 (t) = t, h2 (s) = s on [0, 1] , then the inequalities (2.1) become the inequalities

f

(
a+ b

2
,
c+ d

2

)
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx ≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
, (2.4)

which are proved by Sarikaya and Yaldiz in [28].
ii) we choose h1 (t) = tα−1 (α > 0) , h2 (s) = sβ−1 (β > 0) on [0, 1] , then the inequalities (2.1) become

the fractional integral inequalities

f

(
a+ b

2
,
c+ d

2

)

≤ Γ(α+ 1)Γ(β + 1)

4 (b− a)
α
(d− c)

β

[
Jα,β
a+,c+f(b, d) + Jα,β

a+,d−f(b, c) + Jα,β
b−,c+f(a, d) + Jα,β

b−,d−f(a, c)
]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

which are proved by Sarikaya in [29].

Corollary 2.3 Under assumption of Theorem 2.1 with h1 (t) = (− ln t)
α−1

(α > 0) , h2 (s) = (− ln s)
β−1

(β > 0)

on [0, 1] , we get the following logarithmic integral inequalities

f

(
a+ b

2
,
c+ d

2

)
(2.5)

≤ 1

4Γ(α)Γ(β) (b− a) (d− c)

×
∫ b

a

∫ d

c

[[
ln

(
b− a

b− x

)]α−1

+

[
ln

(
b− a

x− a

)]α−1
]

×

[[
ln

(
d− c

d− y

)]β−1

+

[
ln

(
d− c

y − c

)]β−1
]
f (x, y) dydx

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

Corollary 2.4 Let f : ∆ ⊂ R2 → R is coordinated convex on ∆ := [a, b]×[c, d] in R2 with 0 ≤ a < b, 0 ≤ c < d

and f ∈ L1 (∆) . Then, one has the inequalities:

f

(
a+ b

2
,
c+ d

2

)
(2.6)

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx
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≤ 1

4 (b− a) (d− c)

×
∫ b

a

∫ d

c

[[
ln

(
b− a

b− x

)]
+

[
ln

(
b− a

x− a

)]]

×
[[

ln

(
d− c

d− y

)]
+

[
ln

(
d− c

y − c

)]]
f (x, y) dydx

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

Proof From (2.4), we have

f

(
a+ b

2
,
c+ d

2

)
(2.7)

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

=
1

(b− a) (d− c)

{∫ a+b
2

a

∫ c+d
2

c

f (x, y) dydx+

∫ a+b
2

a

∫ d

c+d
2

f (x, y) dydx

+

∫ b

a+b
2

∫ c+d
2

c

f (x, y) dydx+

∫ b

a+b
2

∫ d

c+d
2

f (x, y) dydx

}
.

By change of variable x = a+t
2 and y = c+s

2 in the first integral of right side of (2.7), using inequaliy (2.4) and
from Fubini Theorem, we get

∫ a+b
2

a

∫ c+d
2

c

f (x, y) dydx =
1

4

∫ b

a

∫ d

c

f

(
a+ t

2
,
c+ s

2

)
dsdt

≤ 1

4

∫ b

a

∫ d

c

(
1

(t− a) (s− c)

∫ t

a

∫ s

c

f (x, y) dydx

)
dsdt

=
1

4

∫ b

a

∫ d

c

(∫ b

x

∫ d

y

1

(t− a) (s− c)
dsdt

)
f (x, y) dydx

=
1

4

∫ b

a

∫ d

c

(
ln

b− a

x− a

)(
ln

d− c

y − c

)
f (x, y) dydx.

By similar way, using change of variable x = a+t
2 and y = d+s

2 , x = b+t
2 and y = c+s

2 , x = b+t
2 and y = d+s

2

in the other integrals of right side of (2.7), respectively, we have

∫ a+b
2

a

∫ d

c+d
2

f (x, y) dydx =
1

4

∫ b

a

∫ d

c

f

(
a+ t

2
,
d+ s

2

)
dsdt
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≤ 1

4

∫ b

a

∫ d

c

(
1

(t− a) (d− s)

∫ t

a

∫ d

s

f (x, y) dydx

)
dsdt

=
1

4

∫ b

a

∫ d

c

(
ln

b− a

x− a

)(
ln

d− c

d− y

)
f (x, y) dydx,

∫ b

a+b
2

∫ c+d
2

c

f (x, y) dydx =
1

4

∫ b

a

∫ d

c

f

(
b+ t

2
,
c+ s

2

)
dsdt

≤ 1

4

∫ b

a

∫ d

c

(
1

(b− t) (s− c)

∫ b

t

∫ s

c

f (x, y) dydx

)
dsdt

=
1

4

∫ b

a

∫ d

c

(
ln

b− a

b− x

)(
ln

d− c

y − c

)
f (x, y) dydx,

∫ b

a+b
2

∫ d

c+d
2

f (x, y) dydx =
1

4

∫ b

a

∫ d

c

f

(
b+ t

2
,
d+ s

2

)
dsdt

≤ 1

4

∫ b

a

∫ d

c

(
1

(b− t) (d− s)

∫ b

t

∫ d

s

f (x, y) dydx

)
dsdt

=
1

4

∫ b

a

∫ d

c

(
ln

b− a

b− x

)(
ln

d− c

d− y

)
f (x, y) dydx.

