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Abstract: Ricci solitons arose in proof the Poincare conjecture by R. Hamilton and G. Perelman. The first example of
a noncompact steady Ricci soliton on a plane was found by R. Hamilton. This two-dimensional manifold is conformally
equivalent to the plane and it is called by R. Hamilton’s cigar soliton. The cigar soliton metric can be considered
as a fiber-wise conformal deformation of the Euclidean metric on a fiber of the tangent bundle. In the paper we
propose a deformation of the classical Sasaki metric on the tangent bundle of an n-dimensional Riemannian manifold
that induces the cigar soliton type metric on the fibers. The purpose of the research is to study geodesics of the cigar
soliton deformation of the Sasaki metric on the tangent bundle of the Riemannian manifold with focus on the locally
symmetric/constant curvature base manifold.
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1. Introduction
A Riemannian manifold (M, g) is called a Ricci soliton if and only if there exist a smooth vector field V and
constant λ such that the metric tensor g satisfies the equation

1

2
LV g +Ric = λg, (1.1)

where LV g is he Lie derivative of g along the vector field V , and Ric is the Ricci curvature tensor of the metric
tensor g . The Ricci solitons are divided into three classes according to the sign of the constant λ . Namely,

• if λ < 0 , then a Ricci soliton is called expanding;

• if λ > 0 , then a Ricci soliton is called shrinking;

• if λ = 0 , then a Ricci soliton is called steady.

If V is the gradient of some function F (potential function), then a Ricci soliton is called gradient. For a
gradient Ricci soliton the equation (1.1) can be expressed as

Hess(F ) +Ric = λg, (1.2)

where Hess(F )ij = ∇i∇jF denotes the Hessian of the potential function.
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Interest in Ricci solitons is associated with their appearance in the process of proving the famous Poincare
conjecture by R. Hamilton and G. Perelman. There are a large number of publications on the geometry of Ricci
solitons (see, e.g. [2–4] and references therein).

The first example of a noncompact steady Ricci soliton on a plane was found by R. Hamilton [6]. This
two-dimensional manifold is conformally equivalent to a plane and it is called by R. Hamilton’s cigar soliton.
Its first fundamental form is as follows

ds2 =
dx2 + dy2

1 + x2 + y2
.

Hamilton’s cigar soliton is gradient with potential function F = − ln(1 + x2 + y2).

The standard metric on the tangent bundle of Riemannian manifold (M, g) is the Sasaki metric [10]. It
can be completely defined by scalar products of various combinations of vertical and horizontal lifts of vector
fields from the base to the tangent bundle by

G(Xh, Y h) = g(X,Y ), G(Xh, Y v) = 0, G(Xv, Y v) = g(X,Y ).

(see Section 2 for details). Note that a vertical lift of a vector field is tangent to the fiber. Therefore, the
Sasaki metric being descended to the fibers coincides with the metric of the base manifold. One can generalize
the Sasaki metric definition allowing the fiber metric to be different from the base one. The latter idea brings
another (nonflat in general) geometry to the fibers and the whole tangent bundle. A general question can be
posed as follows: to what extent the new fiber-wise metric changes the geometry of the tangent bundle? In the
present paper we analyze the case when the fiber-wise metric is the R. Hamilton’s cigar soliton one and focus
on geodesics of generalized Sasaki metric.

The general idea comes from the two-dimensional case. Namely, if E2 is Euclidean plane with the
Cartesian coordinates (x, y) , then TE2 with the Sasaki metric is Euclidean with the Cartesian coordinates
(x, y; ξ1, ξ2) . The line element is of the form

dσ2 = dx2 + dy2 + dξ21 + dξ22 .

The ”fiber part” of the latter line element can be deformed in the following way

dσ2 = dx2 + dy2 +
1

1 + ξ21 + ξ22

(
dξ21 + dξ22

)
in order to get the cigar soliton metric on each fiber. In what follows we refer to the following Definition.

Definition 2.1 Fiberwise Hamiltonian cigar soliton deformation of the Sasaki metric on the tangent
bundle of the Riemannian manifold (M, g) is defined by

GQ(X
h, Y h) = gq(X,Y ), GQ(X

h, Y v) = 0, GQ(X
v, Y v) =

1

1 + t
· gq(X,Y ),

where Q = (q, ξ) ∈ TM , t = |ξ|2 .

It is natural to consider a bit more general case involving the properties of R. Hamilton’s deformating
function according to the following definition.
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Definition 2.2 The fiberwise cigar soliton deformation of the Sasaki metric on the tangent bundle of the
Riemannian manifold (M, g) of the form

GQ(X
h, Y h) = gq(X,Y ), GQ(X

h, Y v) = 0, GQ(X
v, Y v) = f(t)gq(X,Y ),

where Q = (q, ξ) ∈ TM , t = |ξ|2 , and f is a smooth function with the properties f > 0 , f(0) = 1 ,
limt→∞ f = 0 , f ′ < 0 , limt→∞ f ′ = 0 is called fiberwise cigar soliton deformation of the Sasaki metric.

