
Turk J Math
(2021) 45: 2406 – 2418
© TÜBİTAK
doi:10.3906/mat-2103-11

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Global existence and blow-up of solutions for parabolic equations involving the
Laplacian under nonlinear boundary conditions

Anass LAMAIZI, Abdellah ZEROUALI∗, Omar CHAKRONE, Belhadj KARIM
1Faculty of Sciences, LaMAO Laboratory, Oujda, Morocco

2Regional Center for Trades of Education and Training, Oujda, Morocco
3Faculty of Sciences, Oujda, Morocco

4Faculty of Sciences and Technologies, Errachidia, Morocco

Received: 04.03.2021 • Accepted/Published Online: 23.08.2021 • Final Version: 29.11.2021

Abstract: This paper is concerned with the existence and blow-up of solutions to the following linear parabolic equation:
ut−∆u+u = 0 in Ω× (0, T ) , under nonlinear boundary condition in a bounded domain Ω ⊂ Rn , n ≥ 1 , with smooth
boundary. We obtain a threshold result for the global existence of solutions, next we shall prove the existence time T of
solution is finite when the initial energy satisfies certain condition.
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1. Introduction and main results
In the present paper, we study the following parabolic problem with nonlinear boundary conditions:

ut −∆u+ u = 0 in Ω× (0, T ),
∂u
∂ν = λ|u|p−1u on ∂Ω× (0, T ),

u(x; 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ Rn is an open bounded domain for n ≥ 1 with smooth boundary ∂Ω , ν is the outward unit normal
vector on ∂Ω , ut denote the partial derivative with respect to the time variable t and ∇u denotes the one with
respect to the space variable x , λ > 0 , and p satisfies

(H)

{
1 ≤ p ≤ n

n−2 if n > 2,

1 ≤ p < ∞ if n ≤ 2.

Define the functions

E(u) =
1

2
∥u∥2H1 −

λ

p+ 1
∥u∥p+1

p+1,∂Ω, (1.2)

and
F (u) = ∥u∥2H1 − λ∥u∥p+1

p+1,∂Ω. (1.3)

The parabolic problems are fundamental to the modeling of space and time-dependent problems such as problems
from physics or biology. To be specific, evolutionary equations and systems are likely to be used to model physical
∗Correspondence: abdellahzerouali@yahoo.fr
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processes like heat conduction or diffusion processes. Let us take as an illustration the Navier-Stokes equation,
the basic equation in fluid mechanics. Moreover, we would like to refer to [5], where fluids in motion are studied.
Applications involve climate modeling and climatology as well (see [3, 4]).

The global existence, nonexistence and blow-up of solutions for semilinear parabolic equations with
Dirichelet boundary conditions were studied by several authors, for example in [6], Fujita considered the following
semilinear problem:

(P1)

{
ut −∆u = |u|p in Rn × (0,∞),

u(x; 0) = u0(x) in Rn,

and obtained the following results
(a) When 1 < p < 1 + 2/n and u0 ⩾ 0, problem (P1) possesses no global positive solution.
(b) When p > 1 + 2/n and u0 is smaller than a small Gaussian, then (P1) has global positive solutions.
The above problem was investigated by Zhang in [14], the author has proved under certain conditions the
following conclusions
(a) If p < 1 + 2/n,

∫
Rn u0(x)dx > 0, then (P1) has no global solutions.

(b) If p = 1 + 2/n, and
∫
Rn u0(x)dx > 0, then (P1) has no global solutions provided that u−

0 is compactly
supported.
(c) If p > 1 + 2/n, then (P1) has global solutions for some u0 .
(d) For any p > 1, there exists u0 satisfying

∫
Rn u0(x)dx < 0 such that (P1) has global solutions.

The semilinear parabolic problem with Dirichelet boundary conditions of the following form

(P2)


ut −∆u = |u|p−1u in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x; 0) = u0(x) in Ω,

was studied by Filippo Gazzola and Tobias Weth [7], they analyzed the behavior of the solutions when the
initial data varies in the phase space H1

0 (Ω) , the authors obtained both global solutions and finite time blow-up
solutions. Their main tools are the comparison principle and variational methods (see also [2, 11, 13]).

