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Abstract: In this paper, the main content is the consideration of the concepts of eigenvalues and spectral singularities
of an operator generated by a discrete Dirac system in ℓ2(Z,C2) with an interior interaction point. Defining a transfer
matrix M enables us to present a relationship between the M22 component of this matrix and Jost functions of mentioned
Dirac operator so that its eigenvalues and spectral properties can be studied. Finally, some special cases are examined
where the impulsive condition possesses certain symmetries.
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1. Introduction and preliminaries

Mathematical simulations of evolution of a real process usually depends on the abrupt changes or perturbations
in its state. In general, while these sudden changes occur, the duration of the time passing is imperceptible in
comparison with the time passing during the whole process. It is supposed that these instantaneous changes are
momentary and the state of the process changes through jumps. An existence of a jump discontinuity causes
more complicated and challenging theory which is richer than the theory of ordinary differential equations.
Therefore, it becomes necessary to study equations or dynamical systems with such short-term rapid changes
(that is, jumps), or with impulse effects, for the sake of brevity, as they called, impulsive differential equations, or
sometimes, differential equations with impulse effects. Theory of impulsive differential equations dates back to
the end of last century [4, 10, 17] and the solutions of some problems for impulsive equations led to a significant
improvement over the existing literature. In the recent years, most of the researchers were interested in such
problems under the influence of impulsive actions for its wide applications in physics, engineering, quantum
mechanics and spectral theory. For Sturm–Liouville operator and its discrete analogue, there are a couple of
equivalent descriptions such as point interactions, impulsive conditions, transmission conditions, and interface
conditions used by authors that disturb the continuity [5, 8, 9, 13, 14, 19, 20].

Before presenting the main results on impulsive discrete Dirac equations, let us recall the concepts related
with our study.

Eigenvalues and spectral singularities are two parts of continuous spectrum of a nonselfadjoint Sturm–
Liouville operator which have been investigated with the pioneering study of Naimark [15]. In quantum
mechanics, an eigenvalue is said to be a bound state that is a state in Hilbert space corresponding to two
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or more particles whose interaction energy is less than the total energy of each separate particle, and therefore
these particles cannot be separated unless energy is spent. On the other hand, spectral singularities correspond
to the resonance states having a real energy. Spectral singularities were discovered by Naimark and subsequently
studied by others [16, 18]. Since then, it was understood that spectral singularities cause obstructions for the
completeness of the eigenfunctions and they have unignorable physical meanings.

Marchenko investigated the Sturm–Liouville boundary value problem [12]

−y
′′
+ q(x)y = λ2y, −∞ < x <∞, (1.1)

where λ is a spectral parameter, q is a complex valued function. (1.1) admits a pair of solutions fulfilling the
conditions

lim
x→±∞

e(x, λ)e∓iλx = 1, λ ∈ C+ := {λ ∈ C, Imλ ≥ 0}. (1.2)

These bounded solutions are called Jost solutions of (1.1), which play an important role in the solutions of
direct and inverse problems of spectral theory [2, 3, 12].

In spectral theory, definitions of an eigenvalue and a spectral singularity are given in terms of these
particular solutions of the equation. For example, a spectral singularity is a point of the continuous spectrum
of H satisfying the eigenvalue equation

Hy = λ2y (1.3)

such that the Jost solutions are linearly dependent at these points, in other words, they have a vanishing
Wronskian. Note that, the Wronskian of any two y, z solutions of (1.1) is defined as

W [y, z] := yz′ − y′z.

In the present paper, we consider the following discrete Dirac system{
y
(2)
n+1 − y

(2)
n = λy

(1)
n

y
(1)
n + y

(1)
n−1 = λy

(2)
n

, n ∈ Z\{−1, 0, 1} (1.4)

and the impulsive condition

y1(z) = Py−1(z), P =

(
p1 p2
p3 p4

)
, pi ∈ C, i = 1, . . . 4, (1.5)

where
λ := 2 sin

(z
2

)
is a complex spectral parameter. (1.5) is an impulsive condition, namely, point interaction for (1.4) at the point
n = 0 and the matrix P works out to continue the solution of (1.4) from negative integer numbers to the
positive integer numbers.

Many mathematical studies have been conducted and some useful results have been obtained for the
system (1.4) without impulsive effects [3, 6, 7, 11]. This paper aims to investigate the eigenvalues and spectral
singularities of the discrete Dirac operator with a point interaction corresponding to the boundary value problem
(1.4)–(1.5) subject to the choice of the constants pi , i = 1, . . . 4 and to examine the presences of P , T , and
PT -symmetries that the point interaction has.
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2. Corresponding operator

In this section, we first introduce the Hilbert space ℓ2(Z,C2) consisting of all vector sequences y = {yn} ,

yn =

y(1)n

y
(2)
n

 , y(i)n ∈ C , i = 1, 2 , n ∈ N with the inner product

⟨y, z⟩ℓ2 :=
∑
n∈Z

[(
y(1)n , z(1)n

)
+
(
y(2)n , z(2)n

)]
, yn, zn : Z → C2

and the norm

∥y∥2ℓ2 :=
∑
n∈Z

(∣∣∣y(1)n

∣∣∣2 + ∣∣∣y(2)n

∣∣∣2) <∞.