Remark that the fiberwise cigar soliton deformation is similar but is not the same as the metric on
the tangent bundle introduced by M.T.K. Abbassi and M. Sarih [1], Cheeger-Gromoll metric [8] or fiber-wise
deformed metric introduced by A. Yampolsky [14], but is a specific particular case of metric introduced by A.
Zagane and M. Djaa in [15].

A regular parameterized curve Γ(σ) ⊂ TM can be considered, in general, as a pair {x(σ), ξ(σ)} , where
x(σ) ⊂ M is a curve and ξ(σ) is a vector field along x(σ) . As a result,

• we obtain the differential equations of naturally parameterized geodesics in terms of x(σ) and ξ(σ) with
respect to Definitions 2.1 and 2.2 (Theorem 3.1);

• we prove that f(t)|ξ′σ| = c (= const), 0 ≤ c ≤ 1 and classify geodesics on TM with the fiberwise cigar
soliton deformed Sasaki metric with respect to the parameter c namely: if c = 0 , then the geodesic is
called horizontal; if c = 1 , then the geodesic is called vertical; if 0 < c < 1 , then the geodesic is called
oblique (Definition 3.2);

• we prove (cf. [9]) that in case of locally symmetric base the projection of oblique geodesic Γ(σ) to the
base has all geodesic curvatures constant and in case of the base constant ki = 0 for all ki ≥ 3 (Theorem
4.2);

• we obtain (cf. [11]) the equations of geodesics on T (En) , T (Sn) and T (Hn) with the fiberwise (Hamil-
tonian) cigar soliton deformed Sasaki metric (Theorems 4.3, 4.4, 4.5, 4.6, 4.7).

2. Basic properties of the cigar soliton deformed Sasaki metric

Let (M, g) be n -dimensional Riemannian manifold with metric g . Denote by g(·, ·) a scalar product with
respect to g . Denote by TM tangent bundle of (M, g) . It is well known that at each point Q = (q, ξ) ∈ TM

the tangent space TQTM splits into vertical and horizontal parts:

TQTM = HQTM ⊕ VQTM.

The vertical part VQ is tangent to the fiber, while the horizontal part HQ is transversal to it. Denote by
(x1, . . . , xn; ξ1, . . . , ξn) the natural induced local coordinate system on TM . Denote ∂i = ∂

∂xi , ∂n+i = ∂
∂ξi .

Then for X̃ ∈ TQTM we have X̃ = X̃i∂i + X̃n+i∂n+i.

Denote by π : TM → M the tangent bundle projection. The mapping π∗ : TQTM → TM defines a
point-wise linear isomorphism between HQ(TM

n) and TqM
n . Remark that kerπ∗|Q = VQ .

The so-called connection mapping K : TQTM → TqM acts on X̃ by KX̃ = (X̃n+i + Γi
jkξ

jX̃k)∂i . Here

Γi
jk are the Christoffel symbols of g . The connection mapping K defines a point-wise linear isomorphism

between VQTM and TqM . Remark that kerK|Q = HQ .
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The images π∗X̃ and KX̃ are called horizontal and vertical projections of X̃ , respectively. The operations
inverse to projections are called lifts. Namely, if X ∈ TqM , then Xh = Xi∂i − Γi

jkξ
jXk∂n+i is in HQTM and

is called the horizontal lift of X , and Xv = Xi∂n+i is in VQTM and is called the vertical lift of X .

Let X̃, Ỹ ∈ TQTM . The standard Sasaki metric on TM is defined at each point Q = (q, ξ) ∈ TM by
the following scalar product

G(X̃, Ỹ )
∣∣
Q
= g(π∗X̃, π∗Ỹ )

∣∣
q
+ g(KX̃,KỸ )

∣∣
q
.

Horizontal and vertical subspaces are mutually orthogonal with respect to Sasaki metric.
The Sasaki metric can be completely defined by scalar product of various combinations of lifts of vector

fields from M to TM by

GQ(X
h, Y h) = gq(X,Y ), GQ(X

h, Y v) = 0, GQ(X
v, Y v) = gq(X,Y ).

Define the fiberwise cigar soliton deformation of the Sasaki metric as follows.

Definition 2.1 Fiberwise Hamiltonian cigar soliton deformation of the Sasaki metric on the tangent bundle of
the Riemannian manifold (M, g) is defined by

GQ(X
h, Y h) = gq(X,Y ), GQ(X

h, Y v) = 0, GQ(X
v, Y v) =

1

1 + t
· gq(X,Y ),

where Q = (q, ξ) ∈ TM , t = |ξ|2 .

Definition 2.2 The fiberwise cigar soliton deformation of the Sasaki metric on the tangent bundle of the
Riemannian manifold (M, g) of the form

GQ(X
h, Y h) = gq(X,Y ), GQ(X

h, Y v) = 0, GQ(X
v, Y v) = f(t)gq(X,Y ),

where Q = (q, ξ) ∈ TM , t = |ξ|2 , and f is a smooth function with the properties f > 0 , f(0) = 1 ,
limt→∞ f = 0 , f ′ < 0 , limt→∞ f ′ = 0 is called fiberwise cigar soliton deformation of the Sasaki metric.

