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Abstract: The purpose of this paper is to provide a more general Cameron–Storvick theorem for the generalized analytic
Feynman integral associated with Gaussian process Zk on a very general Wiener space Ca,b[0, T ] . The general Wiener
space Ca,b[0, T ] can be considered as the set of all continuous sample paths of the generalized Brownian motion process
determined by continuous functions a(t) and b(t) on [0, T ] . As an interesting application, we apply this theorem to
evaluate the generalized analytic Feynman integral of certain monomials in terms of Paley–Wiener–Zygmund stochastic
integrals.
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1. Introduction

Let (C0[0, T ],W,m) denote the classical Wiener space, where C0[0, T ] is the set of all R -valued continuous
functions x on [0, T ] with x(0) = 0 , W denotes the complete σ -field of all Wiener measurable subsets of
C0[0, T ] , and m denotes the Wiener measure characterized by

m({x : x(t) ≤ τ}) = 1√
2πt

∫ τ

−∞
exp

[
− u2

2t

]
du.

Using the Kolmogorov’s extension theorem (for instance, see [13, 22]), the Wiener space C0[0, T ] can be
illustrated as the set of all (continuous) sample paths of the standard Brownian motion process (SBMP).
In [1], Cameron provided an integration by parts formula for functionals on the classical Wiener space C0[0, T ] .
In [2], Cameron and Storvick developed the parts formula for the analytic Feynman integral of functionals on
C0[0, T ] . They also applied their result to establish the evaluation formula for the analytic Feynman integral
of unbounded functionals on C0[0, T ] . The parts formula on C0[0, T ] introduced in [1] also was developed in
[17, 20] to establish various parts formulas for the analytic Feynman integral. The parts formula for the analytic
Feynman integral is now called the Cameron–Storvick theorem.

On the other hand, the concept of the generalized Wiener integral and the generalized analytic Feynman
integral on C0[0, T ] were introduced in [11], and further developed and used in [3, 18, 19]. In [3, 11, 18, 19],
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the generalized Wiener integral was defined by the Wiener integral∫
C0[0,T ]

F (Zh(x, ·))dm(x),

where Zh(x, ·) is a Gaussian path defined by the Paley–Wiener–Zygmund (PWZ) stochastic integral [15, 16] as
follows:

Zh(x, t) =

∫ t

0

h(s)dx(s) with h ∈ L2[0, T ].

The parts formula on the function space Ca,b[0, T ] , which is a generalization of the Cameron–Storvick
theorem was provided by Chang and Skoug in [8] and further developed in [6]. The function space Ca,b[0, T ]

can be considered as the set of continuous sample paths of the generalized Brownian motion process (GBMP)
determined by continuous functions a(t) and b(t) on [0, T ] . A GBMP on a probability space (Ω,F , P ) and a
time interval [0, T ] is a Gaussian process Y ≡ {Yt}t∈[0,T ] such that Y0 = 0 almost surely, and for any cylinder
set It1,...,tn,B having the form

It1,...,tn,B =
{
ω ∈ Ω : (Y (t1, ω), · · · , Y (tn, ω)) ∈ B

}
with a set of time moments 0 = t0 < t1 < · · · < tn ≤ T and a Borel set B ⊂ Rn , the measure P (It1,...,tn,B) of
It1,...,tn,B is equal to

(
(2π)n

n∏
j=1

(
b(tj)− b(tj−1)

))−1/2 ∫
B

exp

[
− 1

2

n∑
j=1

[(uj − a(tj))− (uj−1 − a(tj−1))]
2

b(tj)− b(tj−1)

]
du1 · · · dun

where u0 = 0 , a(t) is a continuous real-valued function on [0, T ] , and b(t) is an increasing continuous real-
valued function on [0, T ] . For more details, see [21, 22]. Note that choosing a(t) ≡ 0 and b(t) = t on [0, T ] ,
one can see that the GBMP reduces a SBMP (or, Wiener process).

The aim of this paper is to provide a more general Cameron–Storvick theorem for the generalized analytic
Feynman integral associated with Gaussian paths on the function space Ca,b[0, T ] . As an application, we
apply our general Cameron–Storvick theorem to evaluate the generalized analytic Feynman integral of certain
monomials in terms of PWZ stochastic integrals.