Let T be the operator in ℓ2(Z,C2) created by the difference expression (1.4) and the point interaction
(1.5) and also let z ∈ C\C1 , where C1 := {z : z = (2n+ 1)π, n ∈ Z} . Then it is easy to verify that

φn(z) =

φ(1)
n (z)

φ
(2)
n (z)

 =

(
ei

z
2

−i

)
einz

and

ψn(z) =

ψ(1)
n (z)

ψ
(2)
n (z)

 =

(
−i

ei
z
2

)
e−inz

are two linearly independent solutions of (1.4), since the Wronskian of these two functions is defined as

W [φ,ψ] := φ(1)
n (z)ψ(2)

n (z)− φ(2)
n (z)ψ(1)

n (z) = eiz + 1.

Moreover, there exist e±n (z) solutions of the Equation (1.4) with the following asymptotical behaviors:

e+n (z) −→ φn(z), z ∈ C\C1, n→ ∞ (2.1)

and
e−n (z) −→ ψn(z), z ∈ C\C1, n→ −∞. (2.2)

These are celebrated as Jost solutions of (1.4) and they are both analytic with respect to z in
C+ := {z : z ∈ C, Imλ > 0} and continuous up to the real axis.

Now, by the help of the linearly independent solutions, we can express the general solution yn =

y(1)n

y
(2)
n


of (1.4) by

yn(z) = Aφn(z) +Bψn(z), n ∈ Z− ∪ Z+

and we clearly get

y(1)n (z) =

{
A−e

iz( 1
2+n) − iB−e

−inz, n ∈ Z−

A+e
iz( 1

2+n) − iB+e
−inz, n ∈ Z+,

(2.3)
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y(2)n (z) =

{
−iA−e

inz +B−e
iz( 1

2−n), n ∈ Z−

−iA+e
inz +B+e

iz( 1
2−n), n ∈ Z+,

(2.4)

where A,B,A± and B± are constant coefficients.
According to the point interaction (1.5), we write

y(1)1 (z)

y
(2)
1 (z)

 =

p1 p2

p3 p4

y(1)−1(z)

y
(2)
−1(z)

 (2.5)

and finally (2.5) turns into (
A+

B+

)
= M

(
A−
B−

)
, (2.6)

where

M :=

(
M11 M12

M21 M22

)
:= N−1

1 BN2 (2.7)

with

N1 :=

(
e

3iz
2 −ie−iz

−ieiz e−
iz
2

)
, N2 :=

(
e−

iz
2 −ieiz

−ie−iz e
3iz
2

)
.

By (2.5) and (2.7), we get

M11(z) :=
1

eiz + 1

[
p1e

−iz − p2ie
− 3iz

2 + p3ie
− 3iz

2 + p4e
−2iz

]
,

M12(z) :=
1

eiz + 1

[
−p1ie

iz
2 + p2e

iz + p3 + ip4e
iz
2

]
,

M21(z) :=
1

eiz + 1

[
p1ie

iz
2 + p2 + p3e

iz − ip4e
iz
2

]
,

M22(z) :=
1

eiz + 1

[
p1e

2iz + p2ie
5iz
2 − p3ie

5iz
2 + p4e

3iz
]
.

Now, let us consider any two f±n (z) solutions of (1.4) satisfying the impulsive condition (1.5), denoting
the coefficients A± and B± by A±

± and B±
± which are expressed as

f+n (z) =

{
A+

+φn(z) +B+
+ψn(z), n ∈ Z+,

A+
−φn(z) +B+

−ψn(z), n ∈ Z−,
(2.8)

f−n (z) =

{
A−

+φn(z) +B−
+ψn(z), n ∈ Z+,

A−
−φn(z) +B−

−ψn(z), n ∈ Z−
(2.9)

for all z ∈ C\C1 , where A±
± and B±

± are complex coefficients. If we associate f+n (z) and f−n (z) with the Jost
solutions e+n (z) and e+n (z) , respectively, we write following asymptotics

f+n (z) −→ φn(z), z ∈ C\C1, n→ ∞
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and
f−n (z) −→ ψn(z), z ∈ C\C1, n→ −∞.

In view of these asymptotics, we uniquely obtain

A+
+ = B−

− = 1, A−
− = B+

+ = 0. (2.10)

Furthermore, taking into account the expressions (2.6) and (2.10), we get

A+
− =

M22

detM , B+
− = − M21

detM
(2.11)

for the solution f+n by solving (
1

0

)
=

(
M11 M12

M21 M22

)(A+
−

B+
−

)
.

