т $\mathbf{~ B I ̇ t a k ~}$
http://journals.tubitak.gov.tr/math/

Turk J Math
(2021) 45: 2731 - 2745
© TÜBİTAK
doi:10.3906/mat-2104-24

On the extension of Hermite-Hadamard type inequalities for coordinated convex mappings

Mehmet Zeki SARIKAYA* © , Dilşatnur KILIÇER ©
Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

| Received: 05.04.2021 | Accepted/Published Online: 31.10.2021 | Final Version: 29.11 .2021 |
| :--- | :--- | :--- | :--- |

Abstract

In this paper, we obtain an important inequalities for coordinated convex functions and as a result of these inequalities we give the extension of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral and logarithmic integral. The inequalities obtained in this study provide generalizations of some result given in earlier works.

Key words: Hermite-Hadamard's inequalities, fractional integral, coordinated convex, integral inequalities

1. Introduction

The Hermite-Hadamard inequality discovered by C. Hermite and J. Hadamard see, e.g., [12], [25, p.137]) is one of the most well established inequalities in the theory of convex functions with a geometrical interpretation and many applications. These inequalities state that if $f: I \rightarrow \mathbb{R}$ is a convex function on the interval I of real numbers and $a, b \in I$ with $a<b$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

Both inequalities hold in the reversed direction if f is concave. We note that Hermite-Hadamard inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen's inequality. HermiteHadamard inequality for convex functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been studied (see, for example, [3], [8]-[15], [16], [23], [24], [32], [37], [38], [42]).

A formal defination for coordinated convex function may be stated as follows: Let us now consider a bidemensional interval $\Delta=:[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. A mapping $f: \Delta \rightarrow \mathbb{R}$ is said to be convex on Δ if the following inequality:

$$
f(t x+(1-t) z, t y+(1-t) w) \leq t f(x, y)+(1-t) f(z, w)
$$

holds, for all $(x, y),(z, w) \in \Delta$ and $t \in[0,1]$. A function $f: \Delta \rightarrow \mathbb{R}$ is said to be on the co-ordinates on Δ if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, \quad f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}, \quad f_{x}(v)=f(x, v)$ are convex where defined for all $x \in[a, b]$ and $y \in[c, d]$ (see [11]).

[^0]Definition 1.1 A function $f: \Delta \rightarrow \mathbb{R}$ will be called coordinated canvex on Δ, for all $t, s \in[0,1]$ and $(x, y),(u, w) \in \Delta$, if the following inequality holds:

$$
\begin{align*}
& f(t x+(1-t) y, s u+(1-s) w) \\
\leq & t s f(x, u)+s(1-t) f(y, u)+t(1-s) f(x, w)+(1-t)(1-s) f(y, w) \tag{1.2}
\end{align*}
$$

Clearly, every convex function is coordinated convex. Furthermore, there exists coordinated convex function which is not convex (see, [11]). For several recent results concerning Hermite-Hadamard's inequality for some convex function on the coordinates on a rectangle from the plane \mathbb{R}^{2}, we refer the reader to ([1], [2], [4], [11], [17], [18], [19]-[22], [29], [33], [35], [36], [39], [40]).

Now, we give the definitions Riemann-Liouville fractional integrals for two variable functions:

Definition 1.2[29] Let $f \in L_{1}([a, b] \times[c, d])$. The Riemann-Liouville fractional integrals $J_{a+, c+,}^{\alpha, \beta}, J_{a+, d-}^{\alpha, \beta}$, $J_{b-, c+}^{\alpha, \beta}$ and $J_{b-, d-}^{\alpha, \beta}$ are defined by

$$
\begin{aligned}
& J_{a+, c+}^{\alpha, \beta} f(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{x} \int_{c}^{y}(x-t)^{\alpha-1}(y-s)^{\beta-1} f(t, s) d s d t, \quad x>a, y>c \\
& J_{a+, d-}^{\alpha, \beta} f(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{x} \int_{y}^{d}(x-t)^{\alpha-1}(s-y)^{\beta-1} f(t, s) d s d t, \quad x>a, y<d \\
& J_{b-, c+}^{\alpha, \beta} f(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{x}^{b} \int_{c}^{y}(t-x)^{\alpha-1}(y-s)^{\beta-1} f(t, s) d s d t, \quad x<b, y>c
\end{aligned}
$$

and

$$
J_{b-, d-}^{\alpha, \beta} f(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{x}^{b} \int_{y}^{d}(t-x)^{\alpha-1}(s-y)^{\beta-1} f(t, s) d s d t, \quad x<b, y<d
$$

Similar the above definitons, we can give the following integrals:

$$
\begin{aligned}
& J_{a+}^{\alpha} f(x, c)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t, c) d t, \quad x>a \\
& J_{a+}^{\alpha} f(x, d)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t, d) d t, \quad x>a \\
& J_{c+}^{\beta} f(a, y)=\frac{1}{\Gamma(\beta)} \int_{c}^{y}(y-s)^{\beta-1} f(a, s) d s, \quad y>c
\end{aligned}
$$

and

$$
J_{d-}^{\beta} f(b, y)=\frac{1}{\Gamma(\beta)} \int_{y}^{d}(s-y)^{\beta-1} f(b, s) d s, \quad y<d .
$$

One can find some recent Hermite-Hadamard type inequalities for function of one and two variables via Riemann-Liouville fractional integrals in ([1], [5], [6], [7], [26], [27], [28], [30], [31], [34], [36], [39], [41], [43]-[45]).

