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Abstract: Let A be a positive bounded linear operator acting on a complex Hilbert space H . Any positive operator
A induces a semiinner product on H defined by ⟨x, y⟩A := ⟨Ax, y⟩H , ∀x, y ∈ H. For any T ∈ B (H (Ω)) , its A -Berezin

symbol T̃A is defined on Ω by T̃A :=
〈
TK̂λ, K̂λ

〉
A
, λ ∈ Ω,where K̂λ is the normalized reproducing kernel of H . In

this paper, we introduce the notions (A, r) -adjoint of operators and A -Berezin number of operators on the reproducing
kernel Hilbert space and prove some upper and lower bounds of the A -Berezin numbers of operators. In particular, we
show that

1

2
∥T∥A−Ber ≤ max

{
|sin|A T,

√
2

2

}
berA (T ) ≤ berA (T ) ,

where |sin|A T denotes the A -sinus of angle of T .

Key words: Reproducing kernel Hilbert space, Berezin symbol, Berezin number, A -Berezin number, positive operator,
semiinner product

1. Introduction
Now, we give some necessary definitions for the main results and we give some proof using inequalities.

Let B(H) stand for the Banach algebra of all bounded linear operators on a complex Hilbert space H
with inner product ⟨., .⟩ . An operator A ∈ B(H) is called self-adjoint if A∗ = A , where A∗ denotes the adjoint
of A . It is easy to see that an operator A is self-adjoint if and only if ⟨Ax, x⟩ ∈ R := (−∞,∞) for all x ∈ H .
An operator A ∈ B(H) is called positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H .

Recall that a reproducing kernel Hilbert space (shortly, RKHS) is a Hilbert space H = H(Ω) consisting
of complex-valued functions on some set Ω such that the evaluation functionals φλ(f) = f(λ) , λ ∈ Ω , are
continuous on H and for any λ ∈ Ω there exists fλ such that fλ(λ) ̸= 0 . Then by the Riesz representation
theorem for each λ ∈ Ω there exists a unique function Kλ ∈ H such that

f(λ) = ⟨f,Kλ⟩ (1.1)

for all f ∈ H . The collection {Kλ : λ ∈ Ω} is called the reproducing kernel of the space H . We say that
the reproducing kernel Hilbert space admits the Ber-property (in this case we will write H ∈ (Ber) , if for any

bounded linear operator A on H(Ω) , Ã(λ) = 0 , ∀λ ∈ Ω , implies that A = 0 , i.e. for the Berezin symbols
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of operators on H(Ω) the uniqueness theorem holds, (i.e. the corresponding Berezin transform is injective).
In particular, the Hardy space H2(D) , where D = {z ∈ C : |z| < 1} is the unit disc in C , the Bergman space
L2
a(D) , the Dirichlet space D2(D) and the Fock space F (D) are RKHSs with the property (Ber). A detailed

presentation of the theory of RKHSs is given, for instance, in Aronszajn [4], Saitoh [25] and Halmos [18].

For any A ∈ B(H) , its Berezin symbol Ã is defined on Ω by (see Berezin [8])

Ã(λ) :=
〈
AK̂λ, K̂λ

〉
, λ ∈ Ω, (1.2)

where K̂λ = Kλ

∥Kλ∥H
is the normalized reproducing kernel of H and the inner product ⟨., .⟩ is taken with

respect to the the RKHS H . The Berezin norm, Berezin set and Berezin number of the operator A are defined
respectively by

∥A∥Ber := sup
λ∈Ω

∥∥∥AK̂λ

∥∥∥ (1.3)

Ber(A) := Range(Ã) =
{
Ã(λ) : λ ∈ Ω

}
(1.4)

ber(A) := sup
λ∈Ω

∣∣∣Ã(λ)
∣∣∣ . (1.5)

It is clear that ber(A) ≤ ∥A∥Ber ≤ ∥A∥ , Ber(A) ⊂ W (A) and ber(A) ≤ w(A) , where

W (A) := {⟨Ax, x⟩ : x ∈ H and ∥x∥ = 1} (1.6)

is the numerical range of the operator A and

w(A) := sup
∥x∥=1

|⟨Ax, x⟩| (1.7)

is its numerical radius (for more facts about reproducing kernel Hilbert spaces and Berezin symbol, see,
Aronszajn [4], Berezin [8] and Karaev [21] ).