Similarly, for the solution f−n , we get

A−
+ =M12, B−

+ =M22 (2.12)

by solving (
A−

+

B−
+

)
=

(
M11 M12

M21 M22

)(
0

1

)
.

Clearly, inserting A+
+, A

+
−, B

+
+ , B

+
− in (2.8), we obtain the solution f+n providing following asymptotic

f+n (z) =


φn(z), n→ +∞
M22

detMφn(z)−
M21

detMψn(z), n→ −∞.
(2.13)

Similarly, inserting A−
−, A

−
+, B

−
− , B

−
+ in (2.9), we obtain the solution f−n providing following asymptotic

f−n (z) =

{
M12φn(z) +M22ψn(z), n→ +∞

ψn(z), n→ −∞.
(2.14)

The solutions f±n (z) are called the Jost solutions of the impulsive boundary value problem (1.4)-(1.5). By using
the definition of the Wronskian of the Jost solutions of the operator T acting in ℓ2(Z,C2) , we can give the
following theorem.

Theorem 2.1 The following asymptotics hold.

W [f+n , f
−
n ](z) =M22

(
eiz + 1

)
, n→ +∞ (2.15)

W [f+n , f
−
n ](z) =

M22

detM
(
eiz + 1

)
, n→ −∞ (2.16)
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Proof (2.13) and (2.14) can be used to calculate the Wronskian of the Jost solutions for n → +∞ and for
n→ −∞ . 2

We remark that the transfer matrix M has unit determinant. Therefore, the point interaction which
does not satisfy this property is called anomalous point interaction. Recall that a necessary and sufficient
condition to investigate the eigenvalues and spectral singularities of a discrete Dirac operator is to investigate the
zeros of the Wronskian of the Jost functions [1]. For the operator T ( or the impulsive boundary value problem
(1.4)-(1.5)), the eigenvalues and spectral singularities correspond to λ values for which W [f+n , f

−
n ](z) = 0 .

Therefore, we can give the next lemma without proof.

Lemma 2.2 In order to examine the eigenvalues and spectral singularities of the operator T , we need to
examine the zeros of the function M22 , i.e.

p1 + i(p2 − p3)e
i z
2 + p4e

iz = 0. (2.17)

For simplicity, (2.17) can be rewritten as

M22(τ) := p4τ
2 + i(p2 − p3)τ + p1 = 0, (2.18)

where τ := ei
z
2 .

Next, we proceed by giving the definitions of eigenvalues and spectral singularities of the operator T

denoted by σd(T ) and σss(T ) , respectively. Hence, in accordance with the traditional definition, we can write
[1, 15]

σd(T ) =

{
λ ∈ C\(−2, 2) : λ = i

(
1

τ
− τ

)
,M22(τ) = 0

}
(2.19)

and

σss(T ) =

{
λ ∈ (−2, 2) : λ = i

(
1

τ
− τ

)
,M22(τ) = 0

}
. (2.20)

In order to examine the zeros of (2.18), we consider some cases obtained in the following two lemmas so that
we see the conditions for the existence of eigenvalues and spectral singularities.

Lemma 2.3 Assume p4 ̸= 0 . In this case, (2.18) gives

τ1,2 = −i
(
µ±

√
µ2 + ν

)
,

where

µ :=
p2 − p3
2p4

, ν :=
p1
p4
. (2.21)

This implies that

λ = − 1

µ±
√
µ2 + ν

+
(
µ±

√
µ2 + ν

)
,

and thus, two complex spectral singularities appear if∣∣∣µ±
√
µ2 + ν

∣∣∣ = 1 and 0 <
∣∣∣Re(µ±

√
µ2 + ν

)∣∣∣ < 1,
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i.e.
|τ | = 1 and 0 < |Re τ | < 1.

Otherwise, there exist two eigenvalues.

Lemma 2.4 Assume p4 = 0 . In this case, (2.18) gives

i (p2 − p3) τ + p1 = 0,

and thus there appear two special cases:

(i) If p2 ̸= p3 , then

λ =
p2 − p3
p1

+
p1

p2 − p3

is a spectral singularity if and only if∣∣∣∣p2 − p3
p1

∣∣∣∣ = 1 and 0 <

∣∣∣∣Re(p2 − p3
p1

)∣∣∣∣ < 1.

Otherwise, there exists an eigenvalue.

(ii) If p2 = p3 , then the condition of the existence of a spectral singularity or an eigenvalue, namely M22 = 0 ,
implies that p1 = 0 . In this case,

P = M =

(
0 p2
p2 0

)
,

and detM = −p22 . In particular, M is independent of z , M22 vanishes identically, and the interaction is
anomalous for p2 ̸= ±i .