For more general Laplace equation, the authors of [12] established the existence and uniqueness results
for the following problem:

(P3)


ut −∆u = g(u) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x; 0) = u0(x) in Ω,

where g : R → R is a C1 -function satisfies g(0) = 0 and g′(0) < λmin. Here, λmin denotes the smallest
eigenvalue of −∆ .

In the present work, we will study the existence and blow-up of the solutions to problem (1.1). We will,
in this paper, adopt a method of approximation to obtain the existence of the solution. Moreover, we show that
this solution explodes in finite time in the following sense
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Definition 1.1 Let u be a weak solution of problem (1.1) . We call u a blowup in finite time if the maximal
existence time T is finite and

lim
t→T

∫ T

0

∥u∥2dτ = +∞.

More precisely, we have the following results.

Theorem 1.2 Let p satisfy (H), u0(x) ∈ H1 (Ω) . Assume that E (u0) < k, F (u0) > 0. Then, there ex-
ists a global weak solution u(t) ∈ L∞ (0,∞;H1 (Ω)

)
∩ C

(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
of (1.1) with ut(t) ∈

L2
(
0,∞;L2 (Ω)

)
and u(t) ∈ X for 0 ≤ t < ∞ .

Theorem 1.3 Let p satisfy (H) , u0(x) ∈ H1 (Ω) . Then the weak solution u(x, t) of problem (1.1) must blows
up in finite time provided that:

0 < E(u0) <
p− 1

2A(p+ 1)
∥u0∥2, (1.4)

where

A = Sup
u∈H1(Ω)

∥u∥2

∥u∥2H1

. (1.5)

This article is divided into three sections. In Section 2, we present the basic preliminary results and give some
definitions. The proofs of Theorems (1.2) and (1.3) are presented in Section 3.

2. Preliminaries
We shall denote by dρ the restriction to ∂Ω . The Lebesgue norm of Lq(Ω) will be denoted by ∥ · ∥q, and the
Lebesgue norm of Lq(∂Ω, ρ) by ∥ · ∥q,∂Ω, for q ∈ [1,∞] , and ∥u∥L2(Ω) = ∥u∥ . The scalar product of L2(Ω) will
be denoted by ⟨·, ·⟩ and the scalar product of L2(∂Ω, ρ) will be denoted by ⟨·, ·⟩0 :

⟨u, v⟩ =
∫
Ω

uv dx, ⟨u, v⟩0 =

∮
∂Ω

uv dρ.

We denote the usual Sobolev space on Ω

H1(Ω) =
{
u ∈ L2 (Ω) : |∇u| ∈ L2 (Ω)

}
,

equipped by the norm
∥u∥2H1 = ∥u∥2 + ∥∇u∥2.

Throughout this paper, we denote

p∂ =

{
p(n−1)
n−p if 1 < p < n,

∞ if p ≥ n.
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Proposition 2.1 (See [1] )
The trace operator W 1,p(Ω) → Lq(∂Ω, ρ) is continuous if and only if 1 ≤ q ≤ p∂ if p ̸= n and for 1 ≤ q < ∞
if p = n. Especially for q = 2 , the trace operator is well-defined and continuous under the following condition:

W 1,p(Ω) → L2(∂Ω, ρ) ⇐⇒ p ≥ p1 :=
2n

n+ 1
.

Let us introduce some functionals and sets as follows:

Y =
{
u ∈ H1 (Ω) | F (u) = 0, ∥u∥H1 ̸= 0

}
,

X =
{
u ∈ H1 (Ω) | F (u) > 0, E(u) < k

}
∪ {0},

where
k = inf

u∈Y
E(u).

For σ > 0 , we further define
Fσ(u) = σ∥u∥2H1 − λ∥u∥p+1

p+1,∂Ω,

k(σ) = inf
u∈Yσ

E(u),

where
Yσ =

{
u ∈ H1 (Ω) | Fσ(u) = 0, ∥u∥H1 ̸= 0

}
.

