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Abstract: In this paper, we obtain a general double-series identity involving the bounded sequence of arbitrary complex
numbers. As application of our double-series identity, we establish some reduction formulas for Srivastava–Daoust double
hypergeometric function and Gaussian generalized hypergeometric function 4F3 . As special cases of our reduction
formula for 4F3 lead to some corollaries involving Clausen hypergeometric functions 3F2 . Making suitable adjustment
of parameters in reduction formulas for 4F3 and 3F2 , we obtain some results in terms of elementary functions and some
special functions like Lerch generalized zeta function and incomplete beta function.
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1. Introduction, definitions and preliminaries

In our investigation here, we use the following standard notations:
N := {1, 2, 3, · · · } , N0 := N

∪
{0} and Z−

0 := Z−∪ {0} = {0,−1,−2,−3, · · · } .
Also, as usual, the symbols C,R,N and Z denote the sets of complex numbers, real numbers, natural numbers
and integers, respectively.
The general Pochhammer symbol (or the shifted factorial) (λ)ν (λ, ν ∈ C) is defined by [13, p.22 Eq.(1), p.32
Q.N.(8) and Q.N.(9)], see also [19, p.23, Eq.(22) and Eq.(23)]:

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=



1 (ν = 0; λ ∈ C\{0})
n−1∏
j=0

(λ+ j) (ν = n ∈ N; λ ∈ C)

(−1)kn!
(n−k)! (λ = −n; ν = k; n, k ∈ N0; 0 ≦ k ≦ n)

0 (λ = −n; ν = k; n, k ∈ N0; k > n)
(−1)k

(1−λ)k
(ν = −k; k ∈ N; λ ∈ C\Z),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Gamma quotient exists.
A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] , is accomplished by introducing
any arbitrary number of numerator and denominator parameters. Thus, the resulting series
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pFq

 (αp);
z

(βq);

 = pFq

 α1, α2, . . . , αp;
z

β1, β2, . . . , βq;

 =

∞∑
n=0

(α1)n(α2)n . . . (αp)n
(β1)n(β2)n . . . (βq)n

zn

n!
, (1.1)

is known as the generalized hypergeometric series, or simply, the generalized hypergeometric function. Here
p and q are positive integers or zero and we assume that the complex variable z , the numerator parameters
α1, α2, . . . , αp and the denominator parameters β1, β2, . . . , βq take on complex values, provided that

βj ̸= 0,−1,−2, . . . ; j = 1, 2, . . . , q.

Supposing that none of the numerator and denominator parameters is zero or a negative integer, we note that
the pFq series defined by Equation (1.1), is meaningful when

(i) domain of convergence |z| <∞ , if p ≤ q ,

(ii) domain of convergence |z| < 1 , if p = q + 1 ,

(iii) diverges for all z , z ̸= 0 , if p > q + 1 ,

(iv) converges absolutely for |z| = 1 , if p = q + 1 and ℜ(ω) > 0 ,

(v) converges conditionally for |z| = 1(z ̸= 1) , if p = q + 1 and −1 < ℜ(ω) ≦ 0 ,

(vi) diverges for |z| = 1 , if p = q + 1 and ℜ(ω) ≦ −1 ,

where by convention, a product over an empty set is interpreted as 1 and parametric excess

ω :=

q∑
j=1

βj −
p∑
j=1

αj , (1.2)

ℜ(ω) being the real part of complex number ω .
Each of the following results will be needed in our present study.