For more material about the numerical radius and other results on numerical radius inequality, see, e.g.,
[1, 10, 17, 22, 23, 29], and the references therein.

The null space of every operator T is denoted by N (T ) , its range by R (T ) , and adjoint of T by T ∗ . If
S is a linear subspace of H , then S stands for its closure in the norm topology of H . An operator A ∈ B (H)

is called positive, denoted by A ≥ 0 , if ⟨Ax, x⟩ ≥ 0 for all x∈ H . For T ∈ B (H) , the absolute value of T ,

denoted by |T | , is defined as |T | = (T ∗T )
1/2 . Throughout the article, A denotes a nonzero positive operator

on H . Notice that any positive operator A induces a semiinner product on H defined by

⟨x, y⟩A := ⟨Ax, y⟩H , ∀x, y ∈ H.

The seminorm induced by ⟨., .⟩A is given by ∥x∥A =
√
⟨x, x⟩A =

∥∥A1/2x
∥∥ for all x ∈ H .

It is easy to check that ∥.∥A is norm if and only if A is injective and that the seminormed space (H, ∥.∥A)

is complete if and only if R (A) = R (A) .
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Definition 1.1 For T ∈ B (H) , the A-Berezin set of
〈
TK̂λ, K̂λ

〉
A

is defined by

BerA (T ) :=
{〈

TK̂λ, K̂λ

〉
A
: λ ∈ Ω

}
.

It should be mentioned that BerA (T ) is a nonempty subset of C and it is in general not closed even if
H is finite dimensional.

Definition 1.2 (i) A-Berezin symbol (also called A-Berezin transform) T̃A is defined on Ω by

T̃A (λ) :=
〈
TK̂λ, K̂λ

〉
A

(λ ∈ Ω) ,

(ii) The supremum modulus of BerA (T ) , denoted by berA (T ) , is called the A-Berezin number of T , i.e.

berA (T ) := sup
λ∈Ω

∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ ,
(iii) A-Berezin norm of operators T ∈ B (H (Ω)) is defined by

∥A∥A−Ber := sup
λ∈Ω

∥∥∥ATK̂λ

∥∥∥
H

.

If A = I , we get the Berezin number. So, this new concept generalizes the Berezin number of reproducing
kernel Hilbert space operators and the Berezin norm of operators which have recently attracted the attention
of many authors (see, for instance [5, 7, 13–16, 26–28]).

Definition 1.3 ([11]) Let T ∈ B (H) . An operator S ∈ B (H) is called an A-adjoint of T if for every λ, µ ∈ Ω ,

identity
〈
TK̂λ, K̂µ

〉
A
=
〈
K̂λ, SK̂µ

〉
A

holds.

Definition 1.4 Let T ∈ B (H (Ω)) . An operator S ∈ B (H (Ω)) is called (A, r)-adjoint of T if for every

λ, µ ∈ Ω , the identity
〈
TK̂H,λ, K̂H,µ

〉
A
=
〈
K̂H,λ, SK̂H,µ

〉
A

holds.

Following [11, 12], observe that the existence of an A -adjoint of T is equivalent to the existence of a
solution of the equation AX = T ∗A . This kind of equation can be studied by using a well-known theorem due
to Douglas [9] (for a survey of the recent results on this theorem, the readers can consult in Moslehian, Kian
and Xu [24]). Briefly, Douglas theorem says that the operator equation TX = S has a bounded linear solution
X if and only if R (S) ⊆ R (T ) ; moreover, among its many solutions it has only one, denoted by Q, which
satisfies R (Q) ⊆ R (T ∗) . Such Q is called the reduced solution or Douglas solution of TX = S . The set of all
operators in B (H) admitting A -adjoint is denoted by BA (H) . By Douglas theorem, it holds that

BA (H) = {T ∈ B (H) : R (T ∗A) ⊆ R (A)} .

Further, the set of all operators admitting A1/2 -adjoints is denoted by BA1/2 (H) . Again, by applying Douglas
theorem, we obtain

BA1/2 (H) = {T ∈ B (H) : ∃λ > 0, ∥Tx∥A ≤ λ ∥x∥A , ∀x ∈ H} .
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Operators in BA1/2 (H) are called A -bounded.
If T ∈ BA (H) , the reduced solution (or Douglas solution) of the equation AX = T ∗A is a distinguished

A -adjoint operator of T, which is denoted by T ∗A . We observe that

T ∗A = A†T ∗A,

where A† is the Moore-Penrose inverse of A (see [2, 3]). It is well-known that the operator T ∗A satisfies

AT ∗A = T ∗A, R (T ∗A) ⊆ R (A) and N (T ∗A) = N (T ∗A) .