Let R be the curvature tensor of ∇ . Denote by ∇̃ the Levi-Civita connection of the cigar soliton
deformed Sasaki metric G . The following lemma contains Kowalski-type formulas [7] and is the main tool for
the further considerations (see also [15]).

Lemma 2.3 Let (M, g) be the Riemannian manifold. The Levi-Civita connection ∇̃ of the fiberwise cigar
soliton deformed Sasaki metric G on the tangent bundle TM is completely defined by

∇̃XhY h =
(
∇XY

)h

− 1

2

(
R(X,Y )ξ

)v

, (2.1)

∇̃XhY v =
1

2
f(t)

(
R(ξ, Y )X

)h

+
(
∇XY

)v

, (2.2)

∇̃XvY h =
1

2
f(t)

(
R(ξ,X)Y

)h

, (2.3)
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∇̃XvY v =
(
ln f(t)

)′(
g(X, ξ)Y + g(Y, ξ)X − g(X,Y )ξ

)v

, (2.4)

where ∇ is the Levi-Civita connection on (M, g) , R is the curvature tensor of ∇ .

Proof Remark, first, that the following formulas are independent on the choice of tangent bundle metric and
are known as Dombrowski formulas [5]: at each point Q = (q, ξ) ∈ TM the brackets of lifts of vector fields from
M to TM are

[
Xh, Y h

]
=

[
X,Y

]h −
(
R(X,Y )ξ

)v
,

[
Xh, Y v

]
=

(
∇XY

)v
,

[
Xv, Y v

]
= 0.

Prove, now, that the derivative of the function f(t) along the lifts of vector fields from M to TM are (cf. [13])

Xh(f) = 0, Xv(f) = 2f ′(t)g(X, ξ).

Indeed, keeping in mind Xh = Xi ∂
∂ui − Γi

jkX
jξk ∂

∂ξi and Xv = Xi ∂
∂ξi , we have

Xh(f) = Xi ∂

∂ui
(f)− Γi

jkX
jξk

∂

∂ξi
(f)

= f ′
t

(
Xi ∂

∂ui
(gspξ

sξp)− Γi
jkX

jξk
∂

∂ξi
(gspξ

sξp)
)

= f ′
t

(
Xi(Γm

pigms + Γm
sigmp)ξ

sξp − 2Γi
jkX

jξkgipξ
p)
)

= f ′
t

(
Γip,sX

iξsξp + Γis,pX
iξsξp − 2Γjk,pX

jξkξp
)

= f ′
t

(
2Γip,sX

iξsξp − 2Γjk,pX
jξkξp

)
= 0.

Xv(f) = Xi ∂

∂ξi
(f) = f ′

tX
i ∂

∂ξi
(gspξ

sξp) = 2f ′
tgipX

iξp = 2f ′
t g(X, ξ).

Finally, the derivative of cigar soliton deformed Sasaki metric G along the lifts of vector fields from M to TM
are

XhG(Y h, Zh) = g(∇XY, Z) + g(Y,∇XZ), (2.5)

XhG(Y v, Zv) = f(t)
(
g(∇XY, Z) + g(Y,∇XZ)

)
, (2.6)

XvG(Y h, Zh) = 0, (2.7)

XvG(Y v, Zv) = 2f ′(t)g(X, ξ)g(Y, Z). (2.8)
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Now we can use the Koszul formula. We have

2G(∇̃XhY h, Zh) = XhG(Y h, Zh) + Y hG(Xh, Zh)− ZhG(Xh, Y h)

+G([Xh, Y h], Zh)−G([Xh, Zh], Y h)−G([Y h, Zh], Xh)

= Xg(Y h, Zh) + Y g(Xh, Zh)− Zg(Xh, Y h)

+G([X,Y ]h, Zh)−G([X,Z]h, Y h)−G([Y, Z]h, Xh)

= Xg(Y h, Zh) + Y g(Xh, Zh)− Zg(Xh, Y h)

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X) = 2g(∇XY, Z) = 2G((∇XY )h, Zh);

2G(∇̃XhY h, Zv) = XhG(Y h, Zv) + Y hG(Xh, Zv)− ZvG(Xh, Y h)

+G([Xh, Y h], Zv)−G([Xh, Zv], Y h)−G([Y h, Zv], Xh) = −G((R(X,Y )ξ)v, Zv)

and get (2.1). Then

2G(∇̃XhY v, Zh) = XhG(Y v, Zh) + Y vG(Xh, Zh)− ZhG(Xh, Y v)

+G([Xh, Y v], Zh)−G([Xh, Zh], Y v)−G([Y v, Zh], Xh)

= G((R(X,Z)ξ)v, Y v) = fg(R(X,Z)ξ, Y ) = fg(R(ξ, Y )X,Z)

= g(fR(ξ, Y )X,Z) = G(f(R(ξ, Y )X)h, Zh);

2G(∇̃XhY v, Zv) = XhG(Y v, Zv) + Y vG(Xh, Zv)− ZhG(Xh, Y v)

+G([Xh, Y v], Zv)−G([Xh, Zv], Y v)−G([Y v, Zv], Xh)

= f(g(∇XY, Z) + g(Y,∇XZ)) +G((∇XY )v, Zv)−G((∇XZ)v, Y v)