The aim of this paper is to establish an important inequalities for coordinated convex functions and as a result of these inequalities we give the extension of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral and logarithmic integral. The results presented in this paper provide extensions of those given in [11] and [29].

In [42], Zabandan gave the following important inequalities associated with the Hermite-Hadamard inequalities and he gave a few inequalities regarding the special cases of these inequalities.

Theorem 1.3 Let $f:[a, b] \rightarrow R$ be a positive convex function on $[a, b]$ and $h:[0,1] \rightarrow R$ be a positive function such that $h \in L([0,1])$. Then the following inequalities hold

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{2 I_{h}(b-a)} \int_{a}^{b}\left[h\left(\frac{x-a}{b-a}\right)+h\left(\frac{b-x}{b-a}\right)\right] f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.3}
\end{equation*}
$$

where $I_{h}=\int_{0}^{1} h(t) d t$.

2. Main results

Throughout this section, we will use the following sympols

$$
\begin{aligned}
& H_{1}(x)=h_{1}\left(\frac{b-x}{b-a}\right)+h_{1}\left(\frac{x-a}{b-a}\right), \\
& H_{2}(y)=h_{2}\left(\frac{d-y}{d-c}\right)+h_{2}\left(\frac{y-c}{d-c}\right)
\end{aligned}
$$

and

$$
I_{h_{1}}=\int_{0}^{1} h_{1}(t) d t \text { and } I_{h_{2}}=\int_{0}^{1} h_{2}(s) d s .
$$

In this part, we will give the following inequalities by using convex functions of 2 -variables on the coordinates.
Theorem 2.1 Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is coordinated convex on $\Delta:=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $0 \leq a<b, 0 \leq c<d$ and $f \in L_{1}(\Delta)$ and $h_{1}, h_{2}:[0,1] \rightarrow R$ be two positive functions such that $h_{1}, h_{2} \in L([0,1])$. Then, one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{4 I_{h_{1}} I_{h_{2}}(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} H_{1}(x) H_{2}(y) f(x, y) d y d x \tag{2.1}\\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} .
\end{align*}
$$

Proof According to (1.2) with $x=t a+(1-t) b, y=(1-t) a+t b, u=s c+(1-s) d, w=(1-s) c+s d$ and $t=s=\frac{1}{2}$, we find that

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{4}\left[f\left(t a+(1-t) b, s c+\left(1-s_{1}\right) d\right)+f(t a+(1-t) b,(1-s) c+s d)\right. \tag{2.2}\\
& +f((1-t) a+t b, s c+(1-s) d)+f((1-t) a+t b,(1-s) c+s d)]
\end{align*}
$$

Thus, multiplying both sides of (2.2) by $h_{1}(t) h_{2}(s)$, then by integrating with respect to (t, s) on $[0,1] \times[0,1]$, we obtain

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{0}^{1} \int_{0}^{1} h_{1}(t) h_{2}(s) d s d t \\
\leq & \frac{1}{4}\left[\int_{0}^{1} \int_{0}^{1} h_{1}(t) h_{2}(s)[f(t a+(1-t) b, s c+(1-s) d)+f(t a+(1-t) b,(1-s) c+s d)] d s d t\right. \\
& \left.+\int_{0}^{1} \int_{0}^{1} h_{1}(t) h_{2}(s)[f((1-t) a+t b, s c+(1-s) d)+f((1-t) a+t b,(1-s) c+s d)] d s d t\right]
\end{aligned}
$$

Using the change of the variable, we get

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{0}^{1} \int_{0}^{1} h_{1}(t) h_{2}(s) d s d t \\
\leq & \frac{1}{4(b-a)(d-c)}\left\{\int_{a}^{b} \int_{c}^{d} h_{1}\left(\frac{b-x}{b-a}\right) h_{2}\left(\frac{d-y}{d-c}\right) f(x, y) d y d x\right. \\
& +\int_{a}^{b} \int_{c}^{d} h_{1}\left(\frac{b-x}{b-a}\right) h_{2}\left(\frac{y-c}{d-c}\right) f(x, y) d y d x \\
& +\int_{a}^{b} \int_{c}^{d} h_{1}\left(\frac{x-a}{b-a}\right) h_{2}\left(\frac{d-y}{d-c}\right) f(x, y) d y d x \\
& \left.+\int_{a}^{b} \int_{c}^{d} h_{1}\left(\frac{x-a}{b-a}\right) h_{2}\left(\frac{y-c}{d-c}\right) f(x, y) d y d x\right\}
\end{aligned}
$$