Xσ =
{
u ∈ H1 (Ω) | Fσ(u) > 0, E(u) < k(σ)

}
∪ {0}.

we end this section with the definition of the weak solution of problem (1.1).

Definition 2.2 A function u ∈ L∞ (0, T ;H1 (Ω)
)
∩ C

(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
with ut ∈ L2

(
0, T ;L2 (Ω)

)
is said to be a weak solution of problem (1.1) on Ω× [0, T ) if the following conditions are satisfied:

(i) ⟨ut, v⟩+ ⟨∇u,∇v⟩+ ⟨u, v⟩ = λ⟨|u|∂Ω
|p−1 u|∂Ω

, v⟩0, ∀v ∈ H1 (Ω) , t ∈ [0, T ), (2.1)

(ii) u(x, 0) = u0(x) in H1 (Ω) ,

(iii)

∫ t

0

∥uτ∥2 dτ + E(u) ≤ E (u0) , ∀t ∈ [0, T ), (2.2)

where u|∂Ω
denotes the trace of u on ∂Ω .

3. Proof of main results
3.1. Proof of Theorem 1.1
To derive the Theorem (1.2) we need the following results.

Lemma 3.1 Assume that 0 < E(u) < k for some u ∈ H1 (Ω) , and σ1 < σ2 are the two roots of equation
k(σ) = E(u). Then the sign of Fσ(u) does not change for σ1 < σ < σ2 .
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Proof Arguing by contradiction, we assume that the sign of Fσ(u) is changeable for
σ1 < σ < σ2 , then there exist a σ0 ∈ (σ1, σ2) such that Fσ0(u) = 0. Since E(u) > 0 implies ∥u∥H1 ̸= 0 , hence
u ∈ Yσ0 , thus we have E(u) ≥ k(σ0), which contradicts

E(u) = k (σ1) = k (σ2) < k(σ0).

2

Lemma 3.2 Let p satisfy (H), u0(x) ∈ H1 (Ω) , 0 < c < k, σ1 < σ2 be the two roots of equation k(σ) = c. Then
all weak solutions u of problem (1.1) with E (u0) = c belong to Xσ for σ1 < σ < σ2,

0 ≤ t < T, provided F (u0) > 0 .

Proof First from E (u0) = c, F (u0) > 0 and Lemma (3.1) it follows that Fσ (u0) > 0 and E (u0) < k(σ)

i.e. u0(x) ∈ Xσ for σ1 < σ < σ2. Next, let u(t) be any weak solution of problem (1.1) with E (u0) = c and
F (u0) > 0, and T be the maximal existence time of u(t). Arguing by contradiction, we assume that there exist
a σ0 ∈ (σ1, σ2) and t0 ∈ (0, T ) such that Fσ0

(u (t0)) = 0, ∥u (t0)∥H1 ̸= 0 or E (u (t0)) = k (σ0) . By (2.2), we
can deduce ∫ t

0

∥uτ∥2 dτ + E(u) ≤ E (u0) < k(σ), σ1 < σ < σ2, 0 ≤ t < T, (3.1)

therefore E (u (t0)) ̸= k (σ0) . If Fσ0 (u (t0)) = 0, ∥u (t0)∥H1 ̸= 0, thus the definition of k(σ) implies that
E (u (t0)) ≥ k (σ0) , which contradicts (3.1). 2

Proof of Theorem (1.2). We start by constructing a sequence such that its limit equal to the solution in
(1.1). Let {ξj(x)} be a system of base functions in H1 (Ω) , define the approximate solution to (1.1) as follows:

um(x, t) =

m∑
j=1

cjm(t)ξj(x), m = 1, 2, . . .

satisfying
⟨umt, ξs⟩+ ⟨∇um,∇ξs⟩+ ⟨um, ξs⟩ = λ⟨|um|∂Ω

|p−1um|∂Ω
, ξs⟩0 , s = 1, 2, . . . ,m (3.2)

um(x, 0) =

m∑
i=1

ajmξj(x) → u0(x) in H1 (Ω) . (3.3)