= f(g(∇XY, Z) + g(Y,∇XZ) + g(∇XY, Z)− g(∇XZ, Y ))

= 2fg(∇XY, Z) = 2G((∇XY )v, Zv)

and get (2.2). In a similar way

2G(∇̃XvY h, Zh) = XvG(Y h, Zh) + Y hG(Xv, Zh)− ZhG(Xv, Y h)

+G([Xv, Y h], Zh)−G([Xv, Zh], Y h)−G([Y h, Zh], Xv)

= G((R(Y, Z)ξ)v, Xv) = fg(R(Y, Z)ξ,X) = fg(R(ξ,X)Y, Z)

= g(fR(ξ,X)Y, Z) = G(f(R(ξ,X)Y )h, Zh);
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2G(∇̃XvY h, Zv) = XvG(Y h, Zv) + Y hG(Xv, Zv)− ZvG(Xv, Y h)

+G([Xv, Y h], Zv)−G([Xv, Zv], Y h)−G([Y h, Zv], Xv)

= f(g(∇Y X,Z) + g(X,∇Y Z))−G((∇Y X)v, Zv)−G((∇Y Z)v, Xv)

= f(g(∇Y X,Z) + g(X,∇Y Z)− g(∇Y X,Z)− g(∇Y Z,X)) = 0

and get (2.3). Finally,

2G(∇̃XvY v, Zh) = XvG(Y v, Zh) + Y vG(Xv, Zh)− ZhG(Xv, Y v)

+G([Xv, Y v], Zh)−G([Xv, Zh], Y v)−G([Y v, Zh], Xv)

= −f(g(∇ZX,Y ) + g(X,∇ZY )) +G((∇ZX)v, Y v) +G((∇ZY )v, Xv)

= f(−g(∇ZX,Y )− g(X,∇ZY ) + g(∇ZX,Y ) + g(∇ZY,X)) = 0;

2G(∇̃XvY v, Zv) = XvG(Y v, Zv) + Y vG(Xv, Zv)− ZvG(Xv, Y v)

+G([Xv, Y v], Zv)−G([Xv, Zv], Y v)−G([Y v, Zv], Xv)

= 2f ′
t(g(X, ξ)g(Y, Z) + g(Y, ξ)g(X,Z)− g(Z, ξ)g(X,Y ))

= 2f ′
t(g(g(X, ξ)Y, Z) + g(g(Y, ξ)X,Z)− g(g(X,Y )ξ, Z))

= 2f ′
tg(g(X, ξ)Y + g(Y, ξ)X − g(X,Y )ξ, Z)

= 2fg(
f ′
t

f
(g(X, ξ)Y + g(Y, ξ)X − g(X,Y )ξ), Z)

= 2G(
f ′
t

f
(g(X, ξ)Y + g(Y, ξ)X − g(X,Y )ξ)v, Zv)

and get (2.4). 2

3. Geodesics
Let Γ = {x(σ), ξ(σ)} be a naturally parameterized curve on the tangent bundle TM with the fiberwise cigar
soliton deformed Sasaki metric G . Denote x′

σ = dx
dσ , x′′

σ = ∇ dx
dσ
x′
σ , ξ′σ = ∇ dx

dσ
ξ , ξ′′σ = ∇ dx

dσ
ξ′σ . Then

Γ′
σ = (x′

σ)
h + (ξ′σ)

v, |Γ′
σ|2 = |x′

σ|2 + f(t)|ξ′σ|2 = 1. (3.1)

Now we derive the differential equations of geodesics (see also [16]).

Theorem 3.1 Let (M, g) be Riemannian manifold and TM its tangent bundle with the fiberwise cigar soliton
deformed Sasaki metric, R is the curvature operator of the base manifold M . A naturally parameterized curve
Γ = {x(σ), ξ(σ)} is geodesic on TM if and only if x(σ) and ξ(σ) satisfy the equations

x′′
σ + f(t)R(ξ, ξ′σ)x

′
σ = 0, (3.2)

ξ′′σ +
(
ln f(t)

)′(
(|ξ|2)′σξ′σ − |ξ′σ|2ξ

)
= 0. (3.3)
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Respectively the equations of geodesic lines on the tangent bundle with the fiberwise Hamiltonian cigar soliton
deformed Sasaki metric are

x′′
σ +

1

1 + |ξ|2
R(ξ, ξ′σ)x

′
σ = 0, (3.4)

ξ′′σ − 2g(ξ′σ, ξ)

1 + |ξ|2
ξ′σ +

|ξ′σ|2

1 + |ξ|2
ξ = 0. (3.5)

Proof The curve Γ is geodesic if and only if ∇̃Γ′
σ
Γ′
σ = 0 . Since we have

∇̃Γ′
σ
Γ′
σ = ∇̃((x′

σ)
h+(ξ′σ)

v)((x
′
σ)

h + (ξ′σ)
v)