In order to present our assertions, we assume that a(t) is an absolutely continuous real-valued function
on [0, T ] such that a(0) = 0 , a′(t) ∈ L2[0, T ] , and

∫ T

0

|a′(t)|2d|a|(t) < +∞,

where |a|(·) denotes the total variation function of the function a(·) , and b(t) is an increasing, continuously
differentiable real-valued function with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ] . We also assume familiarity
with [6, 8] and adopt the notation and terminologies of those papers. The basic concepts and definitions of the
function space (Ca,b[0, T ],W(Ca,b[0, T ]), µ) , which forms a complete probability space, the concept of the scale-
invariant measurability on Ca,b[0, T ] , the Cameron–Martin space C ′

a,b[0, T ] and the PWZ stochastic integral
on Ca,b[0, T ] may also be found in [4, 5]. In particular, we refer to the reference [7] for the definition and the
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properties of the Gaussian processes Zk used in this paper. However, in order to propose our assertions in this
paper, we shall introduce the following terminologies:

(i) The Hilbert space: Let

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) < +∞ and
∫ T

0

v2(s)d|a|(s) < +∞
}
.

Then L2
a,b[0, T ] is a separable Hilbert space with the inner product given by

(u, v)a,b =

∫ T

0

u(t)v(t)dm|a|,b(t) ≡
∫ T

0

u(t)v(t)d[b(t) + |a|(t)],

where m|a|,b denotes the Lebesgue–Stieltjes measure induced by |a|(·) and b(·) .
(ii) The Cameron–Martin space in Ca,b[0, T ] : Let

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

Then C ′
a,b ≡ C ′

a,b[0, T ] with the inner product

(w1, w2)C′
a,b

=

∫ T

0

Dw1(t)Dw2(t)db(t)

is a separable Hilbert space, where the (homeomorphic) operator D : C ′
a,b[0, T ] → L2

a,b[0, T ] is given by

Dw(t) = z(t) =
w′(t)

b′(t)
.

(iii) The PWZ stochastic integral: Let {en}∞n=1 be a complete orthonormal set in (C ′
a,b[0, T ], ∥ · ∥C′

a,b
)

such that the Den ’s are of bounded variation on [0, T ] . Then for w ∈ C ′
a,b[0, T ] and x ∈ Ca,b[0, T ] , we define

the PWZ stochastic integral (w, x)∼ as follows:

(w, x)∼ = lim
n→∞

∫ T

0

n∑
j=1

(w, ej)C′
a,b

Dej(t)dx(t)

if the limit exists. For each w ∈ C ′
a,b[0, T ] , the PWZ stochastic integral (w, x)∼ exists for µ -a.e. x ∈ Ca,b[0, T ] .

For each w ∈ C ′
a,b[0, T ] , the PWZ stochastic integral (w, x)∼ is a Gaussian random variable with mean (w, a)C′

a,b

and variance ∥w∥2C′
a,b

. Furthermore, if Dw = z ∈ L2
a,b[0, T ] is of bounded variation on [0, T ] , then the

PWZ stochastic integral (w, x)∼ equals the Riemann–Stieltjes integral
∫ T

0
z(t)dx(t) . Also we note that for

w, x ∈ C ′
a,b[0, T ] , (w, x)∼ = (w, x)C′

a,b
.

2. Gaussian processes on Ca,b[0, T ]

In order to present our Cameron–Storvick theorem on the function space Ca,b[0, T ] , we follow the exposition of
[4, 5, 7].
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Let C∗
a,b[0, T ] be the set of functions k in C ′

a,b[0, T ] such that Dk is continuous except for a finite number
of finite jump discontinuities and is of bounded variation on [0, T ] . For any w ∈ C ′

a,b[0, T ] and k ∈ C∗
a,b[0, T ] ,

let the operation ⊙ between C ′
a,b[0, T ] and C∗

a,b[0, T ] be defined by

w ⊙ k = D−1(DwDk), i.e. D(w ⊙ k) = DwDk,

where DwDk denotes the pointwise multiplication of the functions Dw and Dk . Then (C∗
a,b[0, T ],⊙) is a

commutative algebra with the identity b .
For each t ∈ [0, T ] , let Φt(τ) = D−1χ[0,t](τ) =