Also, note that if T ∈ BA (H) , then T ∗A ∈ BA (H) and (T ∗A)
∗A = PATPA, where PA denotes the ortogonal

projection onto R (A) . Moreover, if T ∈ BA (H) , then ∥T ∗A∥ = ∥T∥A . For more results and proofs related to
this class of operators, the reader can consult in [2, 3] and their references.

An operator T ∈ B (H) is said to be A -selfadjoint if AT is selfadjoint, that is, AT = T ∗A . In addition,
an operator T is called A -positive if AT ≥ 0 and we write T ≥A 0 .

For the sequal, the Hilbert space
(
R
(
A1/2

)
, ⟨., .⟩R(A1/2)

)
will be simply denoted by R

(
A1/2

)
.

Using these notions, in the study in [30], the author investigated upper and lower bounds of the A -
numerical radius of operators.

The paper is organized as follows.
In Section 2, inspired by the A -numerical radius inequalities of bounded linear operators in the study in

[30] and by using (A, r) -adjoint of operators, we state a useful characterization of the A -Berezin number and
A -Berezin norm for T ∈ BA,r (H) as follows :

berA (T ) = sup
x2+y2=1

∥xRA (T ) + yζA (T )∥A−Ber .

In particular, for T ∈ BA,r (H) we prove that

berA (T ) = ∥T∥A−Ber ,

berA (T ) ≤
√
2

2

√
∥TT ∗A + T ∗AT∥A−ber ≤ ∥T∥A−Ber ,

1

2
∥T∥A−Ber ≤

1

2

√
∥TT ∗A + T ∗AT∥A−Ber + 2c̃A (T 2) ≤ berA (T )

and

1

2
∥T∥A−Ber ≤ max

{
|sin|A T,

√
2

2

}
berA (T ) ≤ berA (T ) .

Our results generalize recent Berezin number inequalities of bounded linear operators thanks to Başaran and
Gürdal [6] and Huban et al. [19, 20].
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2. Main results
Let H = H (Ω) be a reproducing kernel Hilbert space with reproducing kernel Kλ . It is natural to define the
A -Berezin symbol of operator T ∈ B (H (Ω)) by the formula

T̃A (λ) :=
〈
TK̂λ, K̂λ

〉
A
=
〈
ATK̂λ, K̂λ

〉
, λ ∈ Ω.

We denote the set of all operators in B (H (Ω)) admitting (A, r) -adjoints by BA,r (H) := BA,r (H (Ω)) .
Throughout this section, for an arbitrary operator T ∈ BA,r (H) , we write

RA (T ) :=
T + T ∗A

2
and ζA (T ) :=

T − T ∗A

2i
.

For T ∈ BA,r (H) , its Crawford number cA (T ) is defined by

cA (T ) := inf {|⟨Tx, x⟩A| : x ∈ H, ∥x∥A = 1}

(see [30]). We also introduce the number c̃A (T ) := infλ∈Ω

∣∣∣T̃A (λ)
∣∣∣ . It is clear that

cA (T ) ≤ c̃A (T ) ≤ berA (T ) .

For T ∈ BA,r (H) , let us recall the abbreviated notion

|cos|A T := inf

{
|⟨Tx, x⟩|

∥Tx∥A ∥x∥A
: x ∈ H, ∥Tx∥A ∥x∥A ̸= 0

}
and

|sin|A T :=

√
1− |cos|2A T .

Our first result proves inequalities between ∥T∥A−ber and berA (T ) with A in BA,r (H) .

Lemma 2.1 Let T ∈ BA,r (H) be an (A, r)-selfadjoint operator. Then

berA (T ) = ∥T∥A−Ber .

Proof Let λ ∈ Ω be arbitrary. By the Cauchy-Schwarz inequality, we get∣∣∣T̃A
∣∣∣ = ∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ ≤ ∥∥∥TK̂λ

∥∥∥
A−Ber

∥∥∥K̂λ

∥∥∥
A−Ber

and
sup
λ∈Ω

∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ ≤ sup
λ∈Ω

∥∥∥TK̂λ

∥∥∥
A−Ber

and hence,
berA (T ) ≤ ∥T∥A−Ber .