= ∇̃(x′
σ)

h(x′
σ)

h + ∇̃(x′
σ)

h(ξ′σ)
v + ∇̃(ξ′σ)

v (x′
σ)

h + ∇̃(ξ′σ)
v (ξ′σ)

v

= (∇x′
σ
x′
σ)

h − 1

2
(R(x′

σ, x
′
σ)ξ)

v +
1

2
f(R(ξ, ξ′σ)x

′
σ)

h + (∇x′
σ
ξ′σ)

v

+
1

2
f(R(ξ, ξ′σ)x

′
σ)

h +
(
ln f

)′
(g(ξ′σ, ξ)ξ

′
σ + g(ξ′σ, ξ)ξ

′
σ − g(ξ′σ, ξ

′
σ)ξ)

v

= (x′′
σ + fR(ξ, ξ′σ)x

′
σ)

h + (ξ′′σ +
(
ln f

)′
(2g(ξ′σ, ξ)ξ

′
σ − |ξ′σ|2ξ))v = 0,

so we have (3.2) and (3.3). Put f = 1
1+t in (3.2) and (3.3). Since f ′

t = − 1
(1+t)2 ,

(
ln f(t)

)′
=

f ′
t

f = − 1
1+t and

t = |ξ|2 , it follows that x′′
σ + 1

1+|ξ|2R(ξ, ξ′σ)x
′
σ = 0 , ξ′′σ − 1

1+|ξ|2
(
2g(ξ′σ, ξ)σ

′ − |ξ′σ|2ξ
)
= 0 and then we get (3.4)

and (3.5). 2

Lemma 3.2 Let (M, g) be Riemannian manifold and TM its tangent bundle with the fiberwise cigar soliton
deformed Sasaki metric, Γ = {x(σ), ξ(σ)} be a geodesic curve on TM . Then

f(t)|ξ′σ|2 = c2, (3.6)

where c = const , 0 ≤ c ≤ 1 . As a consequence,

|ξ′σ|2 = c2(1 + |ξ|2), where 0 ≤ c ≤ 1 , c = const (3.7)

in Hamiltonian case.

Proof Since s is an arc length parameter on x(s) , using (3.1) we have

ds

dσ
= |x′

σ| =
√
1− f |ξ′σ|2. (3.8)

Using (3.3), we get

ξ′′σ = −f ′
t

f
(2g(ξ′σ, ξ)ξ

′
σ − |ξ′σ|2ξ). (3.9)

On the one hand,

g(ξ′σ, ξ
′′
σ) =

1

2

d

dσ
(|ξ′σ|2). (3.10)
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On the other hand, using (3.9) we obtain

g(ξ′σ, ξ
′′
σ) = −f ′

t

f
g(ξ′σ, ξ)|ξ′σ|2. (3.11)

Now if we recall t = |ξ|2 , we get f ′
σ = f ′

t
dt
dσ = 2f ′

tg(ξ
′
σ, ξ) . Therefore, g(ξ′σ, ξ) =

1
2
f ′
σ

f ′
t

. Substituting it in (3.11)

and using (3.10), we obtain

1

2

d

dσ
(|ξ′σ|2) = −1

2

f ′
σ

f
|ξ′σ|2 ⇒

∫
d(|ξ′σ|2)
|ξ′σ|2

= −
∫

f ′
σ

f
dσ ⇒

⇒ |ξ′σ|2 =
c2

f
. (3.12)

Combining (3.8) and (3.12), we complete the proof of the lemma. 2

Definition 3.3 (Classification of geodesics) According to the Lemma 3.2, the set of geodesics of TM with
the cigar soliton deformed Sasaki metric can be splitted naturally into 3 classes, namely

• horizontal geodesics (c = 0) generated by parallel vector fields along the geodesics on the base manifold;

• vertical geodesics (c = 1) represented by geodesics on a fixed fiber, their equations are

ξ′′σ +
(
ln f(t)

)′(
(|ξ|2)′σξ′σ − 1

f(t)
ξ
)
= 0; (3.13)

• oblique geodesics (0 < c < 1) satisfy the equations

x′′
σ + f(t)R(ξ, ξ′σ)x

′
σ = 0, (3.14)

ξ′′σ +
(
ln f(t)

)′(
(|ξ|2)′σξ′σ − c2

f(t)
ξ
)
= 0. (3.15)

Respectively if we put f = 1
1+t and t = |ξ|2 in (3.13), (3.14), and (3.15), then the vertical and oblique geodesic

on TM with the fiberwise Hamiltonian cigar soliton deformed Sasaki metric can be expressed as follows

• vertical geodesics (c = 1) represented by geodesics on a fixed fiber, their equations are

ξ′′σ − 2g(ξ′σ, ξ)

1 + |ξ|2
ξ′σ + ξ = 0; (3.16)

• oblique geodesics (0 < c < 1) satisfy the equations

x′′
σ +

1

1 + |ξ|2
R(ξ, ξ′σ)x

′
σ = 0, (3.17)

ξ′′σ − 2g(ξ′σ, ξ)

1 + |ξ|2
ξ′σ + c2ξ = 0. (3.18)

In what follows, we study oblique geodesics in more details.
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4. Oblique geodesics on the tangent bundle of manifolds of constant sectional curvature
Consider some properties of the curvature operator of Riemannian manifold of constant curvature. Define a
power of curvature operator Rp(X,Y ) recurrently in the following way: Rp(X,Y )Z = Rp−1(X,Y )R(X,Y )Z

for p ≥ 2 . Note that the following statements for the curvature tensor of Riemannian manifold of constant
curvature ε hold:

• R′
σ = 0 , namely, every space of constant curvature is locally symmetric;

• R(X,Y )Z = ε(g(Y, Z)X − g(X,Z)Y ) .