∫ τ

0
χ[0,t](u)db(u) , τ ∈ [0, T ] , and for k ∈ C ′

a,b[0, T ] with
Dk ̸= 0 mL -a.e. on [0, T ] (mL denotes the Lebesgue measure on [0, T ]), let Zk(x, t) be the PWZ stochastic
integral

Zk(x, t) = (k ⊙ Φt, x)
∼. (2.1)

Let γk(t) =
∫ t

0
Dk(u)da(u) and let βk(t) =

∫ t

0
(Dk(u))2db(u) . Then the stochastic process Zk : Ca,b[0, T ] ×

[0, T ] → R is Gaussian with mean function

∫
Ca,b[0,T ]

Zk(x, t)dµ(x) =

∫ t

0

h(u)da(u) = γk(t)

and covariance function∫
Ca,b[0,T ]

(
Zk(x, s)− γk(s)

)(
Zk(x, t)− γk(t)

)
dµ(x) =

∫ min{s,t}

0

{Dk(u)}2(u)db(u) = βk(min{s, t}).

In addition, by [22, Theorem 21.1], Zk(·, t) is stochastically continuous in t on [0, T ] . If Dk is of bounded
variation on [0, T ] , then, for all x ∈ Ca,b[0, T ] , Zk(x, t) is continuous in t . Of course if k(t) ≡ b(t) , then
Zb(x, t) = x(t) , the continuous sample paths of the GBMP Y , which consist the function space Ca,b[0, T ] .
Furthermore, if a(t) ≡ 0 and b(t) = t on [0, T ] , then the function space Ca,b[0, T ] reduces to the classical
Wiener space C0[0, T ] and the Gaussian process (2.1) with k(t) ≡ t is a SBMP.

Given any w ∈ C ′
a,b[0, T ] and k ∈ C∗

a,b[0, T ] , it follows that

(w,Zk(x, ·))∼ = (w ⊙ k, x)∼ (2.2)

for µ -a.e x ∈ Ca,b[0, T ] .
In order to establish our Cameron–Storvick theorem for functionals on Ca,b[0, T ] , we define a class

SuppC∗
a,b

[0, T ] as follows:

SuppC∗
a,b

[0, T ] = {k ∈ C∗
a,b[0, T ] : Dk ̸= 0 mL-a.e. on [0, T ]}.

Remark 2.1 (i) The space (SuppC∗
a,b

[0, T ],⊙) forms a monoid. The variance function b(·) of the GBMP Y

is the identity in the space (SuppC∗
a,b

[0, T ],⊙) .

(ii) Given a function k in SuppC∗
a,b

[0, T ] , the process Zk on Ca,b[0, T ]× [0, T ] is the GBMP determined

by the functions γk and βk .
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For any k ∈ SuppC∗
a,b

[0, T ] , the Lebesgue–Stieltjes integrals

∥w ⊙ k∥2C′
a,b

=

∫ T

0

(Dw(t))2(Dk(t))2db(t),

and

(w ⊙ k, a)C′
a,b

=

∫ T

0

Dw(t)Dk(t)Da(t)db(t) =

∫ T

0

Dw(t)Dk(t)da(t)

exist for all w ∈ C ′
a,b[0, T ] . Using equation (2.2), one can see that the PWZ stochastic integral (w,Zk(x, ·))∼

is normally distributed with

N
(
(w ⊙ k, a)C′

a,b
, ∥w ⊙ k∥2C′

a,b

)
.

Throughout the remainder of this paper, we thus require k to be in SuppC∗
a,b

[0, T ] for the process Zk .

3. Parts formula for functionals in Gaussian paths

In this section, we establish an integration by parts formula for functionals in Gaussian paths on the function
space Ca,b[0, T ] . To do this, we first provide the definition of the first variation (a kind of Gâteaux derivative)
of functionals on the function space Ca,b[0, T ] . The following definition is due to [1, 2].

Definition 3.1 Let F be a W(Ca,b[0, T ])-measurable functional on Ca,b[0, T ] and let w ∈ Ca,b[0, T ] . Then
given two functions k1 and k2 in Ca,b[0, T ] ,

δk1,k2F (x|w) ≡ δF (Zk1(x, ·)|Zk2(w, ·)) =
∂

∂α
F (Zk1(x, ·) + αZk2(w, ·))

∣∣∣∣
α=0

(3.1)

(if it exists) is called the first variation of F in the direction w .