In addition, since T is an (A, r) -selfadjoint operator, for every λ, µ ∈ Ω , we have〈
T
(
K̂λ + K̂µ

)
, K̂λ + K̂µ

〉
A
=
〈
TK̂λ, K̂λ

〉
A
+ 2Re

〈
TK̂λ, K̂µ

〉
A
+
〈
TK̂µ, K̂µ

〉
A
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and 〈
T
(
K̂λ − K̂µ

)
, K̂λ − K̂µ

〉
A
=
〈
TK̂λ, K̂λ

〉
A
− 2Re

〈
TK̂λ, K̂µ

〉
A
+
〈
TK̂µ, K̂µ

〉
A
.

Consequently, we conclude

4Re
〈
TK̂λ, K̂µ

〉
A
=
〈
T
(
K̂λ + K̂µ

)
, K̂λ + K̂µ

〉
A
−
〈
T
(
K̂λ − K̂µ

)
, K̂λ − K̂µ

〉
A
.

So, we attain

4
∣∣∣Re〈TK̂λ, K̂µ

〉
A

∣∣∣ ≤ berA (T )

(∥∥∥K̂λ + K̂µ

∥∥∥2
A−Ber

+
∥∥∥K̂λ − K̂µ

∥∥∥2
A−Ber

)
.

Then this paralellogram law as observed by that:

∣∣∣Re〈TK̂λ, K̂µ

〉
A

∣∣∣ ≤ berA (T )

4

(
2
∥∥∥K̂λ

∥∥∥2
A−Ber

+ 2
∥∥∥K̂µ

∥∥∥2
A−Ber

)
= berA (T ) . (2.1)

Now, contemplate the polar decomposition
〈
TK̂λ, K̂µ

〉
A
= eiθ

∣∣∣〈TK̂λ, K̂µ

〉
A

∣∣∣ with θ ∈ R . In (2.1) by replacing

K̂µ by eiθK̂µ, we get ∣∣∣〈TK̂λ, K̂µ

〉
A

∣∣∣ = Re
〈
TK̂λ, e

iθK̂µ

〉
A
≤ berA (T ) .

By taking the supremum over λ, µ ∈ Ω above inequality, we have

∥T∥A−Ber ≤ berA (T ) .

This finalizes the proof. 2

Corollary 2.2 Let T ∈ BA,r (H) . Then, for γ ∈ C ,

0 ≤ ∥T∥2A−Ber − ber2A (T ) ≤ inf
γ∈C

{
∥T − γI∥2A−Ber − c̃2A (T − γI)

}
.

Proof Let λ ∈ Ω be arbitrary. An elementary calculus shows that∥∥∥TK̂λ

∥∥∥2
A−Ber

−
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2 =
∥∥∥TK̂λ − γK̂λ

∥∥∥2
A−Ber

−
∣∣∣〈TK̂λ − γK̂λ, K̂λ

〉
A

∣∣∣2
whence ∥∥∥TK̂λ

∥∥∥2
A−Ber

−
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2 ≤
∥∥∥TK̂λ

∥∥∥2
A−Ber

− inf
λ∈Ω

∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2
= ∥T − γI∥2A−Ber − c̃2A (T − γI) .

Accordingly ∥∥∥TK̂λ

∥∥∥2
A−Ber

−
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2 ≤ inf
γ∈C

{
∥T − γI∥2A−Ber − c̃2A (T − γI)

}
and by taking supremum over λ ∈ Ω,

sup
λ∈Ω

(∥∥∥TK̂λ

∥∥∥2
A−Ber

−
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2) ≤ inf
γ∈C

{
∥T − γI∥2A−Ber − c̃2A (T − γI)

}
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which is equivalent to

∥T∥2A−Ber − ber2A (T ) ≤ inf
γ∈C

{
∥T − γI∥2A−Ber − c̃2A (T − γI)

}
as required. 2

Lemma 2.3 Let T ∈ BA,r (H) . For every θ ∈ R ,

berA

(
eiθT +

(
eiθT

)∗A
2

)
=

∥∥∥∥∥eiθT +
(
eiθT

)∗A
2

∥∥∥∥∥
A−Ber

.

Proof Let θ ∈ R. We have
(
(eiθT)

∗A
+
(
(eiθT)

∗A
)∗A

2

)∗A

=

(
(eiθT)

∗A
)∗A

+(eiθT)
∗A

2 . By appling the property

AT ∗A = T ∗A, then we can reach the following easily.

