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Abstract: We characterize finite groups with exactly two nonabelian proper subgroups. When G is nilpotent, we show
that G is either the direct product of a minimal nonabelian p -group and a cyclic q -group or a 2 -group. When G is
nonnilpotent supersolvable group, we obtain the presentation of G . Finally, when G is nonsupersolvable, we show that
G is a semidirect product of a p -group and a cyclic group.
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1. Introduction and results
A nonabelian group whose all proper subgroups are abelian is called minimal nonabelian. Miller and Moreno
[10] started the study of minimal nonabelian groups and Rédi [11] classified finite minimal nonabelian groups.
A finite minimal nonabelian group is either a p -group, p a prime, of a certain type or a {p, q} -group, where p
and q are distinct primes, with a certain presentation, see Theorem 1.1 below.

A nonnilpotent group whose all proper subgroups are nilpotent is called a minimal nonnilpotent. Such
groups are also called Schmidt groups. Schmidt [16] started the study of minimal nonnilpotent groups and
Rédei [12] classified completely finite minimal nonnilpotent groups. A finite minimal nonnilpotent group is a
semidirect product of a p -group by a cyclic q -group, see Theorem 2.1 in section 2.

Itô [8] considered the minimal non-p -nilpotent groups, where p is a prime, which turn out to be just the
Schmidt groups. Ballester-Bolinches and Esteban-Romero [2] studied the structure of minimal nonsupersolvable
groups.

Let X be a class of groups. A group G is called an X -critical group or a minimal non-X -group, if G
is not an X -group but every proper subgroup of G is an X -group. If A (resp. N ) stands for the class of
abelian (resp. the class of nilpotent) groups, then a minimal nonabelian (resp. a minimal nonnilpotent) group
is exactly an A -critical (resp. N -critical) group.

Let n be a positive integer. We call a group G an n -X -critical group, if G /∈ X and has exactly
n − 1 proper subgroups that are not belong to X and other subgroups belong to X . Therefore a minimal
non-X -group is just a 1 -X -critical group. A generalization of the class n -X -critical is the class βX

n . A
group G is called a βX

n -group, if G has exactly n subgroups that are not belong to X . It is clear that
every n -X -critical group is a βX

n -group, for a nonempty subgroup closed class X of groups. The structure
of βX

n -groups have been studied for some classes of groups. For instance, Zarrin [21] studied the structure of
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finite nonsolvable βC
n -groups, where C is the class of cyclic groups, with n ≤ 27 ; and Shi and Zhang in [17]

studied the structure of βA
n -groups and proved that every βA

n -group with n ≤ 21 is solvable. Hence we can
see that every finite n -A -critical group with n ≤ 21 is solvable.

Russo [15] studied 2 -N -critical groups, in infinite case and obtained some results in finite case. Also
from the main result in [20], it follows that every finite n -N -critical group with n ≤ 21 is solvable. In [19],
we studied the structure of finite 2 -N -critical groups.

In [18], we studied the structure of finite 2 -A -critical groups. In this paper we characterize finite 3 -
A -critical groups. We show that |π(G)| ≤ 3 , where π(G) is the set of prime divisors of G . Meng [9], in a
special case, gave a classification of such groups with |π(G)| = 3 . In this paper we classify these groups when
|π(G)| = 1 and |π(G)| = 2 .

All groups in this paper are assumed to be finite. Our notation and terminology are standard taken
mainly from [13]. In particular the size of a finite group G is shown by |G| . The center, the Frattini subgroup,
the Fitting subgroup, the group of automorphisms, the set of Sylow p -subgroups of G are denoted by Z(G) ,
Φ(G) , F (G) , Aut(G) , Sylp(G) , respectively. A cyclic group of order n is denoted by Zn . If G is a finite
p -group, the dimension of G/Φ(G) over GF(p) is denoted by d(G) , which is the size of a minimal generating
set of G , so that pd(G) = |G/Φ(G)| .

The following Theorem states a classification of minimal nonableian groups.

Theorem 1.1 [10, 11]. Let G be a finite group. Then G is minimal nonabelian if and only if G is isomorphic
to one of the following groups

1. U = P ⋊ ⟨y⟩ , where P is an elementary abelian p -subgroup and a minimal normal subgroup of U , ⟨y⟩ is
a nonnormal cyclic Sylow q -subgroup, p, q are distinct primes, yq ∈ Z(U) . Also the action of ⟨y⟩ on P is
irreducible with kernel ⟨yq⟩ . More precisely P = ⟨a1, . . . , an⟩ , api = yq

s

= 1 , ayi = ai+1 , ayn = ad1
1 · · · adn

n .

2. The quaternion of order 8,

3. Mm,n,q = ⟨a, b | aqm = bq
n

= 1, ab = a1+qm−1⟩ , where q is a prime number, m ≥ 2 , n ≥ 1 , of order
qm+n ,

4. Nm,n,q = ⟨a, b | aqm = bq
n

= [a, b]q = [a, b, a] = [a, b, b] = 1⟩ , where q is a prime number, m ≥ n ≥ 1 , of
order qm+n+1 .

Throughout the paper p , q and r are prime numbers. In this paper, we classify finite groups with exactly
two nonabelian proper subgroups. We divide our arguments to supersolvable and nonsupersolvable cases. The
supersolvable case is divided to nilpotent and nonnilpotent cases. A classification theorem of finite nilpotent
groups with exactly two nonabelian proper subgroups is the following.

Theorem A Let G be a finite nilpotent group. Then G has exactly two nonabelian proper subgroups if and
only if G is one of the following groups

(1) P ×Q , where P is a minimal nonabelian p -group, Q = ⟨b⟩ is a cyclic q -group of order q2 and p, q are
distinct primes.
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(2) G(n, ε, η) = ⟨a, b | a8 = 1, b2
n

= a4ε, ab = a−1+4η⟩ , where n ≥ 1 , ε, η ∈ {0, 1} .