In an earlier paper [15, p.199] Srivastava and Daoust defined a generalization of the Kampé de Fériet
function [2, p.150] by means of the double hypergeometric series (see also [16] and [17]):

FA: B; B′

C: D; D′

[(aA) : ϑ, φ] : [(bB) : ψ]; [(b
′
B′) : ψ′];

x, y
[(cC) : δ, ε] : [(dD) : η]; [(d

′
D′) : η′];



=

∞∑
m=0

∞∑
n=0

∏A
j=1(aj)mϑj+nφj

∏B
j=1(bj)mψj

∏B′

j=1(b
′
j)nψ′

j∏C
j=1(cj)mδj+nεj

∏D
j=1(dj)mηj

∏D′

j=1(d
′
j)nη′j

xm

m!

yn

n!
, (1.3)

where the coefficients {
ϑ1, ..., ϑA; φ1, ..., φA; ψ1, ..., ψB ; ψ

′
1, ..., ψ

′
B′ ; δ1, ..., δC ;

ε1, ..., εC ; η1, ..., ηD; η
′
1, ..., η

′
D′

(1.4)
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are real and positive; and for the sake of brevity, (aA) is taken to denote the sequence of A parameters
a1, a2 · · · aA, with similar interpretations for (bB), (b

′
B′), and so on.

Let

∆1 = 1 +

C∑
j=1

δj +

D∑
j=1

ηj −
A∑
j=1

ϑj −
B∑
j=1

ψj (1.5)

and

∆2 = 1 +

C∑
j=1

εj +

D′∑
j=1

η′j −
A∑
j=1

φj −
B′∑
j=1

ψ′
j . (1.6)

Case I. The double power series in (1.3) converges for all complex values of x and y when ∆1 > 0 and ∆2 > 0 ;
Case II. The double power series in (1.3) is convergent for suitably constrained values of |x| and |y| when
∆1 = 0 and ∆2 = 0 (for more details of this case, see [17]);
Case III. The double power series in (1.3) would diverge except when, trivially, x = y = 0 when ∆1 < 0 and
∆2 < 0 .
A terminating summation theorem [12, p.555, Entry (20)]:

4F3

 −p, α, β, γ;
1

1 + α, β − ℓ, γ −m;

 =
(p)! (1 + α− β)ℓ (1 + α− γ)m
(1 + α)p (1− β)ℓ (1− γ)m

, (1.7)

where p ≥ ℓ+m; p, ℓ, m ∈ N0, α, β, γ, β − ℓ, γ −m ∈ C\Z−
0 . We have verified the result (1.7) numerically by

using Mathematica software.
Decomposition series identity:

∞∑
n=0

∆(n) =

∞∑
n=0

∆(2n) +

∞∑
n=0

∆(2n+ 1), (1.8)

Cauchy’s double series identity:

∞∑
n=0

∞∑
r=0

Θ(n, r) =

∞∑
n=0

n∑
r=0

Θ(n− r, r), (1.9)

provided that both sides of identities (1.8) and (1.9) are absolutely convergent.
The Hurwitz–Lerch zeta function Φ(z, s, a) is defined by (see, e.g., [14, p. 194])

Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s
(1.10)

(
a ∈ C\Z−

0 ; s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1
)
.

The Hurwitz–Lerch zeta function Φ(z, s, a) is easily found to be related to 2F1 as follows (see, e.g., [12, p.
462, Entry 7.2.4.-122])

2F1(1, λ ; λ+ 1 ; z) = λΦ(z, 1, λ). (1.11)
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The incomplete beta function Bx(α, β) is defined by (see, e.g., [14, p. 10, Eq. (61)])

Bx(α, β) :=

∫ x

0

tα−1 (1− t)β−1 dt (ℜ(α) > 0); 0 < x < 1 (1.12)

The incomplete beta function Bz(α, β) is connected with 2F1 as follows: (see, e.g., [14, p. 68, Eq. (32)])

Bz(α, β) = α−1 zα 2F1(α, 1− β ; α+ 1 ; z). (1.13)

By means of the linearization method, Li and Chu[8] established analytical formulae for a class of
nonterminating 3F2 -series with unit argument. Several closed formulae are presented as applications. Shpot
and Srivastava[22] derived three term summation formulas for Clausenian hypergeometric series 3F2(1) with
negative integral parameter differences. Tremblay[23] give a list of twenty-four presumed new transformations
involving the Gauss hypergeometric function with quadratic rational arguments. They are obtained from known
transformation formulas of the hypergeometric function, for the most part in Goursat’s Thesis[5]. Also Tremblay
[24] add twelve new transformations formulas for the Gauss hypergeometric function having higher-order rational
arguments. Choi and Rathie[4] established 176 interesting summation formulas for the Kampé de Fériet function
in the form of 16 general summation formulas based on the transformation formulas due to Liu and Wang.The
results are derived with the help of generalizations of Kummer’s summation theorem, Gauss’ second summation
theorem and Bailey’s summation theorem established earlier by Lavoie et al.