which the first inequality is proved. For the proof of the second inequality in (2.1), we first note that if f is a coordinated convex on Δ, then, by using (1.2) with $x=a, y=b, u=c$ and $w=d$, it yields

$$
\begin{aligned}
& f(t a+(1-t) b, s c+(1-s) d) \leq t s f(a, c)+s(1-t) f(b, c)+t(1-s) f(a, d)+(1-t)(1-s) f(b, d) \\
& f(t a+(1-t) b,(1-s) c+s d) \leq t(1-s) f(a, c)+(1-t)(1-s) f(b, c)+t s f(a, d)+(1-t) s f(b, d)
\end{aligned}
$$

$$
f((1-t) a+t b, s c+(1-s) d) \leq(1-t) s f(a, c)+s t f(b, c)+(1-t)(1-s) f(a, d)+t(1-s) f(b, d)
$$

and

$$
f((1-t) a+t b,(1-s) c+s d) \leq(1-t)(1-s) f(a, c)+t(1-s) f(b, c)+(1-t) s f(a, d)+t s f(b, d)
$$

By adding these inequalities, we have

$$
\begin{align*}
& \quad f(t a+(1-t) b, s c+(1-s) d)+f(t a+(1-t) b,(1-s) c+s d) \\
& \quad+f((1-t) a+t b, s c+(1-s) d)+f((1-t) a+t b,(1-s) c+s d) \tag{2.3}\\
& \leq \quad f(a, c)+f(b, c)+f(a, d)+f(b, d)
\end{align*}
$$

Then, multiplying both sides of (2.3) by $h_{1}(t) h_{2}(s)$ and integrating with respect to (t, s) over $[0,1] \times[0,1]$, we get

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} h_{1}(t) h_{2}(s)[f(t a+(1-t) b, s c+(1-s) d)+f(t a+(1-t) b,(1-s) c+s d) \\
& +f((1-t) a+t b, s c+(1-s) d)+f((1-t) a+t b,(1-s) c+s d)] d s d t \\
\leq & {[f(a, c)+f(b, c)+f(a, d)+f(b, d)] \int_{0}^{1} \int_{0}^{1} h_{1}(t) h_{2}(s) d s d t }
\end{aligned}
$$

Here, using the change of the variable we have

$$
\begin{aligned}
& \quad \frac{1}{4(b-a)(d-c)}\left\{\int_{a}^{b} \int_{c}^{d} h_{1}\left(\frac{b-x}{b-a}\right) h_{2}\left(\frac{d-y}{d-c}\right) f(x, y) d y d x\right. \\
& +\int_{a}^{b} \int_{c}^{d} h_{1}\left(\frac{b-x}{b-a}\right) h_{2}\left(\frac{y-c}{d-c}\right) f(x, y) d y d x \\
& +\int_{a}^{b} \int_{c}^{d} h_{1}\left(\frac{x-a}{b-a}\right) h_{2}\left(\frac{d-y}{d-c}\right) f(x, y) d y d x \\
& \left.\quad+\int_{a}^{b} \int_{c}^{d} h_{1}\left(\frac{x-a}{b-a}\right) h_{2}\left(\frac{y-c}{d-c}\right) f(x, y) d y d x\right\} \\
& \leq \quad \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} \int_{0}^{1} \int_{0}^{1} h_{1}(t) h_{2}(s) d s d t
\end{aligned}
$$

The proof is completed.

Remark 2.2 If in Theorem 2.1,

SARIKAYA and KILIÇER/Turk J Math

i) we choose $h_{1}(t)=t, h_{2}(s)=s$ on $[0,1]$, then the inequalities (2.1) become the inequalities

$$
\begin{equation*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \leq \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} \tag{2.4}
\end{equation*}
$$

which are proved by Sarikaya and Yaldiz in [28].
ii) we choose $h_{1}(t)=t^{\alpha-1}(\alpha>0), h_{2}(s)=s^{\beta-1}(\beta>0)$ on $[0,1]$, then the inequalities (2.1) become the fractional integral inequalities

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{4(b-a)^{\alpha}(d-c)^{\beta}}\left[J_{a+, c+}^{\alpha, \beta} f(b, d)+J_{a+, d-}^{\alpha, \beta} f(b, c)+J_{b-, c+}^{\alpha, \beta} f(a, d)+J_{b-, d-}^{\alpha, \beta} f(a, c)\right] \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{aligned}
$$

which are proved by Sarikaya in [29].
Corollary 2.3 Under assumption of Theorem 2.1 with $h_{1}(t)=(-\ln t)^{\alpha-1}(\alpha>0), h_{2}(s)=(-\ln s)^{\beta-1}(\beta>0)$ on $[0,1]$, we get the following logarithmic integral inequalities