A classification theorem of finite nonnilpotent supersolvable groups with exactly two nonabelian proper sub-
groups is the following.

Theorem B Let G be a finite nonnilpotent supersolvable group. Then G has exactly two nonabelian proper
subgroups if and only if G is one of the following groups

(1) G = ⟨a, b | ap = bq
m+2

= 1, [a, bq
3

] = 1, ab = ai⟩ , where m ≥ 1 , 0 ≤ i ≤ p − 1 , iq3 ≡ 1 (mod p) and
q3 | p− 1 .

(2) G = ⟨a, b, c | ap = bq
m

= cr
2

= 1, [a, c] = [b, c] = [a, bq] = 1, ab = ai⟩ , where m ≥ 1 , q | p − 1 ,
0 ≤ i ≤ p− 1 and iq

m ≡ 1 (mod p) .

(3) G = ⟨a, b, c | ap = bp
2

= cq
m

= 1, [a, b] = [c, b] = [cq, a] = 1, ac = aibj⟩ , where m ≥ 1 , q | p − 1 ,
0 ≤ i ≤ p − 1 , 0 ≤ j ≤ p2 − 1 , iqm ≡ 1 (mod p) , 1 + i + · · · + iq

m−1 ≡ 0 (mod p2) (if j ̸= 0) and
(i, j) ̸= (1, 0) .

(4) G = ⟨a, b, c | ap = b2
m

= c2 = 1, [c, a] = [c, b] = [a, b2] = 1, ab = ai⟩ , where m ≥ 1 , 0 ≤ i ≤ p − 1 and
i2

m ≡ 1 (mod p) .

Finally, the following Theorem characterizes finite nonsupersolvable groups with exactly two nonabelian
proper subgroups:

Theorem C Let G be a finite nonsupersolvable group. Then G has exactly two nonabelian proper subgroups
if and only if G is one of the following groups

(1) G = P ⋊ Q , where P is abelian of type (p, . . . , p, p2) of order pn+2 and Q is cyclic of order qm that
q ∤ p − 1 . Also H = P1 ⋊ Q and K = P2 ⋊ Q are nonabelian subgroups of G that H ⊂ K , H is
minimal nonabelian, |P1| = pn and |P2| = pn+1 . Furthermore P1 is an irreducible Q -module and P2 is
elementary abelian.

(2) G = P ⋊ Q , where P is elementary abelian of order pn and Q = ⟨c⟩ is cyclic of order qm+1 that
q ∤ p− 1 . Also H = P ⋊Q1 and K = P ⋊Q2 are nonabelian subgroups of G that H ⊂ K , H is minimal

nonabelian, |Q1| = qm and |Q2| = qm+1 . Furthermore P is an irreducible ⟨cq2⟩ -module.

(3) G = PQR , where P is elementary abelian of order pn , Q is cyclic of order qm and R = ⟨x⟩ is cyclic of
order r2 that q ∤ p − 1 . Also P is an irreducible Q -module. Furthermore H = PQ and K = PQ⟨xr⟩
are nonabelian subgroups of G and H is minimal nonabelian.

(4) G = P ⋊ Q is a Schmidt group, where P is a special nonabelian p -group of order p3 and Q = ⟨c⟩ is
cyclic of order q2 that q ∤ p− 1 . Also K = P ⟨cq⟩ is nonabelian.

(5) G = G ′Q , where G ′ is a nonabelian special p -group of order p3 and of rank 2 , Q = ⟨c⟩ is cyclic of order
q2 , q ∤ p−1 , q | p+1 and the order of p modulo q2 being 2 . Also G ′⟨cq⟩ is a Schmidt group, G ′/Φ(G ′)

is a faithful irreducible Q -module and [Φ(G ′), Q] = 1 . Furthermore |G ′ ′| = p .
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(6) G = P ⋊ Q , where P = G ′ is elementary abelian of order p2 and Q ∼= Z2m × Z2 = ⟨a⟩ × ⟨b⟩ . Also
H = P ⟨a⟩ and K = P ⟨ap⟩ are minimal nonabelian, |Z(G)| = 2m and Z(G) = ⟨a2⟩ × ⟨b⟩ .

2. Proofs
In the following Theorem we state the classification of Schmidt groups.

Theorem 2.1 [12, 16] Let G be a finite Schmidt group. Then G = P ⋊ Q , where P is a Sylow p -subgroup
and Q = ⟨z⟩ is a cyclic Sylow q -subgroup of order qr > 1 . Furthermore Z(G) = Φ(G) = Φ(P )×⟨zq⟩ ; G ′ = P ,
P ′ = G ′ ′ = Φ(P ) , and one of the following cases hold:

(1) q does not divide p−1 and P is an irreducible Q -module over the field of p elements with kernel ⟨zq⟩ in
Q . The subgroup P is elementary abelian minimal normal p -subgroup of order pl where l is the order
of p modulo q .

(2) P is a nonabelian special p -group, |P/Φ(P )| = p2m , |P ′| ≤ pm , the order of p modulo q being 2m , z
induces an automorphism in P such that P/Φ(P ) is a faithful irreducible Q -module, and z centralizes
Φ(P ) .

(3) q divides p − 1 , P = ⟨a⟩ is cyclic of order p , and az = ai , where i is the least primitive q -th root of
unity modulo p .

Note that Schmidt groups satisfying (1) and (2) of Theorem 2.1 are nonsupersolvable and Schmidt groups
satisfying (3) are supersolvable. In fact, if G is supersolvable and satisfies (1), then since P is a minimal
normal subgroup G , Theorem 5.4.7 of [13] implies that |P | = p . It follows that q | p− 1 , a contradiction. Also,
if G is supersolvable and satisfies (2), then P/Φ(P ) is a minimal normal subgroup of supersolvable Schmidt
group G/Φ(P ) which implies that P is cyclic, a contradiction. Finally, if G satisfies (3), then 1 ◁ P ◁ G is a
normal series with cyclic factors and so G is supersolvable.