Remark 3.2 Setting k1 = k2 ≡ b on [0, T ] , our definition of the first variation reduces to the first variation
studied in [6, 8]. That is,

δb,bF (x|w) = δF (x|w).

Let Zk be the Gaussian process given by (2.1) on Ca,b[0, T ] × [0, T ] . We define the Zk -function space
integral (namely, the function space integral associated with the Gaussian paths Zk(x, ·)) for functionals F on
Ca,b[0, T ] by the formula

Ex[F (Zk(x, ·))] =
∫
Ca,b[0,T ]

F (Zk(x, ·))dµ(x)

whenever the integral exists.
In order to establish an integration by parts formula for the function space integral associated with

Gaussian paths on Ca,b[0, T ] , we need a translation theorem for the function space integral. The following
translation theorem is due to Chang and Choi [4].
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Theorem 3.3 Let k1 be a function in SuppC∗
a,b

[0, T ] and let F be a functional on Ca,b[0, T ] such that

F (Zk1(x, ·)) is µ-integrable over Ca,b[0, T ] . Then for any θ ∈ C ′
a,b[0, T ] and k2 ∈ SuppC∗

a,b
[0, T ] ,

Ex

[
F (Zk1

(x, ·) + Zk2
(θ ⊙ k1, ·))

]
= exp

[
− 1

2
∥θ ⊙ k2∥2C′

a,b
− (θ ⊙ k2, a)C′

a,b

]
Ex

[
F (Zk1

(x, ·)) exp
[
(θ,Zk2

(x, ·))∼
]]
.

(3.2)

We are now ready to present our integration by parts formula for functionals in Gaussian paths on
Ca,b[0, T ] .

Theorem 3.4 Let k1 and k2 be functions in SuppC∗
a,b

[0, T ] , let θ be a function in C ′
a,b[0, T ] , and let F be a

functional on Ca,b[0, T ] such that F (Zk1
(x, ·)) is µ-integrable over Ca,b[0, T ] . Furthermore assume that

Ex

[∣∣δF (Zk1
(x, ·)|Zk2

(θ ⊙ k1, ·))
∣∣] < +∞. (3.3)

Then
Ex

[
δF (Zk1

(x, ·)|Zk2
(θ ⊙ k1, ·))

]
= Ex

[
(θ,Zk2

(x, ·))∼F (Zk1
(x, ·))

]
− (θ ⊙ k2, a)C′

a,b
Ex

[
F (Zk1

(x, ·))
]
.

(3.4)

Proof By using (3.1) and (3.2), it follows that

Ex

[
δF (Zk1(x, ·)|Zk2(θ ⊙ k1, ·))

]
= Ex

[
∂

∂α
F (Zk1(x, ·) + αZk2(θ ⊙ k1, ·))

∣∣∣∣
α=0

]

=
∂

∂α

(
Ex

[
F (Zk1(x, ·) + Zαk2(θ ⊙ k1, ·))

])∣∣∣∣
α=0

=
∂

∂α

(
exp

[
− α2

2
∥θ ⊙ k2∥C′

a,b
− α(θ ⊙ k2, a)C′

a,b

]
Ex

[
F (Zk1

(x, ·)) exp
[
α(θ,Zk2

(x, ·))∼
]])∣∣∣∣

α=0

= Ex

[
(θ,Zk2

(x, ·))∼F (Zk1
(x, ·))

]
− (θ ⊙ k2, a)C′

a,b
Ex

[
F (Zk1

(x, ·))
]
.

(3.5)

The second equality of (3.5) follows from (3.3) and Theorem 2.27 in [12]. 2

4. Cameron–Storvick theorem for the generalized analytic Feynman integral associated with
Gaussian paths

In this section, we establish the Cameron–Storvick theorem for the generalized analytic Feynman integral of
functionals F on the function space Ca,b[0, T ] . We begin this section with the definition of the generalized
analytic Feynman integral associated with Gaussian process Zk (Zk -Feynman integral) on Ca,b[0, T ] .