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.5}\\
\leq & \frac{1}{4 \Gamma(\alpha) \Gamma(\beta)(b-a)(d-c)} \\
& \times \int_{a}^{b} \int_{c}^{d}\left[\left[\ln \left(\frac{b-a}{b-x}\right)\right]^{\alpha-1}+\left[\ln \left(\frac{b-a}{x-a}\right)\right]^{\alpha-1}\right] \\
& \times\left[\left[\ln \left(\frac{d-c}{d-y}\right)\right]^{\beta-1}+\left[\ln \left(\frac{d-c}{y-c}\right)\right]^{\beta-1}\right] f(x, y) d y d x \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{align*}
$$

Corollary 2.4 Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is coordinated convex on $\Delta:=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $0 \leq a<b, 0 \leq c<d$ and $f \in L_{1}(\Delta)$. Then, one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.6}\\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
\end{align*}
$$

$$
\begin{aligned}
\leq & \frac{1}{4(b-a)(d-c)} \\
& \times \int_{a}^{b} \int_{c}^{d}\left[\left[\ln \left(\frac{b-a}{b-x}\right)\right]+\left[\ln \left(\frac{b-a}{x-a}\right)\right]\right] \\
& \times\left[\left[\ln \left(\frac{d-c}{d-y}\right)\right]+\left[\ln \left(\frac{d-c}{y-c}\right)\right]\right] f(x, y) d y d x \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{aligned}
$$

Proof From (2.4), we have

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.7}\\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
= & \frac{1}{(b-a)(d-c)}\left\{\int_{a}^{\frac{a+b}{2}} \int_{c}^{\frac{c+d}{2}} f(x, y) d y d x+\int_{a}^{\frac{a+b}{2}} \int_{\frac{c+d}{2}}^{d} f(x, y) d y d x\right. \\
& \left.+\int_{\frac{a+b}{2}}^{b} \int_{c}^{\frac{c+d}{2}} f(x, y) d y d x+\int_{\frac{a+b}{2}}^{b} \int_{\frac{c+d}{2}}^{d} f(x, y) d y d x\right\}
\end{align*}
$$

By change of variable $x=\frac{a+t}{2}$ and $y=\frac{c+s}{2}$ in the first integral of right side of (2.7), using inequaliy (2.4) and from Fubini Theorem, we get

$$
\begin{aligned}
\int_{a}^{\frac{a+b}{2}} \int_{c}^{\frac{c+d}{2}} f(x, y) d y d x & =\frac{1}{4} \int_{a}^{b} \int_{c}^{d} f\left(\frac{a+t}{2}, \frac{c+s}{2}\right) d s d t \\
& \leq \frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\frac{1}{(t-a)(s-c)} \int_{a}^{t} \int_{c}^{s} f(x, y) d y d x\right) d s d t \\
& =\frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\int_{x}^{b} \int_{y}^{d} \frac{1}{(t-a)(s-c)} d s d t\right) f(x, y) d y d x \\
& =\frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\ln \frac{b-a}{x-a}\right)\left(\ln \frac{d-c}{y-c}\right) f(x, y) d y d x
\end{aligned}
$$

By similar way, using change of variable $x=\frac{a+t}{2}$ and $y=\frac{d+s}{2}, \quad x=\frac{b+t}{2}$ and $y=\frac{c+s}{2}, x=\frac{b+t}{2}$ and $y=\frac{d+s}{2}$ in the other integrals of right side of (2.7), respectively, we have

$$
\int_{a}^{\frac{a+b}{2}} \int_{\frac{c+d}{2}}^{d} f(x, y) d y d x=\frac{1}{4} \int_{a}^{b} \int_{c}^{d} f\left(\frac{a+t}{2}, \frac{d+s}{2}\right) d s d t
$$

$$
\begin{aligned}
& \leq \frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\frac{1}{(t-a)(d-s)} \int_{a}^{t} \int_{s}^{d} f(x, y) d y d x\right) d s d t \\
& =\frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\ln \frac{b-a}{x-a}\right)\left(\ln \frac{d-c}{d-y}\right) f(x, y) d y d x, \\
\int_{\frac{a+b}{2}}^{b} \int_{c}^{\frac{c+d}{2}} f(x, y) d y d x & =\frac{1}{4} \int_{a}^{b} \int_{c}^{d} f\left(\frac{b+t}{2}, \frac{c+s}{2}\right) d s d t \\
& \leq \frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\frac{1}{(b-t)(s-c)} \int_{t}^{b} \int_{c}^{s} f(x, y) d y d x\right) d s d t \\
& =\frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\ln \frac{b-a}{b-x}\right)\left(\ln \frac{d-c}{y-c}\right) f(x, y) d y d x, \\
\int_{\frac{a+b}{2}}^{b} \int_{\frac{c+d}{2}}^{d} f(x, y) d y d x & =\frac{1}{4} \int_{a}^{b} \int_{c}^{d} f\left(\frac{b+t}{2}, \frac{d+s}{2}\right) d s d t \\
& \leq \frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\frac{1}{(b-t)(d-s)} \int_{t}^{b} \int_{s}^{d} f(x, y) d y d x\right) d s d t \\
& =\frac{1}{4} \int_{a}^{b} \int_{c}^{d}\left(\ln \frac{b-a}{b-x}\right)\left(\ln \frac{d-c}{d-y}\right) f(x, y) d y d x .
\end{aligned}
$$