Multiplying (3.2) by umt and integrating on Ω implies

∥umt∥22 = −1

2

d

dt
∥um∥2H1 +

λ

p+ 1

d

dt
∥um∥p+1

p+1,∂Ω,

which together with (1.2) gives
d

dt
E(um) = −∥umt∥22 for t ∈ [0, r), (3.4)

hence ∫ t

0

∥umτ∥2 dτ + E (um) = E (um(0)) , 0 ≤ t < ∞.
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From (3.3), we have E (um(0)) → E (u0) , thus

∫ t

0

∥umτ∥2 dτ + E (um) < k, 0 ≤ t < ∞, (3.5)

from (3.5) and an argument similar to that in the proof of Lemma (3.2) we can show that um(t) ∈ X for
0 ≤ t < ∞ and sufficiently large m .
Furethermore, by (3.5) and

E (um) =
p− 1

2(p+ 1)
∥um∥2H1 +

1

p+ 1
F (um) ,

we get ∫ t

0

∥umτ∥2 dτ +
p− 1

2(p+ 1)
∥um∥2H1 < k, 0 ≤ t < ∞, (3.6)

for sufficiently large m, thus

∥um∥2H1 <
2(p+ 1)

p− 1
k, 0 ≤ t < ∞ . (3.7)

Moreover, the trace operator H1 (Ω) → Lp+1 (∂Ω, ρ) is continuous, then there exist a
constant C∗ > 0 such that

∥u∥p+1
p+1,∂Ω ≤ Cp+1

∗ ∥u∥p+1
H1 ≤ Cp+1

∗

(
2(p+ 1)

p− 1
k

) p+1
2

, 0 ≤ t < ∞, (3.8)

∥∥∥|um|p−1
um

∥∥∥r
r,∂Ω

= ∥um∥p+1
p+1,∂Ω ≤ Cp+1

∗

(
2(p+ 1)

p− 1
k

) p+1
2

, r =
p+ 1

p
, 0 ≤ t < ∞, (3.9)

∫ t

0

∥umτ∥2 dτ < k, 0 ≤ t < ∞, (3.10)

then there exists a u and a subsequence {uv} of {um} such that

uv → u in L∞ (0,∞;H1 (Ω)
)
∩ C

(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
weak star and a.e. in Ω× [0,∞) ,

|uv|p−1
uv → |u|p−1u in L∞ (0,∞;Lr (Ω)) ∩ C

(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
weak star,

uvt → ut in L2
(
0,∞;L2 (Ω)

)
weakly.

In (3.2) for fixed s , we may now pass to the limit as m = v → ∞ in every term of (3.2), thus

⟨ut, ξs⟩+ ⟨∇u,∇ξs⟩+ ⟨u, ξs⟩ = λ⟨|u|∂Ω|p−1 u|∂Ω, ξs⟩0, ∀v ∈ H1 (Ω) , ∀s

and (2.1). On the other hand, (3.3) gives u(x, 0) = u0(x) in H1 (Ω) . Finally, from Lemma (3.2), we obtain
u(t) ∈ X for 0 ≤ t < ∞ .
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3.2. Proof of Theorem 1.2
In order to prove our main result, we will give the following lemma.

Lemma 3.3 [8] Suppose that a positive, twice-differentiable function θ(t) satisfies the inequality

θ
′′
(t)θ(t)− (1 + β)(θ

′
(t))2 ≥ 0, t > 0,

where β > 0 is some constant. If θ(0) > 0 and θ
′
(0) > 0 , then exists 0 < t1 ≤ θ(0)

βθ′ (0)
such that lim

t→t1
θ(t) = +∞ .