Throughout the remainder of this paper, let C+ and C̃+ denote the set of complex numbers with positive
real part, and nonzero complex numbers with nonnegative real part, respectively. For each λ ∈ C , λ1/2 denotes
the principal square root of λ ; i.e. λ1/2 is always chosen to have nonnegative real part, so that λ−1/2 = (λ−1)1/2

is in C+ for all λ ∈ C̃+ .
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Definition 4.1 Given a function k ∈ SuppC∗
a,b

[0, T ] , let Zk be the Gaussian process given by (2.1) and let F

be a C-valued scale-invariant measurable functional on Ca,b[0, T ] such that the generalized Zk -function space
integral (namely, the function space integral associated with the Gaussian paths Zk(x, ·))

JF (Zk;λ) = Ex[F (λ−1/2Zk(x, ·))]

exists and is finite for all λ > 0 . If there exists a function J∗
F (Zk;λ) analytic on C+ such that J∗

F (Zk;λ) =

JF (Zk;λ) for all λ ∈ (0,+∞) , then J∗
F (Zk;λ) is defined to be the analytic Zk -function space integral (namely,

the analytic function space integral associated with the Gaussian paths Zk(x, ·)) of F over Ca,b[0, T ] with
parameter λ , and for λ ∈ C+ we write

Eanλ
x [F (Zk(x, ·))] ≡

∫ anλ

Ca,b[0,T ]

F (Zk(x, ·))dµ(x) = J∗
F (Zk;λ).

Let q be a nonzero real number and let F be a scale-invariant measurable functional whose analytic
Zk -function space integral, Eanλ

x [F (Zk(x, ·))] , exists for all λ in C+ . If the following limit exists, we call it
the generalized analytic Zk -Feynman integral of F with parameter q , and we write

Eanfq
x [F (Zk(x, ·))] ≡

∫ anfq

Ca,b[0,T ]

F (Zk(x, ·))dµ(x) = lim
λ→−iq
λ∈C+

Eanλ
x [F (Zk(x, ·))]. (4.1)

We are now ready to establish a Cameron–Storvick theorem for our generalized analytic Feynman integral.
It will be helpful to establish the following lemma before giving the main theorem.

Lemma 4.2 Let k1 , k2 , θ , and F be as in Theorem 3.4. For each ρ > 0 , assume that F (ρZk1
(x, ·)) is

µ-integrable over Ca,b[0, T ] . Furthermore assume that for each ρ > 0 ,

Ex

[∣∣δF (ρZk1
(x, ·)|ρZk2

(θ ⊙ k1, ·))
∣∣] < +∞.

Then
Ex

[
δF (ρZk1(x, ·)|ρZk2(θ ⊙ k1, ·))

]
= Ex

[
(θ,Zk2

(x, ·))∼F (ρZk1
(x, ·))

]
− (θ ⊙ k2, a)C′

a,b
Ex

[
F (ρZk1

(x, ·))
]
.

(4.2)

Proof Let G(x) = F (ρx) . Then

G(Zk1
(x, ·) + αZk2

(w, ·)) = F (ρZk1
(x, ·) + ραZk2

(w, ·))

and
∂

∂α
G(Zk1

(x, ·) + αZk2
(w, ·))

∣∣∣∣
α=0

=
∂

∂α
F (ρZk1

(x, ·) + ραZk2
(w, ·))

∣∣∣∣
α=0

.

Thus δG(Zk1
(x, ·)|Zk2

(θ ⊙ k1, ·)) = δF (ρZk1
(x, ·)|ρZk2

(θ ⊙ k1, ·)) . Hence by Equation (3.4) with F replaced
with G , we have

Ex

[
δF (ρZk1

(x, ·)|ρZk2
(θ ⊙ k1, ·))

]
= Ex

[
δG(Zk1

(x, ·)|Zk2
(θ ⊙ k1, ·))

]
= Ex

[
(θ,Zk2(x, ·))∼G(Zk1(x, ·))

]
− (θ ⊙ k2, a)C′

a,b
Ex

[
G(Zk1(x, ·))

]
= Ex

[
(θ,Zk2(x, ·))∼F (ρZk1(x, ·))

]
− (θ ⊙ k2, a)C′

a,b
Ex

[
F (ρZk1(x, ·))

]
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which establishes (4.2). 2

Next we provide the Cameron–Storvick theorem for the generalized analytic Zk -Feynman integral on the
function space Ca,b[0, T ] .