By above calculated integrals, writing instead of the (2.7), and using the last inequality of (2.5) for $\alpha=\beta=2$, we get

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
\leq & \frac{1}{4(b-a)(d-c)}\left\{\int_{a}^{b} \int_{c}^{d}\left(\ln \frac{b-a}{x-a}\right)\left(\ln \frac{d-c}{y-c}\right) f(x, y) d y d x\right. \\
& +\int_{a}^{b} \int_{c}^{d}\left(\ln \frac{b-a}{x-a}\right)\left(\ln \frac{d-c}{d-y}\right) f(x, y) d y d x \\
& +\int_{a}^{b} \int_{c}^{d}\left(\ln \frac{b-a}{b-x}\right)\left(\ln \frac{d-c}{y-c}\right) f(x, y) d y d x
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\int_{a}^{b} \int_{c}^{d}\left(\ln \frac{b-a}{b-x}\right)\left(\ln \frac{d-c}{d-y}\right) f(x, y) d y d x\right\} \\
& \leq \\
& \quad \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{aligned}
$$

which is proved the inequalities (2.6).

Theorem 2.5 Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is coordinated convex on $\Delta:=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $0 \leq a<b, 0 \leq c<d$ and $f \in L_{1}(\Delta)$ and $h_{1}, h_{2}:[0,1] \rightarrow R$ be two positive functions such that $h_{1}, h_{2} \in L([0,1])$. Then, one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.8}\\
\leq & \frac{1}{4 I_{h_{1}}(b-a)} \int_{a}^{b} H_{1}(x) f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{4 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) f\left(\frac{a+b}{2}, y\right) d y \\
\leq & \frac{1}{4 I_{h_{1}} I_{h_{2}}(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} H_{1}(x) H_{2}(y) f(x, y) d y d x \\
\leq & \frac{1}{8 I_{h_{1}}(b-a)}\left[\int_{a}^{b} H_{1}(x) f(x, c) d x+\int_{a}^{b} H_{1}(x) f(x, d) d x\right] \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} . \\
& \frac{1}{8 I_{h_{2}}(d-c)}\left[\int_{c}^{d} H_{2}(y) f(a, y) d y+\int_{c}^{d} H_{2}(y) f(b, y) d y\right]
\end{align*}
$$

Proof Since $f: \Delta \rightarrow \mathbb{R}$ is convex on the coordinates, it follows that the mapping $g_{x}:[c, d] \rightarrow \mathbb{R}$, $g_{x}(y)=f(x, y)$, is convex on $[c, d]$ for all $x \in[a, b]$. Then by using inequalities (1.3), we can write

$$
g_{x}\left(\frac{c+d}{2}\right) \leq \frac{1}{2 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) g_{x}(y) d y \leq \frac{g_{x}(c)+g_{x}(d)}{2}, \quad x \in[a, b] .
$$

That is,

$$
\begin{align*}
f\left(x, \frac{c+d}{2}\right) & \leq \frac{1}{2 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) f(x, y) d y \tag{2.9}\\
& \leq \frac{f(x, c)+f(x, d)}{2}
\end{align*}
$$

for all $x \in[a, b]$. Then, multiplying both sides of (2.9) by $\frac{1}{2 I_{h_{1}}(b-a)} H_{1}(x)$, and integrating with respect to x over $[a, b]$, we have

$$
\begin{align*}
& \frac{1}{2 I_{h_{1}}(b-a)} \int_{a}^{b} H_{1}(x) f\left(x, \frac{c+d}{2}\right) d x \tag{2.10}\\
\leq & \frac{1}{4 I_{h_{1}} I_{h_{2}}(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} H_{1}(x) H_{2}(y) f(x, y) d y d x \\
\leq & \frac{1}{4 I_{h_{1}}(b-a)}\left[\int_{a}^{b} H_{1}(x) f(x, c) d x+\int_{a}^{b} H_{1}(x) f(x, d) d x\right]
\end{align*}
$$

By similar argument applied for the mapping $g_{y}:[a, b] \rightarrow \mathbb{R}, g_{y}(x)=f(x, y)$, we have

$$
\begin{align*}
& \frac{1}{2 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) f\left(\frac{a+b}{2}, y\right) d y \tag{2.11}\\
\leq & \frac{1}{4 I_{h_{1}} I_{h_{2}}(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} H_{1}(x) H_{2}(y) f(x, y) d y d x \\
\leq & \frac{1}{4 I_{h_{2}}(d-c)}\left[\int_{c}^{d} H_{2}(y) f(a, y) d y+\int_{c}^{d} H_{2}(y) f(b, y) d y\right]
\end{align*}
$$