The proof of the following lemma is in [12].

Lemma 4.1 Let (M, g) be n-dimensional Riemannian manifold of constant curvature ε . Then for any X and
Y

Rp(X,Y ) =

{
(−B2ε2)k−1R(X,Y ), for p = 2k − 1

(−B2ε2)k−1R2(X,Y ), for p = 2k
,

where k ≥ 1 and B2 = |X|2|Y |2 − g(X,Y )2 is the square of norm of bivector X ∧ Y .

Theorem 4.2 Let (M, g) be a locally symmetric n-dimensional Riemannian manifold, a naturally parameter-
ized curve Γ = {x(σ), ξ(σ)} be an oblique geodesic on TMn with the fiberwise cigar soliton deformed Sasaki
metric, γ = π ◦ Γ = x(σ) be projection of the oblique geodesic Γ on the base manifold. Let k1, k2, k3, ..., kn−1

be geodesic curvatures of x(σ) .Then ki ≡ const for i ≥ 1 . In a particular case, if (M, g) is a Riemannian
manifold of constant curvature, then ki ≡ 0 for i ≥ 3 .

Proof Using (3.2), we have: x′′
σ = fR(ξ′σ, ξ)x

′
σ . It is easy to see that g(x′′

σ, x
′
σ) = fg(R(ξ′σ, ξ)x

′
σ, x

′
σ) = 0 ,

hence |x′
σ| ≡ const . Calculate the third derivative.

x′′′
σ = f ′

t · 2g(ξ′σ, ξ)R(ξ′σ, ξ)x
′
σ + fR(ξ′′σ , ξ)x

′
σ + fR(ξ′σ, ξ)x

′′
σ

= 2f ′
tg(ξ

′
σ, ξ)R(ξ′σ, ξ)x

′
σ − 2f ′

tg(ξ
′
σ, ξ)R(ξ′σ, ξ)x

′
σ + fR(ξ′σ, ξ)x

′′
σ = fR(ξ′σ, ξ)x

′′
σ.

On the one hand, x′′′
σ = fR(ξ′σ, ξ)x

′′
σ . Since g(x′′′

σ , x′′
σ) = fg(R(ξ′σ, ξ)x

′′
σ, x

′′
σ) = 0 , it follows that |x′′

σ| ≡ const .
Continuing the process we obtain

x(p)
σ = fR(ξ′σ, ξ)x

(p−1)
σ , |x(p)

σ | ≡ const, p ≥ 2. (4.1)

On the other hand, x′′′
σ = fR(ξ′σ, ξ)x

′′
σ = f2R2(ξ′σ, ξ)x

′
σ . Therefore continuing the process we obtain

x(p)
σ = fp−1Rp−1(ξ′σ, ξ)x

′
σ. (4.2)

Denote by ν1, ..., νn the Frenet frame along γ = x(s) , where s is an arc length parameter. Then the Frenet
formulas hold 

(ν1)
′
s = k1ν2,

(νi)
′
s = −ki−1νi−1 + kiνi+1, for i = 2, ..., n− 1

(νn)
′
s = −kn−1νn−1.
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Now if we recall ds
dσ = (1 − c2)1/2 , we get ν1 = x′

s = x′
σ
dσ
ds = x′

σ(1 − c2)−1/2 . Therefore, x′
σ = (1 − c2)1/2ν1 .

Using the Frenet formulas, we obtain

x′′
σ = (1− c2)1/2(ν1)

′
σ = (1− c2)1/2(ν1)

′
s

ds

dσ
= (1− c2)k1ν2.

Since |x′′
σ| ≡ const , it follows that k1 ≡ const .

In a similar way, we have

x′′′
σ = (1− c2)k1(ν2)

′
σ = (1− c2)k1(ν2)

′
s

ds

dσ
= −(1− c2)3/2k21ν1 + (1− c2)3/2k1k2ν3,

and since |x′′′
σ | ≡ const , then k2 ≡ const .

On the one hand, x(4)
σ = −(1−c2)2k31ν2−(1−c2)2k1k

2
2ν2+(1−c2)2k1k2k3ν4 = −(1−c2)2k1(k

2
1+k22)ν2+

(1− c2)2k1k2k3ν4.

On the other hand, x
(4)
σ = f3R3(ξ′σ, ξ)x

′
σ = −B2f3R(ξ′σ, ξ)x

′
σ = −B2f2x′′

σ, where B2 = c2

f(t) |ξ|
2 − g(ξ′, ξ)2 .

Let k1, k2 ̸= 0 . Then

−(1− c2)2k1(k
2
1 + k22)ν2 + (1− c2)2k1k2k3ν4 = −B2f2(1− c2)k1ν2,

(B2f2 − (1− c2)(k21 + k22))ν2 + (1− c2)k2k3ν4 = 0.