Theorem 4.3 Let k1 , k2 , θ , and F be as in Lemma 4.2. Then if any two of the three generalized analytic
Feynman integrals in the following equation exist, then the third one also exists, and equality holds:

Eanfq
x

[
δF (Zk1(x, ·)|Zk2(θ ⊙ k1, ·))

]
= −iqEanfq

x

[
(θ,Zk2(x, ·))∼F (Zk1(x, ·))

]
− (−iq)1/2(θ ⊙ k2, a)C′

a,b
Eanfq

x

[
F (Zk1(x, ·))

]
.

Proof Given ρ > 0 and θ ∈ C ′
a,b[0, T ] , let θρ = 1

ρθ . Then θρ is a function in C ′
a,b[0, T ] , and θ⊙k1 = ρθρ⊙k1 .

By equation (4.2) with θ replaced with θρ ,

Ex

[
δF (ρZk1

(x, ·)|Zk2
(θ ⊙ k1, ·))

]
= Ex

[
δF (ρZk1

(x, ·)|ρZk2
(θρ ⊙ k1, ·))

]
= Ex

[
(θρ,Zk2

(x, ·))∼F (ρZk1
(x, ·))

]
− (θρ ⊙ k2, a)C′

a,b
Ex

[
F (ρZk1

(x, ·))
]

= ρ−2Ex

[
(θ, ρZk2

(x, ·))∼F (ρZk1
(x, ·))

]
− ρ−1(θ ⊙ k2, a)C′

a,b
Ex

[
F (ρZk1

(x, ·))
]
.

(4.3)

Now let ρ = λ−1/2 . Then Equation (4.3) becomes

Ex

[
δF (λ−1/2Zk1

(x, ·)|Zk2
(w, ·))

]
= λEx

[
(θ, λ−1/2Zk2

(x, ·))∼F (λ−1/2Zk1
(x, ·))

]
− λ1/2(θ ⊙ k2, a)C′

a,b
Ex

[
F (λ−1/2Zk1

(x, ·))
]
.

(4.4)

Since ρ > 0 was arbitrary, we have that equation (4.4) holds for all λ > 0 . We now use Definition 4.1 to obtain
our desired conclusions. 2

Corollary 4.4 Under the assumptions as given in Theorem 4.3, it follows that if any two of the three generalized
analytic Feynman integrals in the following equation exist, then the third one also exists, and equality holds:

Eanfq
x

[
(θ,Zk2(x, ·))∼F (Zk1(x, ·))

]
=

i

q
Eanfq

x

[
δF (Zk1

(x, ·)|Zk2
(θ ⊙ k1, ·))

]
+ (−iq)−1/2(θ ⊙ k2, a)C′

a,b
Eanfq

x

[
F (Zk1

(x, ·))
]
.

(4.5)

Remark 4.5 As commented in Section 2 above, if k ≡ b on [0, T ] , then Zb(x, t) = x(t) for each x ∈ Ca,b[0, T ] .

In this case, the generalized analytic Zb -Feynman integral Eanfq
x [F (Zb(x, ·))] agrees with the previous definition

of the generalized analytic Feynman integral Eanfq
x [F (x)] , see [6, 8]. The proof of the Cameron–Storvick theorem

for the generalized analytic Feynman integral E
anfq
x [F (x)] can be found in [8].

In view of Remarks 3.2 and 4.5, we have the following corollary.
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Corollary 4.6 ([6]) Let θ be a function in C ′
a,b[0, T ] , and let F be a functional on Ca,b[0, T ] such that for

each ρ > 0 , F (ρx) is µ-integrable over Ca,b[0, T ] . Furthermore assume that for each ρ > 0 ,

Ex

[∣∣δF (ρZb(x, ·)|ρZb(θ ⊙ b, ·))
∣∣] ≡ Ex

[∣∣δF (ρx|ρθ)
∣∣] < +∞.

Then if any two of the three generalized analytic Feynman integrals in the following equation exist, then the
third one also exists, and equality holds:

Eanfq
x [δF (x|θ)] = −iqEanfq

x [(θ, x)∼F (x)]− (−iq)1/2(θ, a)C′
a,b

Eanfq
x [F (x)].

The formulas and results in this paper are more complicated than the corresponding formulas and results
in [1, 2, 17, 20] because the Gaussian process used in this paper is neither centered nor stationary in time.
However, by choosing a(t) ≡ 0 and b(t) = t on [0, T ] , the function space Ca,b[0, T ] reduces to the Wiener space
C0[0, T ] , and so the expected results on C0[0, T ] are immediate corollaries of the results in this paper.