Adding the inequalities (2.10) and (2.11), we have

$$
\begin{aligned}
& \frac{1}{2 I_{h_{1}}(b-a)} \int_{a}^{b} H_{1}(x) f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{2 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) f\left(\frac{a+b}{2}, y\right) d y \\
\leq & \frac{1}{2 I_{h_{1}} I_{h_{2}}(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} H_{1}(x) H_{2}(y) f(x, y) d y d x \\
\leq & \frac{1}{4 I_{h_{1}}(b-a)}\left[\int_{a}^{b} H_{1}(x) f(x, c) d x+\int_{a}^{b} H_{1}(x) f(x, d) d x\right] \\
& +\frac{1}{4 I_{h_{2}}(d-c)}\left[\int_{c}^{d} H_{2}(y) f(a, y) d y+\int_{c}^{d} H_{2}(y) f(b, y) d y\right]
\end{aligned}
$$

which give the second and the third inequalities in (2.8).
Now, by using the first ineqaulity in (1.3), we also have

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{2 I_{h_{1}}(b-a)} \int_{a}^{b} H_{1}(x) f\left(x, \frac{c+d}{2}\right) d x
$$

and

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{2 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) f\left(\frac{a+b}{2}, y\right) d y
$$

by addition,

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{4 I_{h_{1}}(b-a)} \int_{a}^{b} H_{1}(x) f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{4 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) f\left(\frac{a+b}{2}, y\right) d y
\end{aligned}
$$

which give the first inequality in (2.8).
Finaly, by using the second ineqaulity in (1.3) we can also state,

$$
\begin{aligned}
& \frac{1}{2 I_{h_{1}}(b-a)} \int_{a}^{b} H_{1}(x) f(x, c) d x \leq \frac{f(a, c)+f(b, c)}{2} \\
& \frac{1}{2 I_{h_{1}}(b-a)} \int_{a}^{b} H_{1}(x) f(x, d) d x \leq \frac{f(a, d)+f(b, d)}{2} \\
& \frac{1}{2 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) f(a, y) d y \leq \frac{f(a, c)+f(a, d)}{2}
\end{aligned}
$$

and

$$
\frac{1}{2 I_{h_{2}}(d-c)} \int_{c}^{d} H_{2}(y) f(b, y) d y \leq \frac{f(b, c)+f(b, d)}{2}
$$

which give, by addition, the last inequality in (2.8).

Remark 2.6 If in Theorem 2.5 with $h_{1}(t)=t, h_{2}(s)=s$ on $[0,1]$, then the inequalities (2.8) become the inequalities

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
\leq & \frac{1}{4}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) d x\right. \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} .
\end{aligned}
$$

which are proved by Dragomirin [11].

Remark 2.7 If in Theorem 2.5 with $h_{1}(t)=t^{\alpha-1}(\alpha>0), h_{2}(s)=s^{\beta-1}(\beta>0)$ on $[0,1]$, then the inequalities (2.8) become the fractional integral inequalities

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{\Gamma(\alpha+1)}{4(b-a)^{\alpha}}\left[J_{a+}^{\alpha} f\left(b, \frac{c+d}{2}\right)+J_{b-}^{\alpha} f\left(a, \frac{c+d}{2}\right)\right] \\
& +\frac{\Gamma(\beta+1)}{4(d-c)^{\beta}}\left[J_{c+}^{\beta} f\left(\frac{a+b}{2}, d\right)+J_{d-}^{\beta} f\left(\frac{a+b}{2}, c\right)\right] \\
\leq & \frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{4(b-a)^{\alpha}(d-c)^{\beta}}\left[J_{a+, c+}^{\alpha, \beta} f(b, d)+J_{a+, d-}^{\alpha, \beta} f(b, c)+J_{b-, c+}^{\alpha+\beta} f(a, d)+J_{b-, d-}^{\alpha, \beta} f(a, c)\right] \\
\leq & \frac{\Gamma(\alpha+1)}{4(b-a)^{\alpha}}\left[J_{a+}^{\alpha} f(b, c)+J_{a+}^{\alpha} f(b, d)+J_{b-}^{\alpha} f(a, c)+J_{b-}^{\alpha} f(a, d)\right] \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{aligned}
$$

which are proved by Sarikaya in [29].