Motivated by the work done by [1, 7, 10, 11], we derive a general double-series identity by using series
rearrangement technique in Section 2. In Section 3, this double-series identity is used to derive a reduction
formula for the Srivastava–Daoust double hypergeometric function with arguments

(
z, −z4

)
and also obtain a

reduction formula 4F3

(
−27z

4(1−z)3

)
in Section 4. Five corollaries of our result 4F3

(
−27z

4(1−z)3

)
enables few reduction

formulas for Clausen hypergeometric functions 3F2

(
−27z

4(1−z)3

)
. Finally, in Sections 5 and 6, certain applications

of reduction formula 4F3

(
−27z

4(1−z)3

)
are also given in terms of elementary functions and special functions .

Remark 1.1 Any values of parameters and arguments in Sections 2 to 6, leading to the results which
do not make sense, are tacitly excluded.

2. General double-series identity
In this section, we present an identity which transforms a double series into a single series, in the following
theorem.
Theorem 2.1 Let us assume that {Φ(µ)}∞µ=1 be a bounded sequence of essentially arbitrary complex numbers
or real numbers such that Φ(0) ̸= 0 . Then, the following general double-series identity holds true:

∞∑
n=0

∞∑
r=0

Φ(n+ r)
(3a)n+3r (b)r (−1)r zn+r

(3a)2r (b+ 1)r n! r!
=

∞∑
n=0

Φ(n)
(3a− 2b)n z

n

(1 + b)n
, (2.1)

(
3a, b+ 1, 3a− 2b ∈ C\Z−

0 ; z ∈ C
)

provided that infinite series occurring on both sides of Equation (2.1) are absolutely convergent. For the
convergence condition on complex variable z in Equation (2.1), it is necessary that actual form of sequence
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{Φ(µ)}∞µ=1 should be known. In this connection, for the convergence condition on complex variable z see the
results (3.1) and (4.1), where value of Φ(µ) is known.
Proof of the assertion (2.1):
Let

Ψ(z) :=

∞∑
n=0

∞∑
r=0

Φ(n+ r)
(3a)n+3r (b)r (−1)r zn+r

(3a)2r (b+ 1)r n! r!
. (2.2)

Replacing n by n − r in the right hand side of Equation (2.2) and also using Cauchy’s double series identity
(1.9), we get

Ψ(z) =

∞∑
n=0

n∑
r=0

Φ(n)
(3a)n+2r (b)r (−1)r zn

(3a)2r (b+ 1)r (n− r)! r!

=

∞∑
n=0

Φ(n)
(3a)n z

n

n!

n∑
r=0

(3a+ n)2r (b)r (−n)r
(3a)2r (b+ 1)r r!

=

∞∑
n=0

Φ(n)
(3a)n z

n

n!

n∑
r=0

( 3a+n2 )r ( 3a+n+1
2 )r (b)r (−n)r

( 3a2 )r ( 3a+1
2 )r (b+ 1)r r!