5. Generalized analytic Feynman integral of monomials in terms of PWZ stochastic integrals

When we evaluate the following generalized analytic Feynman integral

Eanfq
x

[ m∏
j=1

(θ ⊙ kj , x)
∼
]
, (5.1)

we might not be able to use the change of variables theorem of the usual measure theory, because the set of
Gaussian random variables (θ⊙kj , x)

∼ , j = 1, . . . ,m , are generally not independent. In this case, to apply the
change of variables theorem for the calculation of (5.1), we might apply the Gram–Schmidt process for the set
of functions {θ ⊙ k1, . . . , θ ⊙ km} .

Using Equation (4.5), we indeed see that the generalized Feynman integral of functionals having the form
(5.1) can be calculated very explicitly. In this section, we present interesting examples to which Equation (4.5)
can be applied.

Example 5.1 Let k1 and k2 be functions in SuppC∗
a,b

[0, T ] , and given a function θ in C ′
a,b[0, T ] , set

F (x) = (θ, x)∼ for x ∈ Ca,b[0, T ] . Then using equations (3.1) and (2.2), it follows that for any w in C ′
a,b[0, T ] ,

δF (Zk1
(x, ·)|Zk2

(w, ·)) = ∂

∂α

{
(θ,Zk1

(x, ·))∼ + α(θ,Zk2
(w, ·))∼

}∣∣∣∣
α=0

= (θ,Zk2
(w, ·))∼ = (θ ⊙ k2, w)

∼ = (θ ⊙ k2, w)C′
a,b

.

From this, we see that
δF (Zk1(x, ·)|Zk2(θ ⊙ k1, ·)) = (θ ⊙ k2, θ ⊙ k1)C′

a,b
. (5.2)

Also using (4.1), it follows that

Eanfq
x

[
F (Zk1

(x, ·))
]
= Eanfq

x

[
(θ,Zk1

(x, ·))∼
]
= Eanfq

x

[
(θ ⊙ k1, x)

∼] = (−iq)−1/2(θ ⊙ k1, a)C′
a,b

. (5.3)
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Next using Equations (2.2), (4.5), (5.2), and (5.3), we obtain the formula

Eanfq
x

[
(θ ⊙ k2, x)

∼(θ ⊙ k1, x))
∼]

≡ Eanfq
x [(θ,Zk2(x, ·))∼(θ,Zk1(x, ·))∼]

= Eanfq
x

[
(θ,Zk2

(x, ·))∼F (Zk1
(x, ·))

]
=

i

q
Eanfq

x

[
δF (Zk1(x, ·)|Zk2(θ ⊙ k1, ·))

]
+ (−iq)−1/2(θ ⊙ k2, a)C′

a,b
Eanfq

x

[
F (Zk1(x, ·))

]
=

i

q
(θ ⊙ k2, θ ⊙ k1)C′

a,b
+

i

q
(θ ⊙ k2, a)C′

a,b
(θ ⊙ k1, a)C′

a,b
.

(5.4)

In our next example, for any positive integer m ∈ {3, 4, . . .} , we obtain a recurrence relation for the
generalized analytic Feynman integral

Eanfq
x

[ m∏
j=1

(θ ⊙ kj , x)
∼
]
.

Example 5.2 For a positive integer m ≥ 3 , let {k1, . . . , km−1, km} be a finite set of functions in SuppC∗
a,b

[0, T ] ,

and given a function θ ∈ C ′
a,b[0, T ] , set

F (x) =

m−1∏
j=1

(θ ⊙ kj , x)
∼ =

m−1∏
j=1

(θ ⊙ kj ,Zb(x, ·))∼.

First, using Equation (3.1), it follows that for all w ∈ C ′
a,b[0, T ] ,

δF (x|Zkm
(w, ·)) = δF (Zb(x, ·)|Zkm

(w, ·))

=
∂

∂α

m−1∏
j=1

{
(θ ⊙ kj ,Zb(x, ·))∼ + α(θ ⊙ kj ,Zkm

(w, ·))∼
}∣∣∣∣

α=0

=

m−1∑
l=1

(m−1∏
j=1
j ̸=l

(θ ⊙ kj ,Zb(x, ·))∼
)
(θ ⊙ kl,Zkm

(w, ·))∼.