Corollary 2.8 Under assumption of Theorem 2.5 with $h_{1}(t)=(-\ln t)^{\alpha-1}(\alpha>0), h_{2}(s)=(-\ln s)^{\beta-1}(\beta>0)$ on $[0,1]$, we get the following logarithmic integral inequalities:

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{4 I_{h_{1}}(b-a)} \int_{a}^{b}\left[\left[\ln \left(\frac{b-a}{b-x}\right)\right]^{\alpha-1}+\left[\ln \left(\frac{b-a}{x-a}\right)\right]^{\alpha-1}\right] f\left(x, \frac{c+d}{2}\right) d x \\
& +\frac{1}{4 I_{h_{2}}(d-c)} \int_{c}^{d}\left[\left[\ln \left(\frac{d-c}{d-y}\right)\right]^{\beta-1}+\left[\ln \left(\frac{d-c}{y-c}\right)\right]^{\beta-1}\right] f\left(\frac{a+b}{2}, y\right) d y \\
\leq & \frac{1}{4 I_{h_{1}} I_{h_{2}}(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}\left[\left[\ln \left(\frac{b-a}{b-x}\right)\right]^{\alpha-1}+\left[\ln \left(\frac{b-a}{x-a}\right)\right]^{\alpha-1}\right] \\
& \times\left[\left[\ln \left(\frac{d-c}{d-y}\right)\right]^{\beta-1}+\left[\ln \left(\frac{d-c}{y-c}\right)\right]^{\beta-1}\right] f(x, y) d y d x
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{8 I_{h_{1}}(b-a)} \int_{a}^{b}\left[\left[\ln \left(\frac{b-a}{b-x}\right)\right]^{\alpha-1}+\left[\ln \left(\frac{b-a}{x-a}\right)\right]^{\alpha-1}\right][f(x, c)+f(x, d)] d x \\
& +\frac{1}{8 I_{h_{2}}(d-c)} \int_{c}^{d}\left[\left[\ln \left(\frac{d-c}{d-y}\right)\right]^{\beta-1}+\left[\ln \left(\frac{d-c}{y-c}\right)\right]^{\beta-1}\right][f(a, y)+f(b, y)] d y \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{aligned}
$$

References

[1] Akkurt A., Sarikaya MZ., Budak B., Yildirim H. On the Hadamard's type inequalities for co-ordinated convex functions via fractional integrals. Journal of King Saud University-Science 2017; 29: 380-387.
[2] Alomari M, Darus M. The Hadamards inequality for s-convex function of 2 -variables on the coordinates. International Journal of Mathematical Analysis 2008; 2(13): 629-638.
[3] Azpeitia A.G., Convex functions and the Hadamard inequality. Revista Colombiana de Matemáticas 1994; 28: 7-12.
[4] Bakula MK. An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates. Australian Journal of Mathematical Analysis and Applications 2014; 11 (1): 1-7.
[5] Belarbi S., Dahmani Z. On some new fractional integral inequalities. Journal of Inequalities in Pure and Applied Mathematics (JIPAM) 2009; 10 (3): 1-12.
[6] Chen F. On Hermite-Hadamard type inequalities for s-convex functions on the coordinates via Riemann-Liouville fractional integrals. Journal of Applied Mathematics 2014; 2014: Article ID 248710, 1-8.
[7] Chen F. A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals. Italian Journal of Pure and Applied Mathematics 2014; 33: 299-306.
[8] Chen F. A note on Hermite-Hadamard inequalities for products of convex functions. Journal of Applied Mathematics 2013; 2013: Article ID 935020, 1-6.
[9] Chen F., Wu S. Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions. Journal of Nonlinear Sciences and Applications 2016; 9: 705-716.
[10] Deng J., Wang J. Fractional Hermite-Hadamard inequalities for (α, m)-logarithmically convex functions. Journal of Inequalities and Applications, 2013; 2013(1): 1-11.
[11] Dragomir SS. On Hadamards inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese Journal of Mathematics 2001; 4: 775-788.
[12] Dragomir SS.,Pearce CEM. Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University, 2000.
[13] Dragomir SS. Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Proyecciones Journal of Mathematics 2015; 37 (4): 343-341.
[14] Dragomir SS. Two mappings in connection to Hadamard's inequalities. Journal of Mathematical Analysis and Applications 1992; 167: 49-56.
[15] Dragomir SS., Pecaric J., Persson LE. Some inequalities of Hadamard type. Soochow Journal of Mathematics 1995; 21: 335-341.
[16] Kırmacı US., Bakula MK., Özdemir ME., Pečarić J. Hadamard-tpye inequalities for s-convex functions. Applied Mathematics and Computation 2007; 193: 26-35.