We need the following concept introduced by Berkovich.

Definition 2.2 [3, Page 233] A p -group, where p is a prime, is called an An -group if every subgroup of index
pn is abelian but at least one subgroup of index pn−1 is nonabelian.

The structure of A2 -groups are determined in Section 71 of [3]. We need the following result about A2 -groups.

Theorem 2.3 [3, Proposition 71.2] Let G be a metacyclic A2 -group of order pk > p4 , where p is a prime.
Then G′ ∼= Cp2 and we have one of the following possibilities:

(i) G = ⟨a, b | apm

= 1, bp
n

= aεp
m−1

, ab = a1+pm−2⟩ , where ε ∈ {0, 1} , n ≥ 1 , m ≥ 3 , m+ n ≥ 5 , in case
p = 2 , m ≥ 4 .

(ii) p = 2 , G = ⟨a, b | a8 = 1, b2
n

= a4ε, ab = a−1+4η⟩ , where n ≥ 2 , ε, η ∈ {0, 1} .

We begin with the following straightforward lemma.

Lemma 2.4 Let G be a group with exactly two nonabelian proper subgroups H and K . We have
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(1) If H ⊂ K , then

(a) H is a maximal subgroup of K and K is a maximal subgroup of G .

(b) H and K are characteristic subgroups of G . In particular G/K and K/H have prime orders.

(c) H is the unique nonabelian subgroup of K and H is minimal nonabelian.

(2) If H ⊈ K and K ⊈ H , then

(a) H and K are maximal subgroups of G which are normal in G .

(b) H and K are minimal nonabelian.

Proof To prove (1) , we can easily see that H is a maximal subgroup of K , as otherwise, there exists a
maximal subgroup M of K containing H and clearly M is nonabelian, which contradicts the hypothesis.
Similarly one can see that K is a maximal subgroup of G , which proves (a).
Now we show that H and K are characteristic subgroups of G . Let ψ ∈ Aut(G) be an automorphism of G .
We have ψ(H) ∼= H . Therefore ψ(H) is nonabelian. By assumption, we have either ψ(H) = H or ψ(H) = K .
Noticing that H ⊂ K , it follows that ψ(H) ̸= K . Thus ψ(H) = H and then H is a characteristic subgroup of
G . Similarly K is a characteristic subgroup of G . Now, since, by (a), H is a maximal subgroup of K and K

is a maximal subgroup of G , it follows that K/H and G/K have prime orders, which proves (b).
Finally, as H and K are the only nonabelian proper subgroups of G , each subgroup of H is abelian and H is
the only nonabelian proper subgroup of K , which proves (c).

To prove (2) , it is not difficult to see that H and K are maximal subgroups of G which are also minimal
nonabelian. We show that H and K are normal in G . If G is nilpotent, then clearly H and K are normal.
So, assume that G is nonnilpotent. Suppose contrary that H is nonnormal. It follows that H = NG(H) .
As |G : H| ≥ 3 , we have |G : NG(H)| ≥ 3 . It shows incidentally that H has more than three conjugates, a
contradiction. Therefore H is normal in G . Similarly K is normal in G . 2

Now we prove Theorem A.

Proof Theorem A First we note that groups (1) and (2) have exactly two nonabelian proper subgroups. For
the group (1), H = P and K = H×⟨bq⟩ are the only nonabelian proper subgroups. If G is the group (2), then
G is metacyclic. Since d(G) = 2 , we have |G/Φ(G)| = 22 and so G has exactly three maximal subgroups. By
virtue of [6, Theorem 2.2], the maximal subgroups of G are H = ⟨a2, b⟩ , K = ⟨ba, a2⟩ and L = ⟨b2, a⟩ . Clearly
H and K are nonabelian and L is abelian.

Now to prove the converse of Theorem, suppose that G has exactly two nonabelian proper subgroups H
and K , say. We cosider 2 cases:
Case 1. H ⊆ K . Since, by Lemma 2.4, H is minimal nonabelian, it follows from Theorem 1.1, that
|H| = pn , for some positive integer n and a prime number p . By [18, Lemma 2.5], K is not a p -group. So
there exists a prime number q distinct from p such that |K| = pnq . If |G : K| = p , then a Sylow p -subgroup
of G is abelian and contains H , which is a contradiction.
If |G : K| = r /∈ {p, q} , then G = H×Zq×Zr , which is impossible, because this group has 3 nonabelian proper
subgroups. Therefore |G : K| = q and thus |G| = pnq2 . Hence G = H × Q , where Q is a Sylow q -subgroup
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of G . It is readily seen that Q is cyclic, as otherwise Q ∼= Zq × Zq and then G has three nonabelian proper
subgroups, contradicting the hypothesis. Thus G is the group mentioned in (1).
Case 2. H ̸⊆ K and K ̸⊆ H . First let us prove that G is a 2 -group. By Lemma 2.4, H and K are minimal
nonabelian and so, by Theorem 1.1, they are both p -groups. Also, according to Lemma 2.4, H and K are
normal maximal subgroups. So the indices of H and K in G are prime. It follows that |H| = |K| = pn and
|G| = pn+1 (if |G| = pnq , where q is a prime distinct from p , then, as H , K are Sylow subgroups of G and
G is nilpotent, H = K , a contradiction). We claim that G has only one abelian maximal subgroup. Suppose
contrary that G has more than one abelian maximal subgroup. Noticing that H is minimal nonabelian, it
follows from [10] that |H : Z(H)| = |H : Φ(H)| = p2 . It is readily seen that Z(G) is equal to the intersection
of all abelian maximal subgroups. It indicates that Φ(G) = Z(G) ∩ H ∩ K ⊆ Z(H) = Φ(H) and then
|Φ(H)| | |Φ(G)| . We deduce that |Φ(G)| = |Φ(H)| = pn−2 . Thus G/Φ(G) ∼= Zp × Zp × Zp which yields
that G has exactly 1 + p + p2 maximal subgroups. From [4, Lemma 3] it follows that G has p + 1 abelian
maximal subgroups. Hence G has p + 3 maximal subgroups. So p + 3 = 1 + p + p2 , which is impossible.
Therefore G has only one abelian maximal subgroup and so G has exactly 3 maximal subgroups. It follows
that G/Φ(G) ∼= Z2 × Z2 and G is a 2 -group.