〈(
eiθT

)∗A
+
((

eiθT
)∗A)∗A

2
K̂λ, K̂µ

〉
A

=

〈
A


(
eiθT

)∗A
+
((

eiθT
)∗A)∗A

2

 K̂λ, K̂µ

〉

=

〈A

(
eiθT

)∗A
2

+A

((
eiθT

)∗A)∗A
2

 K̂λ, K̂µ

〉

=

〈(((eiθT )∗A)∗A)∗A

2
AK̂λ, K̂µ

〉
+

〈((
eiθT

)∗A)∗
2

AK̂λ, K̂µ

〉

=

〈
(
eiθT

)∗A
+
((

eiθT
)∗A)∗A

2


∗A

AK̂λ, K̂µ

〉

=

〈
AK̂λ,


(
eiθT

)∗A
+
((

eiθT
)∗A)∗A

2

 K̂µ

〉

for all λ, µ ∈ Ω. This indicates that (eiθT)
∗A

+
(
(eiθT)

∗A
)∗A

2 is an (A, r) -selfadjoint operator. So by Lemma 2.1

we get

berA


(
eiθT

)∗A
+
((

eiθT
)∗A)∗A

2

 =

∥∥∥∥∥∥∥
(
eiθT

)∗A
+
((

eiθT
)∗A)∗A

2

∥∥∥∥∥∥∥
A−Ber

. (2.2)
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Since berA
(
E∗A) = berA (E) and

∥∥E∗A
∥∥
A−Ber

= ∥E∥A−Ber for every E ∈ BA,r (H) , from (2.2) it follows that

berA

(
eiθT +

(
eiθT

)∗A
2

)
=

∥∥∥∥∥eiθT +
(
eiθT

)∗A
2

∥∥∥∥∥
A−Ber

.

2

Now, we explain the third lemma which will be applied to prove Theorem 2.5 .

Lemma 2.4 Let T ∈ BA,r (H) and λ ∈ Ω . Then

sup
θ∈R

∣∣∣∣∣
(
eiθT +

(
eiθT

)∗A
2

)∼A

(λ)

∣∣∣∣∣ = ∣∣∣T̃A (λ)
∣∣∣ . (2.3)

Proof Let θ ∈ R. We have∣∣∣∣∣
〈
eiθT +

(
eiθT

)∗A
2

K̂λ, K̂λ

〉
A

∣∣∣∣∣ = 1

2

∣∣∣eiθ 〈TK̂λ, K̂λ

〉
A
+ e−iθ

〈
T ∗AK̂λ, K̂λ

〉
A

∣∣∣
=

1

2

∣∣∣eiθ 〈TK̂λ, K̂λ

〉
A
+ e−iθ

〈
K̂λ, T K̂λ

〉
A

∣∣∣ .
Thus ∣∣∣∣∣

〈
eiθT +

(
eiθT

)∗A
2

K̂λ, K̂λ

〉
A

∣∣∣∣∣ = ∣∣∣Re(eiθ 〈TK̂λ, K̂λ

〉
A

)∣∣∣ . (2.4)

Now, it is observed that∣∣∣∣∣
〈
eiθT +

(
eiθT

)∗A
2

K̂λ, K̂λ

〉
A

∣∣∣∣∣ ≤ ∣∣∣〈TK̂λ, K̂λ

〉∣∣∣
A
,

whence

sup
θ∈R

∣∣∣∣∣
(
eiθT +

(
eiθT

)∗A
2

)∼A

(λ)

∣∣∣∣∣ ≤ ∣∣∣T̃A (λ)
∣∣∣ . (2.5)

Now, if
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ = 0 , the result becomes clear. Suppose that
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ ̸= 0 . Then we state

eiθ0 =
⟨K̂λ,T K̂λ⟩

A

|⟨TK̂λ,K̂λ⟩
A
| . Therefore, by (2.4), we find

∣∣∣∣∣
〈
eiθ0T +

(
eiθ0T

)∗A
2

K̂λ, K̂λ

〉
A

∣∣∣∣∣ = ∣∣∣Re(eiθ0 〈TK̂λ, K̂λ

〉
A

)∣∣∣ = ∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ . (2.6)

From (2.5) and (2.6) it follows that

sup
θ∈R

∣∣∣∣∣
(
eiθT +

(
eiθT

)∗A
2

)∼A

(λ)

∣∣∣∣∣ = ∣∣∣T̃A (λ)
∣∣∣ .