=

∞∑
n=0

Φ(n)
(3a)n z

n

n!
4F3

 −n, 3a+n
2 , 3a+n+1

2 , b;
1

3a
2 ,

3a+1
2 , b+ 1;

 . (2.3)

Now using decomposition series identity (1.8) in Equation (2.3), we obtain

Ψ(z) =

∞∑
n=0

Φ(2n)
(3a)2n z

2n

2n!
4F3

 −2n, 3a
2 + n, 3a+1

2 + n, b;
1

3a
2 ,

3a+1
2 , b+ 1;

+

+

∞∑
n=0

Φ(2n+ 1)
(3a)2n+1 z

2n+1

(2n+ 1)!
4F3

 −(2n+ 1), 3a+1
2 + n, 3a+2

2 + n, b;
1

3a
2 ,

3a+1
2 , b+ 1;

 . (2.4)

Now using terminating summation theorem (1.7) in two members 4F3(1) of the right hand side of Equation
(2.4), we have

Ψ(z) =

∞∑
n=0

Φ(2n)
(3a)2n z

2n

(1 + b)2n

{(
2+2b−3a

2 − n
)
n

(
1+2b−3a

2 − n
)
n(

1− 3a
2 − n

)
n

(
1− 3a+1

2 − n
)
n

}
+

+

∞∑
n=0

Φ(2n+ 1)
(3a)(3a+ 1)2n z

2n+1

(1 + b)2n+1

{ (
1+2b−3a

2 − n
)
n

(
2b−3a

2 − n
)
n+1(

1− 3a+1
2 − n

)
n

(
1− 3a+2

2 − n
)
n+1

}
. (2.5)

Now applying some algebraic properties of Pochhammer symbols in the right hand side of Equation (2.5), after
some simplification, we obtain:

Ψ(z) =

∞∑
n=0

Φ(2n)
(3a− 2b)2n z

2n

(1 + b)2n
+

∞∑
n=0

Φ(2n+ 1)
(3a− 2b)2n+1 z

2n+1

(1 + b)2n+1
. (2.6)
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Again using the decomposition series identity (1.8) in Equation (2.6), we get the right hand side of assertion
(2.1).

3. First application of double series identity

Here we establish a result for reducibility of Srivastava–Daoust double hypergeometric function (1.3) as in the
following theorem.
Theorem 3.1 The following reduction formula holds true:

FD+1:0;1
G:0;3

 [(dD):1, 1], [3a:1, 3] : − ; [b:1] ;
z,− z

4
[(gG):1, 1] : − ; [ 3a2 :1], [ 3a+1

2 :1], [b+ 1 :1];



= D+2FG+1

 (dD), 3a− 2b, 1;
z

(gG), 1 + b ;

 , (3.1)

where g1, g2, ..., gG, 1 + b ∈ C\Z−
0 and (dD) denotes the sequence of D number of parameters given by

d1, d2, d3, ..., dD with similar interpretation for others.
When D ≤ G − 1 then both sides of Equation (3.1) are convergent for |z| < ∞ and when D = G then both
sides of Equation (3.1) are convergent for some suitably constrained values of |z| .
Proof of the assertion (3.1):

Put Φ(µ) =
(d1)µ(d2)µ · · · (dD)µ
(g1)µ(g2)µ · · · (gG)µ

(µ ∈ N0) in both sides of the double series identity (2.1), we get

∞∑
n=0

∞∑
r=0

(d1)n+r(d2)n+r · · · (dD)n+r (3a)n+3r (b)r (−1)r zn+r

(g1)n+r(g2)n+r · · · (gG)n+r (3a)2r (b+ 1)r n! r!

=

∞∑
n=0

(d1)n(d2)n · · · (dD)n (3a− 2b)n z
n

(g1)n(g2)n · · · (gG)n (1 + b)n
.

Therefore,

∞∑
n=0

∞∑
r=0

(d1)n+r(d2)n+r · · · (dD)n+r (3a)n+3r (b)r z
n (−z)r

(g1)n+r(g2)n+r · · · (gG)n+r
(
3a
2

)
r

(
3a+1

2

)
r
(b+ 1)r n! 22r r!