If |G| = 16 , then by inspection on 14 groups of order 16 , we see that three groups D16 , SD16 and
Q16 have two nonabelian proper subgroups, which are item (2) for n = 1 . In fact, they are groups G(1, 0, 0) ,
G(1, 0, 1) and G(1, 1, 1) .

Now suppose that |G| > 16 . If G is nonmetacyclic, then, as G is a 2 -group, by [3, Proposition 71.3],
we have G′ ⊆ Z(G) . By using the Definition 2.2, G is an A2 -group. So [3, Proposition 71.4] indicates that
d(G) = 3 . Thus |G/Φ(G)| = 23 and hence G has 7 maximal subgroups, which is impossible. Therefore G

is metacyclic and is one of the groups in Theorem 2.3. If G is the group mentioned in Theorem 2.3(a), then
according to [6, Theorem 2.2], the maximal subgroups of G are M1 = ⟨b, a2⟩ , M2 = ⟨ba, a2⟩ and M3 = ⟨b2, a⟩ .
It is not difficult to see that these subgroups are nonabelian, a contradiction. Thus G is the group in Theorem
2.3(b), which is the item (2) , when n ≥ 2 . □

In order to prove Theorem B, we prove the following proposition.

Proposition 2.5 Let G be a finite nonnilpotent supersolvable group with exactly two nonabelian proper
subgroups H and K . If H ⊂ K , then G is isomorphic to one of the following groups

(1) ⟨a, b | ap = bq
m+2

= 1, [a, bq
3

] = 1, ab = ai⟩ , where m ≥ 1 , 0 ≤ i ≤ p−1 , iq3 ≡ 1 (mod p) and q3 | p−1 .

(2) ⟨a, b, c | ap = bq
m

= cr
2

= 1, [a, c] = [b, c] = [a, bq] = 1, ab = ai⟩ , where m ≥ 1 , q | p − 1 , 0 ≤ i ≤ p − 1

and iq
m ≡ 1 (mod p) .

(3) ⟨a, b, c | ap = bp
2

= cq
m

= 1, [a, b] = [c, b] = [cq, a] = 1, ac = aibj⟩ , where m ≥ 1 , q | p− 1 , 0 ≤ i ≤ p− 1 ,
0 ≤ j ≤ p2 − 1 , iqm ≡ 1 (mod p) , 1 + i+ · · ·+ iq

m−1 ≡ 0 (mod p2) (if j ̸= 0) and (i, j) ̸= (1, 0) .

Proof We claim that K is not nilpotent. Suppose, for a contradiction, that K is nilpotent. By Lemma 2.4,
K is a normal maximal subgroup of G and so K = F (G) . From Lemma 2.4, H is minimal nonabelian and it
is a unique nonabelian proper subgroup of K . So by Theorem 1.1, |H| = pn , where p is a prime number and
n is a positive integer. Now Lemma 2.4 indicates that |K : H| = q , where q is a prime. As K has a unique
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nonabelian proper subgroup, from [18, Lemma 2.5] we know that K is not a p -group, and so q ̸= p . Hence
|K| = pnq . If |G : K| = p , then |G| = pn+1q and H is properly contained in a Sylow p -subgroup P of G .
Noticing that P ̸= K , it follows that P and hence H is abelian, a contradiction. Therefore |G : K| = q and
|G| = pnq2 . Thus G = H ⋊ Q , where Q is a Sylow q -subgroup of G . Clearly G is a Schmidt group. So by
[13, Theorem 5.4.7] and Theorem 2.1 (3), |H| = p , which is impossible.

Thus our claim is true, that is K is not nilpotent. If H is nilpotent, then H is a p -group (by Theorem
1.1) and K is a Schmidt group. By [13, Theorem 5.4.7] and Theorem 2.1(3), we see that H is of prime order,
which is impossible. Thus H is nonnilpotent of order pqm , where m is a positive integer and q | p− 1 . Also,
by Theorem 2.1, |Φ(H)| = qm−1 . Assume that P1 is a Sylow p -subgroup of H and Q1 is a Sylow q -subgroup
of H . Also assume that P is a Sylow p -subgroup of G and Q is a Sylow q -subgroup of G . Then |P1| = p

and |Q1| = qm . We have P1 ≤ P . We consider the following two cases.

Case 1. P1 = P . First suppose that |Q1| < |Q| . Then K = HQ and so G has two prime divisors and
|G : K| = q . Hence |G| = pqm+2 . Now we find the presentation of G .