2

It is time to explain a useful characterization of the A -Berezin number for semi-Hilbertian space operators.
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Theorem 2.5 Let T ∈ BA,r (H) and λ ∈ Ω . Then

berA (T ) = sup
θ∈R

∥∥∥∥∥eiθT +
(
eiθT

)∗A
2

∥∥∥∥∥
A−Ber

.

Proof Let K̂λ be a reproducing kernel of space H (Ω) and θ ∈ R. By Lemma 2.3 it follows that

berA

(
eiθT +

(
eiθT

)∗A
2

)
=

∥∥∥∥∥eiθT +
(
eiθT

)∗A
2

∥∥∥∥∥
A−Ber

.

Therefore, by Lemma 2.4 we come to this conclusion

sup
θ∈R

∥∥∥∥∥eiθT +
(
eiθT

)∗A
2

∥∥∥∥∥
A−Ber

= sup
θ∈R

berA

(
eiθT +

(
eiθT

)∗A
2

)

= sup
θ∈R

sup
λ∈Ω

∣∣∣∣∣
〈
eiθT +

(
eiθT

)∗A
2

K̂λ, K̂λ

〉
A

∣∣∣∣∣
(by the equation (2.3)

= sup
λ∈Ω

∣∣∣T̃A (λ)
∣∣∣
A
= berA (T ) .

2

We introduce one of the main results of this section.

Theorem 2.6 Let T ∈ BA,r (H) . Then for x, y ∈ R,

berA (T ) = sup
x2+y2=1

∥xRA (T ) + yζA (T )∥A−Ber .

Proof Let θ ∈ R. Put x = cos θ and y = − sin θ. We have

eiθT +
(
eiθT

)∗A
2

=
(cos θ + i sin θ)T + (cos θ − i sin θ)T ∗A

2

= x
T + T ∗A

2
+ y

T − T ∗A

2i
.

Therefore

sup
θ∈R

∥∥∥∥∥eiθT +
(
eiθT

)∗A
2

∥∥∥∥∥
A−Ber

= sup
x2+y2=1

∥∥∥∥xT + T ∗A

2
+ y

T − T ∗A

2i

∥∥∥∥
A−Ber

and hence, by Theorem 2.5 , we obtain

berA (T ) = sup
x2+y2=1

∥∥∥∥xT + T ∗A

2
+ y

T − T ∗A

2i

∥∥∥∥
A−Ber

.

2

By establishing (x, y) = (1, 0) and (x, y) = (0, 1) in Theorem 2.6 , the following result is achieved.
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Corollary 2.7 Let T ∈ BA,r (H) . Then

max

{∥∥∥∥T + T ∗A

2

∥∥∥∥
A−Ber

,

∥∥∥∥T − T ∗A

2i

∥∥∥∥
A−Ber

}
≤ berA (T ) .

Another consequence of Theorem 2.6 is shown as this:

Corollary 2.8 Let T ∈ BA,r (H) and λ, µ ∈ Ω . Then

1

2
∥T∥A−Ber ≤ berA (T ) ≤ ∥T∥A−Ber . (2.7)

Proof Let λ ∈ Ω be arbitrary. By the Cauchy-Schwarz inequality, we get∣∣∣T̃A
∣∣∣ = ∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ ≤ ∥∥∥TK̂λ

∥∥∥
A−Ber

∥∥∥K̂λ

∥∥∥
A−Ber

.

By taking the supremum over λ ∈ Ω above inequality, we have

berA (T ) ≤ ∥T∥A−Ber .

Hence, by using Corollary 2.7 , we get

T =
T + T ∗A

2
− T ∗A

2
=

T + T ∗A

2
+ i

T − T ∗A

2i

and

∥T∥A−Ber ≤
∥∥∥∥T + T ∗A

2

∥∥∥∥
A−Ber

+

∥∥∥∥T − T ∗A

2

∥∥∥∥
A−Ber

≤ 2berA (T ) .

So, we have ∥T∥A−Ber ≤ 2berA (T ) . 2

We improve the second inequality in (2.7) in the following theorem.

Theorem 2.9 Let T ∈ BA,r (H) and λ ∈ Ω.Then

berA (T ) ≤
√
2

2

√
∥TT ∗A + T ∗AT∥A−ber ≤ ∥T∥A−Ber .