Therefore, we have k3 = 0 , and B2f2 = (1 − c2)(k21 + k22) . Finally, we obtain ki = 0 for i ≥ 3 and
B2f2 ≡ const , where we denote ω2 = B2f2 . 2

Consider the oblique geodesics on TM of manifolds of constant sectional curvature ε with the cigar
soliton deformed Sasaki metric. Consider the following cases: ε = 0 , 1 or −1 according as M is En , Sn or
Hn .

The following theorem holds for the oblique geodesics on TM of Euclidean space with the cigar soliton
deformed Sasaki metric.

Theorem 4.3 Any oblique geodesics on T (En) with the fiberwise cigar soliton deformed Sasaki metric is a
vector field ξ which moves along a straight line by

ξ′′σ +
(
ln f(t)

)′(
(|ξ|2)′σξ′σ − c2

f(t)
ξ
)
= 0. (4.3)

Respectively the oblique geodesic on T (En) with the fiberwise Hamiltonian cigar soliton deformed Sasaki metric
is a vector field ξ which moves along a straight line by

ξ′′σ − 2g(ξ′σ, ξ)

1 + |ξ|2
ξ′σ + c2ξ = 0. (4.4)

Proof In the case of Euclidean space we have R = 0 , then, using (3.14), we get x′′
σ = 0 . Since ds

dσ =
√
1− c2 ≡

const , then the curve x(σ) is geodesic in Euclidean space, namely, x(σ) is a straight line. 2

Now we consider oblique geodesics on the tangent bundle of sphere (ε = 1) and hyperbolic space (ε = −1)
with the cigar soliton deformed Sasaki metric. In these cases the geodesic equation are

x′′
σ = εf(t)(aξ′σ − bξ), (4.5)
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ξ′′σ +
(
ln f(t)

)′(
(|ξ|2)′σξ′σ − |ξ′σ|2ξ

)
= 0, (4.6)

where a = g(ξ, x′
σ) , b = g(ξ′σ, x

′
σ) . Since the theorem 4.2 holds for geodesic curvatures k1 , k2 , k3, ..., kn−1 of

projection of the geodesic on TM , then we can classify projection of the geodesic as follow:

• k1 = 0 , namely, the projection of the geodesic on TM is geodesic on the base manifold M ;

• k1 > 0 , k2 ≥ 0 .

Therefore, we have the following theorem.

Theorem 4.4 Let M be Sn or Hn , TM be the tangent bound with the fiberwise cigar soliton deformed Sasaki
metric and k1 = 0 , namely, let the projection γ = π ◦ Γ = x(σ) of the geodesic on TM be a geodesic on sphere

Sn or hyperbolic space Hn . If along x(σ) choose orthonormal frame e1(σ) =
x′(σ)
|x′(σ)| , e2(σ), ..., en(σ) , consisting

of parallel vector fields along x(σ) , and expand the vector field ξ(σ) = y1(σ)e1(σ)+y2(σ)e2(σ)+ ...+yn(σ)en(σ) ,
then the coordinate functions yi(σ) can be found from the following system


yi = αiy1, i = 2, ..., n

y′′1 + c2

f(t) (ln f(t))
′
ty1 = 0,

(1 + α2
2 + ...+ α2

n)f(t)(y
′
1)

2 = c2, αi ≡ const.

Proof If we recall x′ = (1− c2)1/2e1 , we get

a = g(ξ, x′) = g(y1e1 + y2e2 + ...+ ynen, (1− c2)1/2e1) = (1− c2)1/2y1,

b = g(ξ′, x′) = g(y′1e1 + y′2e2 + ...+ y′nen, (1− c2)1/2e1) = (1− c2)1/2y′1.

Using x′′ = εf(aξ′ − bξ) , we have

(1− c2)1/2y1(y
′
1e1 + y′2e2 + ...+ y′nen)− (1− c2)1/2y′1(y1e1 + y2e2 + ...+ ynen) = 0,

y1y
′
i − y′1yi = 0, i = 2, ..., n,

y′i
yi

=
y′1
y1

, i = 2, ..., n,

∫
(ln yi)

′
σdσ =

∫
(ln y1)

′
σdσ, i = 2, ..., n,

yi = αiy1, i = 2, ..., n.

Using f |ξ′|2 = c2 , we have (y′1)
2 + (y′2)

2 + ...+ (y′n)
2 = c2

f , and since yi = αiy1 , we obtain

(y′1)
2 + (y′2)

2 + ...+ (y′n)
2 = (y′1)

2 + (α2
2 + ...+ α2

n)(y
′
1)

2 = (1 + α2
2 + ...+ α2

n)(y
′
1)

2 =
c2

f
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If we denote A2
n = 1 + α2

2 + ...+ α2
n , then (y′1)

2 = c2

A2
nf

. Therefore, using ξ′′ +
(
ln f

)′(
(|ξ|2)′ξ′ − c2

f ξ
)
= 0 , we

get

y′′1 + (ln f)′(2A2
ny1(y

′
1)

2 − c2

f
y1) = 0 ⇒ y′′1 +

c2

f
(ln f)′ty1 = 0.