If F (G) ⊆ K and F (G) ̸⊆ H , then |F (G)| = |F (K)| = pqm and Φ(G) = Z(G) (as Φ(G) = Z(G) ∩K ).
Since G has a normal subgroup of order qm that intersect G′ trivially, we have qm | |Z(G)| . So |Φ(G)| =
|Z(G)| = qm . On the other hand, since F (G) ⊆ K , we have Z(G) ⊆ Z(K) , which is a contradiction, because
according to [18, Theorem F], |Z(K)| = qm−1 . If F (G) ̸⊆ K , then |F (G)| = pqm+1 . Since Φ(G) = Z(G) ∩K
and |Φ(H)| = qm−1 | |Φ(G)| , we have |Φ(G)| = qm−1 . Notice that F (G) has a normal subgroup N of order
qm+1 and it is clear that N is a normal subgroup of G . As N ∩G′ = 1 , N ⊆ Z(G) and then |Z(G)| = qm+1 .
We should have pq3 = |G : Φ(G)| | |G : Z(G)||G : K| = pq2 , which is impossible. Therefore F (G) ⊆ H

and so |F (G)| = |F (H)| = pqm−1 and |Φ(G)| = |Z(G)| = qm−1 . Let Q be a Sylow q -subgroup of G . We
have G ∼= Zp ⋊ Q . We claim that Q is cyclic. Suppose contrary that Q is not cyclic. Hence it is metacyclic
and so Q = ⟨a, b⟩ . Let a /∈ K (so a /∈ H ). Since P ⟨ab⟩ and P ⟨a⟩ are proper subgroups of G distinct
from H and K , they are abelian and so [P, ab] = [P, a] = 1 . It follows that [P, b] = 1 , a contradiction.
Therefore Q is cyclic, proving the claim. Let P = ⟨a⟩ and Q = ⟨b⟩ . As |Z(G)| = qm−1 , we can assume that

Z(G) = ⟨bq3⟩ . Put b−1ab = ai , where 0 ≤ i ≤ p− 1 and iq
3 ≡ 1 (mod p) . Clearly CQ(P ) = Z(G) . It follows

that |CG(P )| = pqm−1 . Since G/CG(P ) is isomorphic to a subgroup of Aut(P ) , q3 | p− 1 . Therefore G is the
group mentioned in (1) .
Now suppose that |Q1| = |Q| . In this case |K : H| = r , which is a prime distinct from p and q . It is easy
to see that |G : K| = r and so |G| = pqmr2 . Let R be a Sylow r subgroup of G . Since G is solvable and
Hall subgroups PR and QR as they are distinct from H and K , they are abelian and so R ≤ Z(G) and
G ∼= R×H . Therefore |Z(G)| = r2qm−1 . Obviously R is cyclic, as otherwise R = ⟨a, b⟩ . Suppose a ̸∈ K and
so a ̸∈ H . As H⟨a⟩ is a proper subgroup of G distinct from H and K , it is abelian, which follows that H is
abelian, a contradiction. Suppose that P = ⟨a⟩ , Q = ⟨b⟩ and R = ⟨c⟩ . We can assume that Z(G) = ⟨c⟩× ⟨bq⟩ .
Thus G is the group mentioned in (2) , which is also a special case of [9, Theorem 3.4].

Case 2. P1 < P . Then there exists a subgroup M of P such that P1 is maximal in M . As HM is nonabelian,
K = HM . If |Q1| < |Q| , then HQ ̸= K is nonabelian, a contradiction. Thus Q1 is a Sylow q -subgroup of
G . With the same argument, if R is a Sylow subgroup distinct from P and Q , then HR is nonabelian, a
contradiction. Hence G has exactly two prime divisors, |G : K| = p and then |G| = p3qm . Noticing that H is

2399



TAERI and TAYANLOO-BEYG/Turk J Math

a normal subgroup of G , it follows that all conjugates of Q1 are contained in H and so |G : NG(Q1)| = p . If P
is cyclic, then P1 ≤ NG(Q1) , a contradiction. Therefore P is noncyclic but abelian. If P is elementary abelian,
then, by Maschke’s theorem, P1 has an invariant complement, P2 say, and since P2Q1 is distinct from H and
K , it is abelian. Now for any two elements x, y , the subgroups ⟨P1, x⟩ and ⟨P1, y⟩ are both nonabelian and
containing H , a contradiction. It follows that P is of type (p, p2) . Suppose that P = ⟨a, b⟩ , where |a| = p and
|b| = p2 . Since |G : NG(Q1)| = p and a /∈ NG(Q1) , b ∈ NG(Q1) and so [b,Q1] = 1 . It leads to the conclusion
that G = ⟨b⟩ × H and we have |Z(G)| = p2qm−1 . Suppose that P2 is a Sylow p -subgroup of K . By virtue
of [18, Theorem E], P2

∼= Zp × Zp and |Z(K)| = pqm−1 . It is readily seen that Φ(G) = Z(G) ∩K ⊆ Z(K) .
So, we deduce that Z(G) ⊈ K and then Z(G) ∼= Zp2 × Zqm−1 . Assume that Q1 = ⟨c⟩ . We may assume
Z(G) = ⟨b⟩ × ⟨cq⟩ . Thus G is the group mentioned in (3) . 2

Now we are ready to prove Theorem B.

Proof Theorem B First we prove that all groups (1)-(4) have exactly two nonabelian proper subgroups.

(1) Put H = ⟨a, bq2⟩ and K = ⟨a, bq⟩ . We show that H and K are the only nonabelian subgroups of G .
To prove this, we show that K is the only nonabelian maximal subgroup of G , H is minimal nonabelian and
it is the only nonabelian maximal subgroup of K . Let T be a maximal subgroup of H . As H is supersolvable,
the index of T in H is prime. Thus |T | ∈ {qm, pqm−1} . If |T | = qm , then clearly T is abelian. So suppose
that |T | = pqm−1 . As a Sylow q -subgroup of G is cyclic, it has a unique subgroup of order qm−1 . On the other
hand, according to the presentation of G , |Z(G)| = qm−1 . Hence Z(G) is a Sylow q -subgroup of T . It follows
that T is the direct product of its Sylow subgroups and then it is abelian. Thus H is minimal nonabelian.
Similarly one can see that each maximal subgroup of K distinct from H is abelian.
Let M be a maximal subgroup of G distinct from K . We show that M is abelian. Since G is supersolvable,
the index of each maximal subgroup is prime. So |M | = qm+2 or |M | = pqm+1 . Suppose |M | = pqm+1 . Let
QM , QK and QG be Sylow q -subgroups of M , K and G , respectively. As QG is cyclic, it has a unique
subgroup of order qm+1 and so QM = QK . It follows that K = M , a contradiction. Hence |M | = qm+2 and
it is clear that M is abelian. therefore H and K are the only nonabelian proper subgroups of G .