Proof of Theorem (1.3). In order to prove that the solution blows up in finite time under condition (1.4),
we assume the solution u(x, t) is global to get a contradiction.
Multiplying the first equation of (1.1) by ut and integrating on Ω ,

∫
Ω

|ut|2dx−
∫
Ω

∆u.utdx+

∫
Ω

u.utdx = 0,

∫
Ω

|ut|2dx =

∫
∂Ω

∂u

∂ν
.utdρ−

∫
Ω

∇u.∇utdx−
∫
Ω

u.utdx,

then

∥ut∥2 = −1

2

d

dt
∥u∥2H1 +

λ

p+ 1

d

dt
∥u∥p+1

p+1,∂Ω. (3.11)

From (1.2), we get

d

dt
E(u) = −∥ut∥2 ≤ 0 for t ∈ [0, T ), (3.12)

by virtue of (1.2) and (1.3) we can deduce

E (u0) =
p− 1

2(p+ 1)
∥u0∥2H1 +

1

p+ 1
F (u0) , (3.13)

by (1.5)

E (u0) ≥
p− 1

2A(p+ 1)
∥u0∥2 +

1

p+ 1
F (u0) ,

which combines (1.4) to give F (u0) < 0 .
The following task is to claim that F (u) < 0 for all t ∈ [0, T ) . If it is false, by the continuity of F (t) in t there
exists a first time t0 ∈ (0, T ) such that

F (u(t)) < 0 for t ∈ [0, t0), (3.14)

and
F (u(t0)) = 0, (3.15)
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this inequality along with (1.2) and (1.5) given

E(u(t0)) =
p− 1

2(p+ 1)
∥u(t0)∥2H1 +

1

p+ 1
F (u(t0))

=
p− 1

2(p+ 1)
∥u(t0)∥2H1

≥ p− 1

2A(p+ 1)
∥u(t0)∥2.

Multiplying the first equation in (1.1) by u and integrating over Ω× [0, t] gives

1

2
∥u∥2 − 1

2
∥u0∥2 +

∫ t

0

(
∥u∥2H1 − λ∥u∥p+1

p+1,∂Ω

)
dτ = 0,

combining (1.3) and (3.14) we obtain

d

dt
∥u(t)∥2 = −2F (u) > 0 for t ∈ [0, t0), (3.16)

then
∥u0∥2 < ∥u(t0)∥2, (3.17)

from (3.12) we can deduce
E(u(t0)) ≤ E (u0) . (3.18)

Hence by (3.18) and (1.4),

p− 1

2A(p+ 1)
∥u(t0)∥2 ≤ E(u(t0)) ≤ E (u0) <

p− 1

2A(p+ 1)
∥u0∥2 ,

which contradicts (3.17). Then F (u) < 0 for all t ∈ [0, T ).

Next, we discuss the following two cases.

Case I: E(u(t0)) < 0 for some t0 > 0

Put v(x, t) := u(x, t+ t0), we get E (v0) = E(u(t0)) < 0.

By (3.12) we deduce
E(v) ≤ E (v0) < 0. (3.19)

Now, we define

Φ(t) :=

∫ t

0

∥v∥2dτ,

then
Φ′(t) = ∥v∥2,

by (3.16) we have

Φ′′(t) =
d

dt
∥v∥2 = −2F (v) ≥ 0.
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Next, integrating (3.12) results in

E(v) +

∫ t

0

∥vτ∥2 dτ = E(v0), (3.20)

since

E(v) =
p− 1

2(p+ 1)
∥v∥2H1 +

1

p+ 1
F (v),

we can deduce

Φ′′(t) ≥ 2(p+ 1)

∫ t

0

∥vτ∥2 dτ + (p− 1) Φ′(t)− 2(p+ 1)E (v0) ,

and further

Φ(t)Φ′′(t)− p+ 1

2
(Φ′(t))2 ≥2(p+ 1)

(∫ t

0

∥v∥2 dτ

∫ t

0

∥vτ∥2 dτ −
(∫ t

0

(vτ , v) dτ

)2
)

+ (p− 1)Φ(t)Φ′(t)− (p+ 1) ∥v0∥2 Φ′(t)− 2(p+ 1)E (v0)Φ(t).