Proof Put P :=
T∗A+(T∗A)

∗A

2 and Q :=
T∗A−(T∗A)

∗A

2i . Then T ∗A = P + iQ. Also, an elementary calculus
shows that

P 2 +Q2 =

(
T ∗A)∗A T ∗A + T ∗A (T ∗A)∗A

2
=

(
TT ∗A + T ∗AT

2

)∗A

.

Since
∥∥E∗A

∥∥
A−Ber

= ∥E∥A−Ber for every E ∈ BA,r (H) , hence

∥∥P 2 +Q2
∥∥
A−Ber

=
1

2

∥∥TT ∗A + T ∗AT
∥∥
A−Ber

. (2.8)
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Now, let λ ∈ Ω be arbitrary. We have∣∣∣〈K̂λ, T K̂λ

〉
A

∣∣∣2 =
∣∣∣〈T ∗AK̂λ, K̂λ

〉
A

∣∣∣2
=
〈
(P + iQ) K̂λ, K̂λ

〉
A

〈
K̂λ, (P + iQ) K̂λ

〉
A

=
(〈

PK̂λ, K̂λ

〉
A
+ i
〈
QK̂λ, K̂λ

〉
A

)(〈
K̂λ, P K̂λ

〉
A
− i
〈
K̂λ, QK̂λ

〉
A

)
=
∣∣∣〈PK̂λ, K̂λ

〉
A

∣∣∣2 + ∣∣∣〈QK̂λ, K̂λ

〉
A

∣∣∣2
≤
〈
PK̂λ, P K̂λ

〉
A
+
〈
QK̂λ, QK̂λ

〉
A

(by Cauchy-Schwarz inequality

=
〈
P 2K̂λ, K̂λ

〉
A
+
〈
Q2K̂λ, K̂λ

〉
A

(since P ∗A = P and Q∗A = Q)

=
〈(

P 2 +Q2
)
K̂λ, K̂λ

〉
A

=
1

2

〈(
TT ∗A + T ∗AT

)∗A
K̂λ, K̂λ

〉
A

(by the inequality (2.8).

and

sup
λ∈Ω

∣∣∣〈K̂λ, T K̂λ

〉
A

∣∣∣2 ≤ 1

2
sup
λ∈Ω

〈(
TT ∗A + T ∗AT

)
K̂λ, K̂λ

〉
A
,

or equivalently,

berA (T ) ≤
√
2

2

√
∥TT ∗A + T ∗AT∥A−ber. (2.9)

In addition, since
∥∥TT ∗A

∥∥
A−Ber

=
∥∥T ∗AT

∥∥
A−Ber

= ∥T∥2A−Ber , by the triangle inequality we reach

√
2

2

√
∥TT ∗A + T ∗AT∥A−Ber ≤

√
2

2

√
∥TT ∗A∥A−Ber + ∥T ∗AT∥A−Ber = ∥T∥A−Ber .

Thus
√
2

2

√
∥TT ∗A + T ∗AT∥A−Ber ≤ ∥T∥A−Ber . (2.10)

By the inequalities (2.9) and (2.10) , we get

berA (T ) ≤
√
2

2

√
∥TT ∗A + T ∗AT∥A−Ber ≤ ∥T∥A−Ber

as required. 2

We express another improvement of the second inequality in (2.8).
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Theorem 2.10 Let T ∈ BA,r (H) . Then

berA (T ) ≤ 1

2

√
∥TT ∗A + T ∗AT∥A−Ber + 2berA (T 2) ≤ ∥T∥A−Ber .

Proof Since
∥∥E∗A

∥∥
A−Ber

= ∥E∥A−Ber and
∥∥EE∗A∥∥

A−Ber
= ∥E∥2A−Ber for every E ∈ BA,r (H) , by Theorem

2.5 , we have

berA (T )

= sup
θ∈R

∥∥∥∥∥eiθT +
(
eiθT

)∗A
2

∥∥∥∥∥
A−Ber

=
1

2
sup
θ∈R

∥∥∥∥(eiθT )∗A +
((

eiθT
)∗A)∗A∥∥∥∥

A−Ber

=
1

2
sup
θ∈R

√∥∥∥∥(eiθT )∗A +
(
(eiθT )