(2) Put H := ⟨a, b⟩ and K := ⟨a, b, cr⟩ . According to [18, Theorem D], H is minimal nonabelian and
it is a unique nonabelian proper subgroup of K . From the presentation of G we can see that |G′| = p ,
|Z(G)| = qm−1r and |F (G)| = pqm−1r2 . Also clearly G ∼= H × Zr2 which yields that |Φ(G)| = qm−1r (by
Theorem 2.1, |Φ(H)| = qm−1 ).
Now we show that K is the only nonabelian maximal subgroup of G . To prove this, let M be a maximal
subgroup of G distinct from K . Noticing that G is supersolvable, it follows that the index of each maximal
subgroup of G is prime and then |M | ∈ {pqmr, pqm−1r2, qmr2} . First suppose that |M | = qmr2 . Thus G′ ̸⊆M

and so MG′ = G , which implies that M is abelian. Now suppose that |M | = pqmr . Since G′ ⊆M , M is normal
in G . As G = MK , we have |M ∩K| = pqm , which contradicts the fact qm−1r = |Φ(G)| | |M ∩K| = pqm .
Finally suppose that |M | = pqm−1r2 . If F (G) ̸=M , then F (G)M = G and so |F (G) ∩M | = pqm−2r2 . Thus
qm−1r = |Φ(G)| | |F (G) ∩M | = pqm−2r2 , which is impossible. Therefore M = F (G) is abelian. Hence H and
K are the only nonabelian proper subgroups of G .

(3) Put H := ⟨a, c⟩ and K := ⟨a, bp, c⟩ . According to [18, Theorem E], H is minimal nonabelian and
it is a unique nonabelian proper subgroup of K . From the presentation of G we can see easily that |G′| = p
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and G′ ⊂ H . Also we can see that G ∼= H × Zp2 . According to Theorem 2.1, |Φ(H)| = qm−1 and so
|Φ(G)| = pqm−1 . Of course, |F (H)| = pqm−1 .

We show that each maximal subgroup M of G distinct from K is abelian. As G is supersolvable, the
index of each maximal subgroup of G is prime and then |M | ∈ {p3qm−1, p2qm} . Suppose that |M | = p3qm−1 .
Since Φ(H) ⊆M , Φ(H) is a Sylow q -subgroup of M . So M = P ×Φ(H) , where P is a Sylow p -subgroup of
G . It follows that M is abelian. Now suppose that |M | = p2qm . We claim that M is not normal. Suppose
contrary that M is normal. Then, since MK = G , |M ∩ K| = pqm . If H ⊆ M , then M ∩ K = H .
Hence G/H ∼= G/M × G/K and Φ(G/H) = Φ(G/M) × Φ(G/K) = 1 , which yields that Φ(G) ⊆ H , whence
Φ(G) = F (H) . Now, since G′ ⊆ H , G′ ⊆ F (H) = Φ(G) , which follows that G is nilpotent, a contradiction.
Thus H ̸⊆ M and so HM = G and |H ∩M | = qm , whence a Sylow q -subgroup of H is normal in H , a
contradiction. Therefore M is nonnormal, which follows that G′ ̸⊆ M and so MG′ = G . Since M ∩ G′ = 1 ,
it follows that M is abelian. We deduce that H and K are the only nonabelian proper subgroups of G .

(4) Put H := ⟨a2, b⟩ and K := ⟨a, bp⟩ . We show that H and K are minimal nonabelian. For this aim,
we show that each maximal subgroup of H and each maximal subgroup of K is abelian. We can see from the
presentation of G that |Z(H)| = 2m−1 and Z(G) ∼= Z(H)× Z2 . Let N be a maximal subgroup of H . As H
is supersolvable, the index of N in H is prime and so |N | ∈ {p2m−1, 2m} . If |N | = 2m , then N is abelian.
So let |N | = p2m−1 . Since a Sylow 2 -subgroup of H is cyclic, it has a unique subgroup of order 2m−1 . Thus
Z(H) is a Sylow 2 -subgroup of N . Let P be a Sylow p -subgroup of N , which is also a Sylow p -subgroup of
H . From the presentation of G , we can see that P is normal in G and so in N . Therefore N = P × Z(H)

and so it is abelian. Hence H is minimal nonabelian. Similarly one can see that K is minimal nonabelian.
Now we show that H and K are the only nonabelian proper subgroups of G . For this aim, let M be a
maximal subgroup of G distinct from H and K . We show that M is abelian. Clearly |M | ∈ {2m+1, p2m} . If
|M | = 2m+1 , then, according to the presentation of G , M is abelian. So suppose that |M | = p2m . Let QM

be a Sylow 2 -subgroup of M and P be a Sylow p -subgroup of M , which is also a Sylow p -subgroup of G . If
QM is cyclic, then M = H or M = K , a contradiction. If QM is noncyclic, then QM

∼= Z(H) × Z2
∼= Z(G)

(by using Theorem 2.1, Φ(H) = Z(H) ∼= Z2m−1 ), which follows that M ∼= P × Z(G) and then it is abelian. It
indicates that H and K are the only nonabelian proper subgroups of G .