Making use of the Schwartz inequality, we get

Φ(t)Φ′′(t)− p+ 1

2
(Φ′(t))2 ≥ (p− 1)Φ(t)Φ′(t)− (p+ 1) ∥v0∥2 Φ′(t)− 2(p+ 1)E (v0)Φ(t),

hence, by E (v0) ≤ 0 it follows that

ΦΦ′′ − p+ 1

2
(Φ′)2 ≥ (p− 1)ΦΦ′ − (p+ 1) ∥v0∥2 Φ′ .

Since Φ′′(t) > 0 for t ≥ 0 , then Φ′′ is a convex function, therefore there exists a t0 ≥ 0 such that Φ′ (t0) > 0

and Φ(t) ≥ Φ′ (t0) (t− t0) for t ≥ t0.

Thus, for sufficiently large t, we have
(p− 1) Φ > (p+ 1) ∥v0∥2 ,

and

ΦΦ′′ − p+ 1

2
(Φ′)2 > 0.

Therefore, we can apply Lemma (3.3) to conclude that Φ(t) → +∞ , as t → t∗ ≤ 2Φ(0)
(p−1)Φ′(0) .

Case II: E(u) ≥ 0 for all t > 0

From (3.16), we can write

d

dt
∥u∥2 = −2F (u)

= −2
(
∥u∥2H1 − λ∥u∥p+1

p+1,∂Ω

)
= −4

(
1

2
∥u∥2H1 −

λ

p+ 1
∥u∥p+1

p+1,∂Ω

)
+

(
2λ− 4λ

p+ 1

)
∥u∥p+1

p+1,∂Ω

2414
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= −4E(u) +
2λ(p− 1)

p+ 1
∥u∥p+1

p+1,∂Ω. (3.21)

By F (u) < 0 and (1.5), we know that

λ∥u∥p+1
p+1,∂Ω > ∥u∥2H1 ≥ 1

A
∥u∥2. (3.22)

Put

1 < α <
(p− 1)∥u0∥2

2A(p+ 1)E(u0)
. (3.23)

Combining (3.21) and (3.20) for E(u) ≥ 0 yields

d

dt
∥u∥2 = 4(α− 1)E(u)− 4αE(u) +

2λ(p− 1)

p+ 1
∥u∥p+1

p+1,∂Ω

≥ −4αE (u0) + 4α

∫ t

0

∥uτ∥2 dτ +
2λ(p− 1)

p+ 1
∥u∥p+1

p+1,∂Ω ,

(3.24)

Substituting (3.22) into (3.24), we get

d

dt
∥u∥2 > −4αE (u0) + 4α

∫ t

0

∥uτ∥2 dτ +
2(p− 1)

A(p+ 1)
∥u∥2, (3.25)

d

dt
∥u∥2 − 2(p− 1)

A(p+ 1)
∥u∥2 > −4αE (u0) ,

hence

∥u∥2 > ∥u0∥2 e
2(p−1)
A(p+1)

t +
2αA(p+ 1)

p− 1
E (u0)

(
1− e

2(p−1)
A(p+1)

t
)
. (3.26)

Now, let

φ(t) :=

∫ t

0

∥u∥2dτ for t ∈ [0,+∞),

then
φ′(t) = ∥u∥2, (3.27)

and

φ′′(t) =
d

dt
∥u∥2.

Let us introduce the auxiliary function

Γ(t) = (φ(t))
2
+ ε−1 ∥u0∥2 φ(t) + a, (3.28)

where

0 < ε <
1

2α ∥u0∥2

(
2(p− 1)

A(p+ 1)
∥u0∥2 − 4αE (u0)

)
, (3.29)
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and

a >
1

4
ε−2 ∥u0∥4 . (3.30)

Substituting (3.26) into (3.25), we get

φ′′(t) > 4α

∫ t

0

∥uτ∥2 dτ +

(
2(p− 1)

A(p+ 1)
∥u0∥2 − 4αE (u0)

)
e

2(p−1)
A(p+1)

t,

by (3.30), we deduce

φ′′(t) > 4α

∫ t

0

∥uτ∥2 dτ + 2αε ∥u0∥2

:= M(t)

(3.31)