3. P , T , and PT -symmetries

This section is devoted to deduce some consequences as a result of symmetries imposed on the impulsive
condition (1.5) leading to the discrete Dirac operator T .

3.1. P -symmetry

Definition 3.1 The operator P acting on complex vector sequences y = (yn) =

y(1)n

y
(2)
n

 , yn : Z → C2 defined

by
(Pyn) := y−n, n ∈ Z

is called the parity (reflection) operator.

Definition 3.2 The point interaction (1.5) is called P -invariant (or has P -symmetry) if and only if

Py1 = PPy−1. (3.1)
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Theorem 3.3 The point interaction (1.5) has P -symmetry if and only if

P = P−1. (3.2)

Proof Assume that the point interaction (1.5) has P -symmetry. Then, (3.1) is satisfied. Using Definition 3.1
and (1.5), we can easily get (3.2). On the contrary, the proof can be completed in the same way. 2

Theorem 3.4 If the point interaction (1.5) has P -symmetry, then the operator T does not have any spectral
singularity, just has eigenvalues.

Proof Suppose that, (1.5) has P -symmetry. Since detP = 1 , we obtain

p1 = p4 = ±1, p2 = p3 = 0

by (3.2). Therefore, τ = ±i are the zeros of M22(τ) which yields λ = ±2 and this means that there is no
spectral singularity and they are eigenvalues. This completes the proof. 2

3.2. T -symmetry

Definition 3.5 The operator T acting on complex vector sequences y = (yn) =

y(1)n

y
(2)
n

 , yn : Z → C2 defined

by
T yn = y∗n, n ∈ Z

is called the time-reversal operator, where “∗” denotes the complex conjugate of y .

Definition 3.6 The point interaction (1.5) is called T -invariant (or has T -symmetry) if and only if

T y1 = PT y−1. (3.3)

Theorem 3.7 The point interaction (1.5) has T -symmetry if and only if

P∗ = P

holds; that is, P is real.

Proof Taking into account Definition 3.6, it is easy to see that this relation is equivalent to the requirement
that P is a real matrix, i.e. p1, p2, p3, p4 must be real. 2

Theorem 3.8 Assume that the point interaction (1.5) has T -symmetry. In the case of

p4 ̸= 0 and
(
p2 − p3
2p4

)2

+
p1
p4

< 0,

there exist two spectral singularities for p1, p2, p3, p4 ∈ C such that

p1 + p4 = 0 and |p2 − p3| < 2 |p4| .
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3.3. PT -symmetry

Definition 3.9 The point interaction (1.5) is called PT -invariant (or has PT -symmetry) if and only if

PT y1 = PPT y−1. (3.4)

Theorem 3.10 The point interaction (1.5) has PT -symmetry if and only if

P∗ = P−1 (3.5)

holds.

Proof Taking into account Definition 3.9, it is easy to see that this relation is equivalent to the requirement
that P∗ = P−1 . 2

Theorem 3.11 Assume that the point interaction (1.5) has PT -symmetry. In case of

p4 ̸= 0 and |Im(p2 + p3)| ≤ 2,

there exist two spectral singularities for pi ∈ C , i = 1, . . . 4 such that

2 Im(p1) ̸= |Im(p3 − p2)| .

Proof Let the point interaction (1.5) has PT -symmetry, and let p4 be different from 0 . From Theorem 3.10,
we can write p1, p2, p3, p4 as p1 = x+ iy , p2 = iζ , p3 = iδ , p4 = x− iy , respectively such that x, y, ζ, δ ∈ R .
Using this relation, detP = 1 and (2.21), we get

√
µ2 + ν =

x+ iy

2(1− ζδ)

√
4− (δ + ζ)2.

In this case we need to examine two different situations:

(i) |δ + ζ| ≤ 2, (ii) |δ + ζ| > 2.

Examining these situations in detail, the proof of this theorem is obtained clearly.
2

4. Conclusion
This paper is devoted to discuss the eigenvalues and spectral singularities of a discrete canonical Dirac system
in ℓ2(Z,C2) having a point interaction. We first present the Jost solutions of this impulsive boundary value
problem by the help of a transfer matrix which puts forth an alternative approach to the theory of impulsive
discrete Dirac equations. The transfer matrix enables us to form the sets of eigenvalues and spectral singularities
in terms of the zeros of a second–order polynomial function. Then, we examine some special cases depending on
the choice of the constants given in impulsive condition. Therefore, one can specialise the impulsive condition
and see the effects of a point interaction. The remainder of the paper deals with fundamental symmetries such
as P , T , and PT -symmetries, which are mostly related to the mathematical physics. We finally analyzed
some consequences about the existence of eigenvalues and spectral singularities in the event of presence of these
symmetries. In further research, the results may be generalized into impulsive discrete Dirac equations with
more than one impulsive point which has not been treated elsewhere yet.
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