Now we prove the converse of Theorem. Let H and K are the only nonabelian proper subgroups of G .
First suppose that H ⊆ K . By virtue of Proposition 2.5, G is one of the groups (1), (2) or (3).
Now suppose that H ̸⊆ K and K ̸⊆ H . We show that G is the group mentioned in (4) . By Lemma 2.4, H
and K are normal in G . By a simple calculation we obtain that |H| = |K| . Since H and K are supersolvable
Schmidt groups, using [13, Theorem 5.4.7] and Theorem 2.1 (3), |H| = |K| = pqm , p > q and q | p − 1 .
Evidently G has two prime divisors and |G : H| = |G : K| ∈ {p, q} . If |G : H| = |G : K| = p , then |G| = p2qm .
Since HK = G , we have |H ∩K| = qm and it is impossible. Thus |G : H| = |G : K| = q and |G| = pqm+1 .
Suppose P1 a Sylow p -subgroup of H , Q1 a Sylow q -subgroup of H , P2 a Sylow p subgroup of K , Q2 a
Sylow q -subgroup of K and also P a Sylow p -subgroup G and Q a Sylow q -subgroup G . Clearly Q1 = Q∩H
and Q2 = Q ∩K are maximal subgroups of Q . If Q has two maximal subgroups distinct from Q1 and Q2 as
M1 and M2 , since P1M1 and P1M2 are abelian, then we arrive to the contradiction [P1, Q] = [P1,M1M2] = 1 .
It follows that Q has only three maximal subgroups and so q = 2 . If Q is cyclic, then it has a unique subgroup
of order qm which follows that H = K , a contradiction. Hence Q ∼= Z2m × Z2 and G ∼= Z2 × H , whence
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Z(G) ∼= Z2 ×Z2m−1 (by using Theorem 2.1, Z(H) ∼= Z2m−1 ). Let P = ⟨a⟩ and Q = ⟨b⟩ × ⟨c⟩ . We may assume
that Z(G) = ⟨b2⟩ × ⟨c⟩ . Therefore G is the group mentioned in (4) . □

In order to prove Theorem C, we prove the following proposition.

Proposition 2.6 Let G be a finite nonsupersolvable group with exactly two nonabelian proper subgroups H
and K . If H ⊂ K , then G is isomorphic to one of the following groups

(1) G = P ⋊ Q , where P is abelian of type (p, . . . , p, p2) of order pn+2 and Q is cyclic of order qm that
q ∤ p − 1 . Also H = P1 ⋊ Q and K = P2 ⋊ Q are nonabelian subgroups of G that H ⊂ K , H is
minimal nonabelian, |P1| = pn and |P2| = pn+1 . Furthermore P1 is an irreducible Q -module and P2 is
elementary abelian.

(2) G = P ⋊ Q , where P is elementary abelian of order pn and Q = ⟨c⟩ is cyclic of order qm+1 that
q ∤ p− 1 . Also H = P ⋊Q1 and K = P ⋊Q2 are nonabelian subgroups of G that H ⊂ K , H is minimal

nonabelian, |Q1| = qm and |Q2| = qm+1 . Furthermore P is an irreducible ⟨cq2⟩ -module.

(3) G = PQR , where P is elementary abelian of order pn , Q is cyclic of order qm and R = ⟨x⟩ is cyclic of
order r2 that q ∤ p − 1 . Also P is an irreducible Q -module. Furthermore H = PQ and K = PQ⟨xr⟩
are nonabelian subgroups of G and H is minimal nonabelian.

(4) G = P ⋊ Q is a Schmidt group, where P is a special nonabelian p -group of order p3 and Q = ⟨c⟩ is
cyclic of order q2 that q ∤ p− 1 . Also K = P ⟨cq⟩ is nonabelian.

(5) G = G ′Q , where G ′ is a nonabelian special p -group of order p3 and of rank 2 , Q = ⟨c⟩ is cyclic of order
q2 , q ∤ p−1 , q | p+1 and the order of p modulo q2 being 2 . Also G ′⟨cq⟩ is a Schmidt group, G ′/Φ(G ′)

is a faithful irreducible Q -module and [Φ(G ′), Q] = 1 . Furthermore |G ′ ′| = p .

Proof We consider two cases. In Case 1, we assume that H is nonnilpotent and in Case 2 we assume that H
is nilpotent.

Case 1. H is nonnilpotent. So K is nonnilpotent. According to Lemma 2.4, H is minimal nonabelian and so
it is a Schmidt group. Let H = P1 ⋊Q1 and |H| = pnqm . If H is supersolvable, then by Theorem 2.1 and [13,
Theorem 5.4.7], |P1| = p . Thus we have a cyclic normal series 1 < P1 < H < K < G , which implies that G is
supersolvable, a contradiction. Thus H is nonsupersolvable and it is the group (1) of Theorem 2.1. Suppose
P a Sylow p -subgroup G and Q a Sylow q -subgroup G .

First suppose that P1 < P . With a same argument to the proof of Proposition 2.5, Case 2, we infer that
Q1 = Q , |G| has exactly two prime divisors, |G : K| = p and then |G| = pn+1qm . Also P is noncyclic but
abelian and it is of type (p, . . . , p, p2) . Thus G is the group mentioned in (1) .

Now suppose that P1 = P . If |Q1| < |Q| , then K = HQ and so G has two prime divisors and
|G : K| = q . Thus |G| = pnqm+2 . Similar to the proof of Proposition 2.5, Case 1, we can see that Q is cyclic.
Thus G is the group mentioned in (2) .
If |Q| = |Q1| , then |K : H| = r , which is a prime distinct from p and q . It is easy to see that |G : K| = r and
so |G| = pnqmr2 . Hence G is the group mentioned in (3) , which is also a special case of [9, Theorem 3.4].
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Case 2. H is nilpotent. Suppose that K is nilpotent. Then G is a Schmidt group. By Lemma 2.4, H is a
normal maximal subgroup of K . So the index of H in K is a prime number. Similar to the proof of Proposition
2.5, we have |H| = pn , |K : H| = q and |G : K| = q . Thus |K| = pnq and |G| = pnq2 . Noticing that H

is a nonabelian p -group of G , it follows from Theorem 2.1(2) that H is a nonabelian special p -group, that is
Z(H) = H ′ = Φ(H) . On the other hand, since H is minimal nonabelian, by [10], |Z(H)| = |Φ(H)| = pn−2

and |H ′| = p . It follows that |H| = p3 . So G is the group mentioned in (4) .
Now suppose that K is nonnilpotent. Then K is a Schmidt group. Similar as above we have |H| = p3 ,

|K| = p3q and |G| = p3q2 . It is easy to see that G is a 2 -N -critical group. So it is group (V ) of [19, Theorem
B] and clearly l = 1 . Noticing that the order of p modulo q2 is 2l = 2 and q ∤ p− 1 , it follows that q | p+ 1 .
Also, as |G ′ ′| ≤ pl = p , we have |G ′ ′| = p . Therefore G is the group mentioned in (5) . 2

Now we prove Theorem C.