=

∞∑
n=0

(d1)n(d2)n · · · (dD)n (3a− 2b)n (1)n z
n

(g1)n(g2)n · · · (gG)n (1 + b)n n!
. (3.2)

Now using the definition of double hypergeometric function (1.3) of Srivastava–Daoust in the left hand side of
equation (3.2) and also using the definition of generalized hypergeometric function (1.1) in the right hand side
of Equation (3.2), then we get the required result (3.1).
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4. Second application of double series identity
In this section, we establish a relation between generalized Gaussian hypergeometric functions of one variable
in the following form:
Theorem 4.1 The following reduction formula holds true:

(1− z)−3a
4F3

 a, a+ 1
3 , a+

2
3 , b; −27z

4(1−z)3
3a
2 ,

3a+1
2 , b+ 1;

 = 2F1

 1, 3a− 2b;
z

b+ 1;

 . (4.1)

(
In general | arg(1− z)| < π, |z| < 1 and 27|z| < 4|1− z|3; 3a

2 ,
3a+1

2 , b+ 1 ∈ C\Z−
0

)
We have verified the above reduction formula (4.1) numerically by using Mathematica software under the
condition − 1

2 ≤ ℜ(z) < 1 and ℑ(z) = 0 .
Proof of the assertion (4.1):
When we put Φ(µ) = 1 in both sides of double-series identity (2.1), then we get

∞∑
n=0

∞∑
r=0

(3a)n+3r (b)r (−1)r zn+r

(3a)2r (b+ 1)r n! r!
=

∞∑
n=0

(3a− 2b)n z
n

(1 + b)n

∞∑
r=0

(3a)3r (b)r (−1)r zr

(3a)2r (b+ 1)r r!

∞∑
n=0

(3a+ 3r)n z
n

n!
=

∞∑
n=0

(3a− 2b)n (1)n z
n

(1 + b)n n!

∞∑
r=0

(3a)3r (b)r (−1)r zr (1− z)−(3a+3r)

(3a)2r (b+ 1)r r!
=

∞∑
n=0

(3a− 2b)n (1)n z
n

(1 + b)n n!

(1− z)−3a
∞∑
r=0

33r(a)r(a+
1
3 )r(a+

2
3 )r (b)r (−z)r

22r( 3a2 )r(
3a+1

2 )r (b+ 1)r (1− z)3r r!
=

∞∑
n=0

(3a− 2b)n (1)n z
n

(1 + b)n n!
. (4.2)

Now using the definition (1.1) in both sides of Equation (4.2), we get the required result (4.1). The reduction
formula (4.1) was derived by Gessel–Stanton (see [6, p.304, Eq. (5.13)]; see also[3, p.601, Entry 8.1.3.1]) using
a different method (partial fraction expansion method).

Under the same convergence condition stated in theorem (4.1), we obtain the following corollaries:
Corollary 4.1: Put b = 3a

2 in both sides of the reduction formula (4.1), after simplification we get

3F2

 a, a+ 1
3 , a+

2
3 ; −27z

4(1−z)3
3a+1

2 , 3a+2
2 ;

 = (1− z)3a,

which is the known result recorded in Prudnikov et al. [12, p.499, Entry(29)]. Gessel-Stanton [6, p.304,
Eq.(5.10)] proved corollary (4.1) by using Lagrange inversion formula.
Corollary 4.2: Substitute b = 3a+1

2 in both sides of the reduction formula (4.1), after simplification we obtain

3F2

 a, a+ 1
3 , a+

2
3 ; −27z

4(1−z)3
3a
2 ,

3a+3
2 ;

 = (1− z)3a
1∑
r=0

(−1)r(1)r z
r

( 3a+3
2 )r r!
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= (1− z)3a
[
1− 2z

3(a+ 1)

]
.

Corollary 4.3: Substitute b = a− 1 in both sides of the reduction formula (4.1), after simplification we find

3F2

 a+ 1
3 , a+

2
3 , a− 1;

−27z
4(1−z)3

3a
2 ,

3a+1
2 ;

 = (1− z)3a
∞∑
r=0

(1)r (a+ 2)r z
r

(a)r r!