By (3.27) , the Young’s and Hölder’s inequalities imply

(φ′(t))
2
=∥u(t)∥4

=

(
∥u0∥2 + 2

∫ t

0

∫
Ω

u(τ)uτ (τ)dxdτ

)2

≤

(
∥u0∥2 + 2

(∫ t

0

∥u(τ)∥2dτ
) 1

2
(∫ t

0

∥uτ (τ)∥2 dτ
) 1

2

)2

= ∥u0∥4 + 4 ∥u0∥2
(∫ t

0

∥u(τ)∥2dτ
) 1

2
(∫ t

0

∥uτ (τ)∥2 dτ
) 1

2

+ 4φ(t)

∫ t

0

∥uτ (τ)∥2 dτ

≤∥u0∥4 + 4φ(t)

∫ t

0

∥uτ (τ)∥2 dτ + 2ε ∥u0∥2 φ(t)

+ 2ε−1 ∥u0∥2
∫ t

0

∥uτ (τ)∥2 dτ

:=N(t)

(3.32)

By (3.28), we obtain

Γ′(t) =
(
2φ(t) + ε−1 ∥u0∥2

)
φ′(t), (3.33)

and

Γ′′(t) =
(
2φ(t) + ε−1 ∥u0∥2

)
φ′′(t) + 2 (φ′(t))

2
. (3.34)
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From (3.30) , we can set h = 4a− ε−2 ∥u0∥4 > 0.

By (3.33), we obtain

(Γ′(t))
2
=
(
2φ(t) + ε−1 ∥u0∥2

)2
(φ′(t))

2

=
(
4φ2(t) + 4ε−1 ∥u0∥2 φ(t) + ε−2 ∥u0∥4

)
(φ′(t))

2

=
(
4φ2(t) + 4ε−1 ∥u0∥2 φ(t) + 4a− h

)
(φ′(t))

2

= (4Γ(t)− h) (φ′(t))
2
.

(3.35)

The above equality yields

4Γ(t) (φ′(t))
2
= (Γ′(t))

2
+ h (φ′(t))

2
, (3.36)

from (3.34) we get

2Γ(t)Γ′′(t) =2
((

2φ(t) + ε−1 ∥u0∥2
)
φ′′(t) + 2 (φ′(t))

2
)
Γ(t)

=2
(
2φ(t) + ε−1 ∥u0∥2

)
φ′′(t)Γ(t) + 4 (φ′(t))

2
Γ(t)

=2
(
2φ(t) + ε−1 ∥u0∥2

)
φ′′(t)Γ(t) + (Γ′(t))

2
+ h (φ′(t))

2
.

(3.37)

By (3.37) ,(3.35) ,(3.31) and (3.32)

2Γ(t)Γ′′(t)− (1 + α) (Γ′(t))
2
=2
(
2φ(t) + ε−1 ∥u0∥2

)
φ′′(t)Γ(t)− α(4Γ(t)− h) (φ′(t))

2
+ h (φ′(t))

2

=2
(
2φ(t) + ε−1 ∥u0∥2

)
φ′′(t)Γ(t)− 4αΓ(t) (φ′(t))

2
+ h(1 + α) (φ′(t))

2

>2Γ(t)
(
2φ(t) + ε−1 ∥u0∥2

)
M(t)− 4αΓ(t)N(t)

>4αΓ(t)
(
2φ(t) + ε−1 ∥u0∥2

)(
2

∫ t

0

∥uτ∥2 dτ + ε ∥u0∥2
)
− 4αΓ(t)N(t)

=4αΓ(t)N(t)− 4αΓ(t)N(t)

=0.

Thus

Γ(t)Γ′′(t)− 1 + α

2
(Γ′(t))

2
> 0.

Since Γ(0) > 0 and Γ′(0) > 0 , according to Lemma (3.3) to deduce that Γ(t) → +∞ as

t → t∗ ≤ 2Γ(0

(α− 1)Γ′(0)
.

Next, due to the continuity of Γ with respect to φ , we can conclude that φ(t) tends to infinity as some finite
time, which is a contradiction.
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