Proof Theorem C First we prove that all groups (1) -(6) have exactly two nonabelian proper subgroups.
(1) We show that H and K are the only nonabelian proper subgroups of G . To prove this, we show

that K is the only nonabelian maximal subgroup of G and H is the only nonabelian maximal subgroup of K .
Let M be a maximal subgroup of G distinct from K . We have |M | ∈ {piqm, pn+2qj} , where 0 ≤ i ≤ n + 1

and 0 ≤ j ≤ m− 1 . First assume that |M | = piqm . If H ⊂ M , then, as H ̸= M , |M | = |K| = pn+1qm (that
is i = n+1). The maximality of K ensures that G =MK and then |M ∩K| = pnqm . Since M ∩K is normal
in M , a Sylow q -subgroup of M , which is also a Sylow q -subgroup of H , is normal in M and then is normal
in H , a contradiction. If H ⊈M , then |H ∩M | = pi−2qm and similarly we obtain a contradiction.
Now assume that |M | = pn+2qj . We have MH = G and then |H ∩M | = pnqj . As H ∩M is normal in M , a
Sylow q -subgroup of M is normal in M . Thus M is the direct product of its Sylow subgroups and then it is
abelian. Similarly one can see that each maximal subgroup of K distinct from H is abelian. Therefore H and
K are the only nonabelian proper subgroups of G .

(2), (3) With a similar argument to (1) , we can see that H and K are the only nonabelian proper
subgroups of G .

(4) Put H := P . It is clear that H is minimal nonabelian. Since G is a Schmidt group, K is nilpotent
and then K = P × ⟨cq⟩ . Immediately H = P is the only nonabelian proper subgroup of K . We show that
K = P × ⟨cq⟩ is the only nonabelian maximal subgroup of G . To prove this, suppose that M is a maximal
subgroup of G distinct from K . Then |M | ∈ {pq2, p2q2, p3q} . Assume that |M | = p3q . As Q is cyclic, it has
a unique subgroup of order q . So a Sylow q -subgroup of K equals to a Sylow q -subgroup of M . It follows
that K = M , a contradiction. Hence |M | ∈ {pq2, p2q2, } . Since G is a Schmidt group, each proper subgroup
of G is the direct product of its Sylow subgroups. Hence M is abelian. We conclude that H and K are the
only nonabelian proper subgroups of G .

(5) According to [19, Theorem B], G is 2 -N -critical and K = G ′⟨cq⟩ is a unique nonnilpotent proper
subgroup of G . Put H := G ′ . Now similar to (4) , we can see that H and K are the only nonabelian proper
subgroups of G .

(6) Evidently, H and K are maximal subgroups of G . Since G ′ = P is contained in H and K , they
are normal in G . We show that each maximal subgroup M of G distinct from H and K is abelian. We have
|M | ∈ {pi2m+1, pn2j} , where 0 ≤ i ≤ n − 1 and j ∈ {m − 1,m} (as H is a nonnilpotent minimal nonabelian
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group, it is a Schmidt group and, by Theorem 2.1, |Φ(H)| = 2m−1 and so 2m−1 | |Φ(G)| . Thus 2m−1 | |M |).
First assume that |M | = pn2j . If j = m − 1 , then M = P × Φ(H) , which follows that M is abelian. So let
|M | = pn2m . If a Sylow q -subgroup of M , QM say, is cyclic, then QM = ⟨a⟩ or QM = ⟨ap⟩ and hence M = H

or M = K , a contradiction. Hence QM is noncyclic. Since Φ(H) ⊆ QM , we have QM = Φ(H)×⟨b⟩ . Therefore
QM = Z(G) and so M = P × Z(G) , which follows that M is abelian. Now assume that |M | = pi2m+1 . Let
PM be a Sylow p -subgroup of M . The maximality of M ensures that MG ′ = G . So |G ′ ∩M | = pi . As
G ′ ∩M is a normal subgroup of G contained in H and P is an irreducible Z2m -module, so i = 0 and then
|M | = 2m+1 . Thus M is abelian, which follows that H and K are the only nonabelian proper subgroups of
G .

Now we prove the converse of Theorem. Let H and K be the only nonabelian proper subgroups of G .
First suppose that H ⊆ K . According to Proposition 2.6, G is one of the groups (1)-(5).
Now suppose that H ⊈ K and K ⊈ H . By Lemma 2.4, H and K are normal in G and they are minimal
nonabelian. As H and K are nonnilpotent, they are Schmidt groups and since they are nonsupersolvable,
by Theorem 2.1(1), |H| = |K| = pnqm where n > 1 and q ∤ p − 1 . With a same argument to the proof of
Theorem B, we conclude that |G : H| = |G : K| = q = 2 and |G| = pn2m+1 . Also a Sylow q -subgroup of
G , Q say, is isomorphic to Z2m × Z2 and G ∼= Z2 × H . It follows that Z(G) ∼= Z2 × Z2m−1 . Suppose that

Q ∼= ⟨a⟩ × ⟨b⟩ , |a| = 2m and |b| = 2 . If n > 2 , then P ⟨api⟩ , where 1 ≤ i ≤ n− 1 , are nonabelian subgroups of
G , a contradiction. Therefore n = 2 and G is the group mentioned in (6) . □
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