Then, in particular, it follows that

δF (Zb(x, ·)|Zkm
(θ ⊙ b, ·)) = δF (x|Zkm

(θ, ·))

=

m−1∑
l=1

(m−1∏
j=1
j ̸=l

(θ ⊙ kj ,Zb(x, ·))∼
)
(θ ⊙ kl,Zkm

(θ, ·))∼

=

m−1∑
l=1

(m−1∏
j=1
j ̸=l

(θ ⊙ kj ,Zb(x, ·))∼
)
(θ ⊙ kl, θ ⊙ km)C′

a,b
.

(5.5)
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Next, using (4.5) with k1 and k2 replaced with b and km , respectively, and with

F (x) =

m−1∏
j=1

(θ ⊙ kj , x)
∼,

(5.5), and the equation Zb(x, ·) = x , it follows that

Eanfq
x

[ m∏
j=1

(θ ⊙ kj , x)
∼
]

= Eanfq
x

[
(θ,Zkm(x, ·))∼

m−1∏
j=1

(θ ⊙ kj ,Zb(x, ·))∼
]

= Eanfq
x

[
(θ,Zkm

(x, ·))∼F (Zb(x, ·))
]

=
i

q
Eanfq

x

[
δF (Zb(x, ·)|Zkm(θ ⊙ b, ·))

]
+ (−iq)−1/2(θ ⊙ km, a)C′

a,b
Eanfq

x

[
F (Zb(x, ·))

]
=

i

q

m−1∑
l=1

(θ ⊙ kl, θ ⊙ km)C′
a,b

Eanfq
x

[m−1∏
j=1
j ̸=l

(θ ⊙ kj , x)
∼
]
+ (−iq)−1/2(θ ⊙ km, a)C′

a,b
Eanfq

x

[m−1∏
j=1

(θ ⊙ kj , x)
∼
]
.

(5.6)

Remark 5.3 Letting m = 3 in Equation (5.6) and applying Equations (5.3) and (5.4) allows us to easily and
completely calculate the generalized Feynman integral

Eanfq
x

[
(θ ⊙ k1, x)

∼(θ ⊙ k2x)
∼(θ ⊙ k3, x)

∼] = Eanfq
x

[
(θ,Zk1(x, ·))∼(θ,Zk2(x, ·))∼(θ,Zk3(x, ·))∼

]
.

Then setting m = 4 in Equation (5.6) allows us to completely evaluate the generalized Feynman integral

Eanfq
x

[
(θ ⊙ k1, x)

∼(θ ⊙ k2x)
∼(θ ⊙ k3, x)

∼(θ ⊙ k4, x)
∼]

= Eanfq
x

[
(θ,Zk1

(x, ·))∼(θ,Zk2
(x, ·))∼(θ,Zk3

(x, ·))∼(θ,Zk4
(x, ·))∼

]
,

since we already have complete evaluation formulas for

Eanfq
x

[ l∏
j=1

(θ ⊙ kj , x)
∼
]
, l = 1, 2, 3.

Then we can evaluate

Eanfq
x

[ 5∏
j=1

(θ ⊙ kj , x)
∼
]
,

since we have already evaluated

Eanfq
x

[ l∏
j=1

(θ ⊙ kj , x)
∼
]

for l = 1, 2, 3 and 4 ; etc.
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6. Concluding remark

In the theory of infinite dimensional analysis, the integration by parts formula is also one of the fundamental
tools to analyze the integration of functionals on the infinite dimensional spaces. The first infinite dimensional
integration by parts formula can be found in [1]. Since then the parts formulas of functionals on infinite
dimensional spaces have been developed in a tremendous amount of papers and books in the literature by
many mathematicians and physicists. As illustrated in Section 1 above, the study of the parts formulas also
are concentrated on classical and abstract Wiener spaces. These fundamental structures have been very useful
to me (as well as to other coauthors) in establishing many of the results in [6, 8, 17, 20]. I feel strongly that
the fundamental results in this paper will prove to be very useful in future work by ourselves as well as other
researchers in this area.

There have been several attempts to construct financial mathematical theories using the GBMP [9, 10, 14].
The framework and methods we used to obtain the results in [4–9, 14] and this article are very dependent upon
results in the book [22] by Yeh concerning noncentered Gaussian processes, that is, GBMP.
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