SARIKAYA and KILIÇER/Turk J Math

[17] Latif MA., Alomari M. Hadamard-type inequalities for product two convex functions on the co-ordinates. International Mathematical Forum 2009; 4 (47): 2327-2338.
[18] Latif MA. Hermite-Hadamard type inequalities for $G A$-convex functions on the co-ordinates with applications. Proceedings of the Pakistan Academy of Science 2015; 52 (4): 367-379.
[19] Ozdemir ME, Yildiz C., Akdemir AO. On the co-ordinated convex functions. Applied Mathematics \& Information Sciences 2014; 8 (3): 1085-1091.
[20] Ozdemir ME, Latif MA, Akdemir AO. On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates. Journal of Inequalities and Applications 2012; 21: 1-13.
[21] Ozdemir ME., Set E., Sarikaya MZ. New some Hadamard's type inequalities for co-ordinated m-convex and (α, m)convex functions. Hacettepe Journal of Mathematics and Statistics 2011; 40 (2): 219-229.
[22] Ozdemir ME, Latif MA, Akdemir AO. On some Hadamard-type inequalities for product of two h-convex functions on the co-ordinates. Turkish Journal of Science 2016; 1: 41-58.
[23] Pachpatte BG. On some inequalities for convex functions. Research Group in Mathematical Inequalities and Applications 2003; 6 (E): 1-9.
[24] Pavic Z. Improvements of the Hermite-Hadamard inequality. Journal of Inequalities and Applications 2015; 2015 (1): 1-11.
[25] Pečarić JE., Proschan F., Tong YL. Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston, 1992.
[26] Peng S., Wei W., Wang JR. On the Hermite-Hadamard inequalities for convex functions via Hadamard fractional integrals. Facta Universitatis, Series Mathematics and Informatics 2014; 29 (1): 55-75.
[27] Sarikaya MZ, Budak H. Generalized Hermite-Hadamard type integral inequalities for fractional integrals. Filomat 2016; 30 (5): 1315-1326.
[28] Sarikaya MZ,, Set E., Yaldiz H., Basak N. Hermite -Hadamard's inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling 2013; 57: 2403-2407.
[29] Sarikaya MZ, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms and Special Functions 2014; 25 (2): 134-147.
[30] Sarikaya MZ., Ogunmez H. On new inequalities via Riemann-Liouville fractional integration. Abstract and Applied Analysis 2012; Volume 2012: Article ID 428983, 10 pages.
[31] Set E., Ozdemir ME., Dragomir SS. On the Hermite-Hadamard inequality and other integral inequalities involving two functions. Journal of Inequalities and Applications 2010; 9: 1-9.
[32] Tseng KL., Hwang SR. New Hermite-Hadamard inequalities and their applications. Filomat 2016; 30 (14): 36673680.
[33] Wang DY., Tseng KL., Yang GS. Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane. Taiwanese Journal of Mathematics 2007; 11: 63-73.
[34] Wang JR., Li X., Zhu C. Refinements of Hermite-Hadamard type inequalities involving fractional integrals. Bulletin of the Belgian Mathematical Society - Simon Stevin 2013; 20: 655-666.
[35] Xi BY., Hua J., Qi F. Hermite-Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle. Journal of Applied Analysis. 2014; 20 (1): 1-17.
[36] Yaldiz H., Sarikaya MZ, Dahmani Z. On the Hermite-Hadamard-Fejer-type inequalities for co-ordinated convex functions via fractional integrals. International Journal of Optimization and Control: Theories \& Applications (IJOCTA) 2017; 7 (2): 205-215.
[37] Yang GS., Tseng KL. On certain integral inequalities related to Hermite-Hadamard inequalities. Journal of Mathematical Analysis and Applications 1999; 239: 180-187.

SARIKAYA and KILIÇER/Turk J Math

[38] Yang GS., Hong MC. A note on Hadamard's inequality. Tamkang Journal of Mathematics 1997; 28: 33-37.
[39] Yıldırım ME., Akkurt A., Yıldırım H. Hermite-Hadamard type inequalities for co-ordinated $\left(\alpha_{1}, m_{1}\right)-\left(\alpha_{2}, m_{2}\right)$ convex functions via fractional integrals. Contemporary Analysis and Applied M athematics 2016; 4 (1): 48-63.
[40] Sarikaya MZ., Set E., Ozdemir ME., Dragomir SS. New some Hadamard's type inequalities for co-ordinated convex functions. Tamsui Oxford Journal of Information and Mathematical Sciences 2012; 28 (2): 137-152.
[41] Sarikaya MZ., Yaldiz H. On weighted Montogomery identities for Riemann-Liouville fractional integrals. Konuralp Journal of Mathematics 2013; 1 (1) 48-53.
[42] Zabandan G. An extension and refinement of Hermite-Hadamard inequality and related results. International Journal of Nonlinear Analysis and Applications 2020; 11 (2): 379-390.
[43] Mohammed PO. On new trapezoid type inequalities for h-convex functions via generalized fractional integral. Turkish Journal of Analysis and Number Theory 2018; 6: 125-128.
[44] Mohammed PO., Sarikaya MZ. On generalized fractional integral inequalities for twice differentiable convex functions. Journal of Computational and Applied Mathematics 2020; 372: 112740.
[45] Qi F., Mohammed PO., Yao JC., Yao YH. Generalized fractional integral inequalities of Hermite-Hadamard type for (α, m)-convex functions. Journal of Inequalities and Applications 2019; 2019 (1): 1-17.

[^0]: *Correspondence: sarikayamz@gmail.com
 2010 AMS Mathematics Subject Classification: 26D07, 26D10, 26D15, 26B15, 26B25