= (1− z)3a
[
(1− z)−1 +

2z

a
(1− z)−2 +

2z2

a(a+ 1)
(1− z)−3

]

= (1− z)3a−3

[
1 + 2

(
1− a

a

)
z +

(
a− 1

a+ 1

)
z2
]
.

Corollary 4.4: Put b = a− 2
3 in both sides of the reduction formula (4.1), after simplification we have

3F2

 a, a+ 2
3 , a−

2
3 ; −27z

4(1−z)3
3a
2 ,

3a+1
2 ;

 = (1− z)3a
∞∑
r=0

(1)r (a+ 1
3 + 1)r z

r

(a+ 1
3 )r r!

= (1− z)3a
[
(1− z)−1 +

3z

3a+ 1
(1− z)−2

]

= (1− z)3a−2

[
1 +

(
2− 3a

1 + 3a

)
z

]
.

Corollary 4.5: Put b = a− 1
3 in both sides of the reduction formula (4.1), after simplification we get

3F2

 a, a+ 1
3 , a−

1
3 ; −27z

4(1−z)3
3a
2 ,

3a+1
2 ;

 = (1− z)3a 1F0

 1;
z

−;


= (1− z)3a

[
(1− z)−1

]
= (1− z)3a−1.

Remark 4.1 We have verified all five corollaries numerically by using Mathematica software.

5. Further application of reduction formula (4.1) in terms of elementary functions

In this section, we consider some application of reduction formula (4.1) in terms of elementary functions with
convergence condition | arg(1− z)| < π, | arg(z)| < π, |z| < 1 and 27|z| < 4|1− z|3 ∈ C\Z−

0 as in the following
cases:
(1) Put a = b = 1 in both sides of the reduction formula (4.1) and using the result [12, p.476, Entry (148)],
after simplification we obtain

4F3

 1, 1, 4
3 ,

5
3 ; −27z

4(1−z)3
3
2 , 2, 2;

 = − (1− z)3 ℓn(1− z)

z
.
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(2) Put a = b = 1
2 in both sides of the reduction formula (4.1) and using the result [12, p.473, Entry (83)], we

get

4F3

 1
2 ,

1
2 ,

5
6 ,

7
6 ; −27z

4(1−z)3
3
4 ,

5
4 ,

3
2 ;

 =
(1− z)

3
2 tanh−1

√
(z)√

(z)
=

(1− z)
3
2

2
√

(z)
ℓn

(
1 +

√
(z)

1−
√
(z)

)
.

(3) Put a = b = 3
4 in both sides of the reduction formula (4.1) and using the result [12, p.475, Entry (134)], we

find

4F3

 3
4 ,

3
4 ,

13
12 ,

17
12 ; −27z

4(1−z)3
9
8 ,

13
8 ,

7
4 ;

 =
3(1− z)

9
4

4x3

[
ℓn

(
1 + x

1− x

)
− 2 tan−1 x

]
,

where x = z
1
4 .

(4) Put a = 1, b = 1
2 in both sides of the reduction formula (4.1) and using the result [12, p.477, Entry (163)],

we have

4F3

 1, 4
3 ,

5
3 ,

1
2 ; −27z

4(1−z)3
3
2 ,

3
2 , 2;

 =
(1− z)2

2

[
1 +

sin−1
√
(z)√

z(1− z)

]
.

(5) Put a = b = − 1
2 in both sides of the reduction formula (4.1) and using the result [12, p.469, Entry (9)], we

get

4F3

 − 1
2 , −

1
2 , −

1
6 ,

1
6 ; −27z

4(1−z)3

− 3
4 , −

1
4 ,

1
2 ;

 = (1− z)−
3
2

[
1−

√
(z) tanh−1

√
(z)
]
.

(6) Put a = 1
6 and b = 1

2 in both sides of the main reduction formula (4.1) and using the result [12, p.469,
Entry (10)], we find

4F3

 1
2 ,

1
2 ,

1
6 ,

5
6 ; −27z

4(1−z)3
1
4 ,

3
4 ,

3
2 ;

 =
(1− z)

1
2

2

[
1 + (1− z)

tanh−1
√
(z)√

(z)

]
.