By above calculated integrals, writing instead of the (2.7), and using the last inequality of (2.5) for α = β = 2 ,
we get

f

(
a+ b

2
,
c+ d

2

)

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

≤ 1

4 (b− a) (d− c)

{∫ b

a

∫ d

c

(
ln

b− a

x− a

)(
ln

d− c

y − c

)
f (x, y) dydx

+

∫ b

a

∫ d

c

(
ln

b− a

x− a

)(
ln

d− c

d− y

)
f (x, y) dydx

+

∫ b

a

∫ d

c

(
ln

b− a

b− x

)(
ln

d− c

y − c

)
f (x, y) dydx
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+

∫ b

a

∫ d

c

(
ln

b− a

b− x

)(
ln

d− c

d− y

)
f (x, y) dydx

}

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

which is proved the inequalities (2.6). 2

Theorem 2.5 Let f : ∆ ⊂ R2 → R is coordinated convex on ∆ := [a, b]×[c, d] in R2 with 0 ≤ a < b, 0 ≤ c < d

and f ∈ L1 (∆) and h1, h2 : [0, 1] → R be two positive functions such that h1, h2 ∈ L([0, 1]). Then, one has the
inequalities:

f

(
a+ b

2
,
c+ d

2

)
(2.8)

≤ 1

4Ih1(b− a)

∫ b

a

H1 (x) f

(
x,

c+ d

2

)
dx+

1

4Ih2 (d− c)

∫ d

c

H2(y)f

(
a+ b

2
, y

)
dy

≤ 1

4Ih1
Ih2

(b− a) (d− c)

∫ b

a

∫ d

c

H1 (x)H2(y)f (x, y) dydx

≤ 1

8Ih1(b− a)

[∫ b

a

H1 (x) f (x, c) dx+

∫ b

a

H1 (x) f (x, d) dx

]

+
1

8Ih2
(d− c)

[∫ d

c

H2(y)f (a, y) dy +

∫ d

c

H2(y)f (b, y) dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

Proof Since f : ∆ → R is convex on the coordinates, it follows that the mapping gx : [c, d] → R ,
gx(y) = f(x, y), is convex on [c, d] for all x ∈ [a, b]. Then by using inequalities (1.3), we can write

gx

(
c+ d

2

)
≤ 1

2Ih2
(d− c)

∫ d

c

H2(y)gx(y)dy ≤ gx (c) + gx (d)

2
, x ∈ [a, b].

That is,

f

(
x,

c+ d

2

)
≤ 1

2Ih2 (d− c)

∫ d

c

H2(y)f (x, y) dy

(2.9)

≤ f (x, c) + f (x, d)

2
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for all x ∈ [a, b]. Then, multiplying both sides of (2.9) by 1
2Ih1

(b−a)H1 (x) , and integrating with respect to x

over [a, b], we have

1

2Ih1
(b− a)

∫ b

a

H1 (x) f

(
x,

c+ d

2

)
dx (2.10)

≤ 1

4Ih1Ih2(b− a) (d− c)

∫ b

a

∫ d

c

H1 (x)H2(y)f (x, y) dydx

≤ 1

4Ih1(b− a)

[∫ b

a

H1 (x) f (x, c) dx+

∫ b

a

H1 (x) f (x, d) dx

]
.

By similar argument applied for the mapping gy : [a, b] → R , gy(x) = f(x, y), we have

1

2Ih2
(d− c)

∫ d

c

H2(y)f

(
a+ b

2
, y

)
dy (2.11)

≤ 1

4Ih1
Ih2

(b− a) (d− c)

∫ b

a

∫ d

c

H1 (x)H2(y)f (x, y) dydx

≤ 1

4Ih2 (d− c)

[∫ d

c

H2(y)f (a, y) dy +

∫ d

c

H2(y)f (b, y) dy

]
.

Adding the inequalities (2.10) and (2.11), we have

1

2Ih1
(b− a)

∫ b

a

H1 (x) f

(
x,

c+ d

2

)
dx+

1

2Ih2
(d− c)

∫ d

c

H2(y)f

(
a+ b

2
, y

)
dy

≤ 1

2Ih1
Ih2

(b− a) (d− c)

∫ b

a

∫ d

c

H1 (x)H2(y)f (x, y) dydx

≤ 1

4Ih1
(b− a)

[∫ b

a

H1 (x) f (x, c) dx+

∫ b

a

H1 (x) f (x, d) dx

]

+
1

4Ih2 (d− c)