2

Corollary 4.5 Under the conditions of the Theorem 4.4 in the case of the fiberwise Hamiltonian cigar soliton
deformed Sasaki metric the solution of the system can be expressed as follows

y1 = β+ecσ + β−e−cσ

yi = αiy1, i = 2, ..., n

(1 + α2
2 + ...+ α2

n)β
+β− = − 1

4

,

where αi, β
+, β− ≡ const , β+ > 0 , β− < 0 .

Proof Let k1 = 0 . If f(t) = 1
1+t , then y′′1 + c2

f(t) (ln f(t))
′y1 = 0 can be expressed as y′′1 − c2y1 = 0 with the

solution y1 = β+ecσ + β−e−cσ . Substituting it in A2
nf(t)(y

′
1)

2 = c2 , where A2
n = 1 + α2

2 + ...+ α2
n , we get

A2
nc

2(β+ecσ − β−e−cσ)2

1 +A2
n(β

+ecσ + β−e−cσ)2
= c2, A2

n(β
+ecσ − β−e−cσ)2 = 1 +A2

n(β
+ecσ + β−e−cσ)2,

−4A2
nβ

+β− = 1, A2
nβ

+β− = −1

4
.

2

Theorem 4.6 Let M be Sn or Hn , TM be the tangent bound with the fiberwise cigar soliton deformed Sasaki
metric and k1 > 0 , k2 ≥ 0 . Let ν1, ..., νn be the Frenet frame along x(σ) . Then the oblique geodesics on T (Sn)

and T (Hn) with k1 > 0 , k2 ≥ 0 can be expressed as{
x′′ = εf(t)(aξ′ − bξ),

ξ = a(1− c2)−1/2ν1 + (a′ − b)(1− c2)−1k−1
1 ν2 − a(1− c2)−1/2k−1

1 k2ν3,

where a , b can be found from the following differential equations

a′ =
ε

2
f(t)(|ξ|2)′a+ (1− εf(t)|ξ|2)b,

b′ =
c2

f(t)
((ln f(t))′t + εf(t))a− (|ξ|2)′((ln f(t))′t +

ε

2
f(t))b.

Proof Let k1 > 0 , k2 ≥ 0 . Using x′′ = εf(aξ′ − bξ) and ξ′′ = (ln f)′( c
2

f ξ − (|ξ|2)′ξ′) , we get

a′ = g(ξ′, x′) + g(ξ, x′′) = b+ εf(
1

2
a(|ξ|2)′ − b|ξ|2) = ε

2
f(|ξ|2)′a+ (1− εf |ξ|2)b,

b′ = g(ξ′′, x′) + g(ξ′, x′′) = (ln f)′(
c2

f
a− (|ξ|2)′b) + εf(a

c2

f
− 1

2
b(|ξ|2)′)
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=
c2

f(t)
((ln f(t))′ + εf(t))a− (|ξ|2)′((ln f(t))′ + ε

2
f(t))b.

Using x′′ = εf(aξ′ − bξ) , we get ξ′ = 1
εfa (x

′′ + εfbξ) . Hence

x′′′ = fR(ξ′, ξ)x′′ = εf(g(ξ, x′′)ξ′ − g(ξ′, x′′)ξ)

= f2(g(ξ′, ξ)a− |ξ|2b)ξ′ + f2(g(ξ′, ξ)b− c2

f
a)ξ

=
f

εa
(g(ξ′, ξ)a− |ξ|2b)x′′ + f2(2g(ξ′, ξ)b− |ξ|2 b

2

a
− c2

f
a)ξ.

Therefore, ξ can be expressed as

ξ =
εax′′′ − f(g(ξ′ξ)a− |ξ|2b)x′′

εf2(2g(ξ′, ξ)ab− |ξ|2b2 − c2

f a2)
.

Note that f(g(ξ′, ξ)a− |ξ|2b) = ε(a′ − b) and |x′′|2 = f2( c
2

f a2 + |ξ|2b2 − 2g(ξ′, ξ)ab) . Then ξ = (a′−b)x′′−ax′′′

|x′′|2 .

Note that x′′ = (1− c2)k1ν2 , and x′′′ = −(1− c2)3/2k21ν1 + (1− c2)3/2k1k2ν3 . Hence |x′′|2 = (1− c2)2k21 and

ξ = a(1− c2)−1/2ν1 + (a′ − b)(1− c2)−1k−1
1 ν2 − a(1− c2)−1/2k−1

1 k2ν3.

2

Corollary 4.7 Under the conditions of the theorem 4.6 in the case of the fiberwise Hamiltonian cigar soliton
deformed Sasaki metric, we have that geodesics can be expressed as:{

x′′ = ε
1+|ξ|2 (aξ

′ − bξ),

ξ = a(1− c2)−1/2ν1 + (a′ − b)(1− c2)−1k−1
1 ν2 − a(1− c2)−1/2k−1

1 k2ν3,

where a , b can be found from the following differential equations

a′ =
εg(ξ′, ξ)

1 + |ξ|2
a+

(
1− ε|ξ|2

1 + |ξ|2

)
b, (4.7)

b′ = c2(ε− 1)a+
g(ξ′, ξ)

1 + |ξ|2
(2− ε)b. (4.8)
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