(7) Put a = 1
2 and b = 1 in both sides of the reduction formula (4.1) and using the result [12, p.469, Entry

(11)], we have

4F3

 1, 1
2 ,

5
6 ,

7
6 ; −27z

4(1−z)3
3
4 ,

5
4 , 2;

 =
2(1− z)

3
2

3z
[1− (1− z)

3
2 ].

(8) Put a = b = 1
4 in both sides of the reduction formula (4.1) and using the result [12, p.472, Entry (66)], we

get

4F3

 1
4 ,

1
4 ,

7
12 ,

11
12 ; −27z

4(1−z)3
3
8 ,

7
8 ,

5
4 ;

 =
(1− z)

3
4

4x

[
ℓn

(
1 + x

1− x

)
+ 2 tan−1(x)

]
,

where x = z
1
4 .

(9) Put a = 2
3 and b = 1

2 in both sides of the reduction formula (4.1) and using the result [12, p.476, Entry
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(147)], we obtain

3F2

 1
2 ,

2
3 ,

4
3 ; −27z

4(1−z)3
3
2 ,

3
2 ;

 =
(1− z)2 sin−1

√
(z)√

z(1− z)
.

(10) Put a = b = 1
2 and replacing z by −z in both sides of the reduction formula (4.1) and using the result

[12, p.488, Entry (8)], after simplification we find

4F3

 1
2 ,

1
2 ,

5
6 ,

7
6 ;

27z
4(1+z)3

3
4 ,

5
4 ,

3
2 ;

 =
(1 + z)

3
2 tan−1

√
(z)√

(z)
.

(11) Put a = 8
3 and b = 2 in both sides of the reduction formula (4.1) and using the result [12, p.479, Entry

(195)], after simplification we have

3F2

 8
3 ,

10
3 , 2; −27z

4(1−z)3
8
2 ,

9
2 ;

 =
(1− z)6(3− 2z)

3
.

(12) Put a = 13
6 and b = 3

2 in both sides of the reduction formula (4.1) and using the result [12, p.478, Entry
(186)], after simplification we get

3F2

 13
6 ,

17
6 ,

3
2 ; −27z

4(1−z)3
13
4 ,

15
4 ;

 =
(1− z)

9
2 (5− 3z)

5
.

(13) Put a = b = 3 in both sides of the reduction formula (4.1) and using the result [12, p.478, Entry (181)],
after simplification we obtain

4F3

 3, 3, 10
3 ,

11
3 ;

−27z
4(1−z)3

9
2 , 5, 4;

 = −3(1− z)9

2z3
[z(z + 2) + 2ℓn(1− z)] .

(14) Put a = 5
3 and b = 3

2 in both sides of the reduction formula (4.1) and using the result [12, p.477, Entry
(164)], we find

4F3

 5
3 , 2,

7
3 ,

3
2 ; −27z

4(1−z)3
5
2 , 3,

5
2 ;

 =
3(1− z)5

2z

[
sin−1

√
(z)√

z(1− z)
− 1

]
.

(15) Put a = b = 2 in both sides of the reduction formula (4.1) and using the result [12, p.477, Entry (165)],
we have

4F3

 2, 2, 7
3 ,

8
3 ; −27z

4(1−z)3

3, 3, 7
2 ;

 = −2(1− z)6

z2
[z + ℓn(1− z)].
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(16) Put a = 5
6 and b = 1 in both sides of the reduction formula (4.1) and using the result [12, p.473, Entry

(84)], after simplification we get

4F3

 1, 5
6 ,

7
6 ,

3
2 ; −27z

4(1−z)3

2, 5
4 ,

7
4 ;

 =
2(1− z)

5
2

1 +
√

(1− z)
.

(17) Put a = 5
3 and b = 1 in both sides of the reduction formula (4.1) and using the result [12, p.478, Entry

(178)], after simplification we obtain

3F2

 1, 5
3 ,

7
3 ; −27z

4(1−z)3

3, 5
2 ;

 =
(1− z)3(2− z)

2
.