[∫ d

c

H2(y)f (a, y) dy +

∫ d

c

H2(y)f (b, y) dy

]

which give the second and the third inequalities in (2.8).
Now, by using the first ineqaulity in (1.3), we also have

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2Ih1
(b− a)

∫ b

a

H1 (x) f

(
x,

c+ d

2

)
dx

and

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2Ih2 (d− c)

∫ d

c

H2(y)f

(
a+ b

2
, y

)
dy
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by addition,

f

(
a+ b

2
,
c+ d

2

)

≤ 1

4Ih1
(b− a)

∫ b

a

H1 (x) f

(
x,

c+ d

2

)
dx+

1

4Ih2
(d− c)

∫ d

c

H2(y)f

(
a+ b

2
, y

)
dy

which give the first inequality in (2.8).
Finaly, by using the second ineqaulity in (1.3) we can also state,

1

2Ih1(b− a)

∫ b

a

H1 (x) f (x, c) dx ≤ f (a, c) + f (b, c)

2

1

2Ih1(b− a)

∫ b

a

H1 (x) f (x, d) dx ≤ f (a, d) + f (b, d)

2

1

2Ih2
(d− c)

∫ d

c

H2(y)f (a, y) dy ≤ f (a, c) + f (a, d)

2

and
1

2Ih2
(d− c)

∫ d

c

H2(y)f (b, y) dy ≤ f (b, c) + f (b, d)

2

which give, by addition, the last inequality in (2.8). 2

Remark 2.6 If in Theorem 2.5 with h1 (t) = t, h2 (s) = s on [0, 1] , then the inequalities (2.8) become the
inequalities

f

(
a+ b

2
,
c+ d

2

)

≤ 1

2

[
1

b− a

∫ b

a

f

(
x,

c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

≤ 1

4

[
1

b− a

∫ b

a

f (x, c) dx+
1

b− a

∫ b

a

f (x, d) dx

+
1

d− c

∫ d

c

f (a, y) dy +
1

d− c

∫ d

c

f (b, y) dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

which are proved by Dragomirin [11].
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Remark 2.7 If in Theorem 2.5 with h1 (t) = tα−1 (α > 0) , h2 (s) = sβ−1 (β > 0) on [0, 1] , then the
inequalities (2.8) become the fractional integral inequalities

f

(
a+ b

2
,
c+ d

2

)

≤ Γ(α+ 1)

4 (b− a)
α

[
Jα
a+f(b,

c+ d

2
) + Jα

b−f(a,
c+ d

2
)

]

+
Γ(β + 1)

4 (d− c)
β

[
Jβ
c+f(

a+ b

2
, d) + Jβ

d−f(
a+ b

2
, c)

]

≤ Γ(α+ 1)Γ(β + 1)

4 (b− a)
α
(d− c)

β

[
Jα,β
a+,c+f(b, d) + Jα,β

a+,d−f(b, c) + Jα,β
b−,c+f(a, d) + Jα,β

b−,d−f(a, c)
]

≤ Γ(α+ 1)

4 (b− a)
α

[
Jα
a+f(b, c) + Jα

a+f(b, d) + Jα
b−f(a, c) + Jα

b−f(a, d)
]

+
Γ(β + 1)

4 (d− c)
β

[
Jβ
c+f(a, d) + Jβ

c+f(b, d) + Jβ
d−f(a, c) + Jβ

d−f(b, c)
]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

which are proved by Sarikaya in [29].

Corollary 2.8 Under assumption of Theorem 2.5 with h1 (t) = (− ln t)
α−1

(α > 0) , h2 (s) = (− ln s)
β−1

(β > 0)

on [0, 1] , we get the following logarithmic integral inequalities:

f

(
a+ b

2
,
c+ d

2

)

≤ 1

4Ih1
(b− a)

∫ b

a

[[
ln

(
b− a

b− x

)]α−1

+

[
ln

(
b− a

x− a

)]α−1
]
f

(
x,

c+ d

2

)
dx

+
1

4Ih2 (d− c)

∫ d

c

[[
ln

(
d− c

d− y

)]β−1

+

[
ln

(
d− c

y − c

)]β−1
]
f

(
a+ b

2
, y

)
dy

≤ 1

4Ih1
Ih2

(b− a) (d− c)

∫ b

a

∫ d

c

[[
ln

(
b− a

b− x

)]α−1

+

[
ln

(
b− a

x− a

)]α−1
]

×

[[
ln

(
d− c

d− y

)]β−1

+

[
ln

(
d− c

y − c

)]β−1
]
f (x, y) dydx
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≤ 1

8Ih1(b− a)

∫ b

a

[[
ln

(
b− a

b− x

)]α−1

+

[
ln

(
b− a

x− a

)]α−1
]
[f (x, c) + f (x, d)] dx

+
1

8Ih2
(d− c)

∫ d

c

[[
ln

(
d− c

d− y

)]β−1

+

[
ln

(
d− c

y − c

)]β−1
]
[f (a, y) + f (b, y)] dy

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.
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