(18) Put a = 8
3 and b = 3 in both sides of the reduction formula (4.1) and using the result [12, p.477, Entry

(167)], we find

4F3

 3, 3, 8
3 ,

10
3 ;

−27z
4(1−z)3

4, 8
2 ,

9
2 ;

 =
3(1− z)8

z3
[z(2− z) + 2(1− z)ℓn(1− z)].

(19) Put a = 5
3 and b = 2 in both sides of the reduction formula (4.1) and using the result [12, p.477, Entry

(150)], we have

4F3

 5
3 ,

7
3 , 2, 2; −27z

4(1−z)3
5
2 , 3, 3;

 =
2(1− z)5

z2
[z + (1− z)ℓn(1− z)].

(20) Put a = 11
6 and b = 2 in both sides of the reduction formula (4.1) and using the result [12, p.477, Entry

(158)], we get

4F3

 11
6 ,

13
6 ,

5
2 , 2; −27z

4(1−z)3
11
4 ,

13
4 , 3;

 =
4(1− z)

11
2

(1 +
√
1− z)2

.

6. More application of reduction formula (4.1) in some special functions

In this section, we consider two particular cases of (4.1), which are connected with other important special
functions. Such functions are given by [see Equations (1.10), (1.11), (1.12) and 1.13].
(1) Put a = b = λ in both sides of the reduction formula (4.1) and using the result [12, p.462, Entry (122)],
after simplification we get

4F3

 λ, λ, 3λ+1
3 , 3λ+2

3 ;
−27z

4(1−z)3
3λ
2 ,

3λ+1
2 , λ+ 1;

 = (1− z)3λ [λΦ(z, 1, λ)],

(
| arg(1− z)| < π, |z| < 1 and 27|z| < 4|1− z|3 ∈ C\Z−

0 ;
3λ
2 ,

3λ+1
2 , λ+ 1 ∈ C\Z−

0

)
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where Φ(z, 1, λ) is called Lerch generalized zeta function.
(2) Put a = λ+2ζ−2

3 and b = ζ − 1 in both sides of the reduction formula (4.1) and using the result [12, p.461,
Entry (119)], we obtain

4F3

 λ+2ζ−2
3 , λ+2ζ−1

3 , λ+2ζ
3 , ζ − 1;

−27z
4(1−z)3

λ+2ζ−2
2 , λ+2ζ−1

2 , ζ;

 = (1− z)3(ζ−1)[z1−ζ(ζ − 1)Bz(ζ − 1, λ− ζ + 1)],

(
| arg(1− z)| < π, | arg(z)| < π, |z| < 1 and 27|z| < 4|1− z|3 ∈ C\Z−

0 ;
λ+2ζ−2

2 , λ+2ζ−1
2 , ζ ∈ C\Z−

0

)
where Bz(ζ − 1, λ− ζ + 1) is called incomplete beta function.

Remark 6.1 All above results of Sections 4–6 are new and these results are not available in the important paper
of Milgram[9] and Tremblay[23],[24] and results are different from the list of Milgram[9] and Tremblay[23],[24].

7. Concluding remarks
We conclude our present investigation by observing that the several interesting general double-series identities,
reduction formulas for Srivastava–Daoust double hypergeometric function with arguments (z, −z4 ) and gener-

alized hypergeometric function having the argument
(

−27z
4(1−z)3

)
, related elementary functions and some special

functions like Lerch generalized zeta function and incomplete beta function, can be obtained in an analogous
manner. The hypergeometric functions are useful in constructing so-called conformal mappings of polygonal
regions whose sides are circular arcs. Therefore, the results derived in this paper provide a significant step which
can yield some potential applications in the field of applied mathematics, mathematical physics and engineering
(see, for example, [18]; see also the recent works [20], [21] and [22] dealing extensively with the Gauss and
Clausen hypergeometric functions).
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