∗A
)∗A((

(eiθT )
∗A
)∗A

+ (eiθT )
∗A
)∥∥∥∥

A−Ber

=
1

2
sup
θ∈R

√√√√∥∥∥∥∥T ∗A (T ∗A)
∗A

+ (T ∗A)
∗A

T ∗A +
(
(eiθT )

∗A
)2

+

((
(eiθT )

∗A
)∗A)2

∥∥∥∥∥
A−Ber

≤ 1

2
sup
θ∈R

√√√√∥∥∥T ∗A (T ∗A)
∗A

+ (T ∗A)
∗A

T ∗A
∥∥∥
A−Ber

+

∥∥∥∥∥((eiθT )∗A)2 +
((

(eiθT )
∗A
)∗A)2

∥∥∥∥∥
A−Ber

≤ 1

2
sup
θ∈R

√√√√∥TT ∗A + T ∗AT∥A−Ber + 2

∥∥∥∥∥e2iθT 2 + (e2iθT 2)
∗A

2

∥∥∥∥∥
A−Ber

≤ 1

2

√√√√∥TT ∗A + T ∗AT∥A−Ber + 2 sup
θ∈R

∥∥∥∥∥e2iθT 2 + (e2iθT 2)
∗A

2

∥∥∥∥∥
A−Ber

=
1

2

√
∥TT ∗A + T ∗AT∥A−Ber + 2berA (T 2) (by Theorem 2.5)

≤ 1

2

√
∥TT ∗A∥A−Ber + ∥T ∗AT∥A−Ber + 2berA (T 2)

=

√
2

2

√
∥T∥2A−Ber + berA (T 2)

≤
√
2

2

√
∥T∥2A−Ber + ∥T 2∥A−Ber (by Corollary 2.8)

≤
√
2

2

√
∥T∥2A−Ber + ∥T∥2A−Ber = ∥T∥A−Ber

which proves the desired inequalities. 2

We achieved an improvement of the first inequality in (2.7) in the theorem below.
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Theorem 2.11 Let T ∈ BA,r (H) . Then

1

2
∥T∥A−Ber ≤

1

2

√
∥TT ∗A + T ∗AT∥A−Ber + 2c̃A (T 2) ≤ berA (T ) .

Proof Let λ ∈ Ω be an arbitrary. Suppose that
∣∣∣〈T ∗AT ∗AK̂λ, K̂λ

〉
A

∣∣∣ = e−2iθ
〈
T ∗AT ∗AK̂λ, K̂λ

〉
A

for some

real number θ. Since
∥∥E∗A

∥∥
A−Ber

= ∥E∥A−Ber and
∥∥RR∗A∥∥

A−Ber
= ∥R∥2A−Ber for every E ∈ BA,r (H) . Then,

we have

e2iθ
〈(

T ∗A)∗A (T ∗A)∗A K̂λ, K̂λ

〉
A

= e−2iθ
〈
T ∗AT ∗AK̂λ, K̂λ

〉
A
=
∣∣∣〈T ∗AT ∗AK̂λ, K̂λ

〉
A

∣∣∣ = ∣∣∣〈K̂λ, T
2K̂λ

〉
A

∣∣∣ .
Thus

e−2iθ
〈
T ∗AT ∗AK̂λ, K̂λ

〉
A
=
∣∣∣〈K̂λ, T

2K̂λ

〉
A

∣∣∣ = e2iθ
〈(

T ∗A)∗A (T ∗A)∗A K̂λ, K̂λ

〉
A
. (2.11)

So, by Theorem 2.5 , we obtain

4ber2A (T )

≥
∥∥∥eiθT +

(
eiθT

)∗A∥∥∥2
A−Ber

=

∥∥∥∥(eiθT )∗A +
((

eiθT
)∗A)∗A∥∥∥∥2

A−Ber

=

∥∥∥∥∥(eiθT )∗A +
((

eiθT
)∗A)∗A((

eiθT
)∗A

+
((

eiθT
)∗A)∗A)∗A

∥∥∥∥∥
A−Ber

=
∥∥∥T ∗A (T ∗A)∗A +

(
T ∗A)∗A T ∗A + e−2iθT ∗AT ∗A + e2iθ

(
T ∗A)∗A (T ∗A)∗A∥∥∥

A−Ber

≥
∣∣∣〈T ∗A (T ∗A)∗A +

(
T ∗A)∗A T ∗A + e−2iθT ∗AT ∗A + e2iθ

(
T ∗A)∗A (T ∗A)∗A K̂λ, K̂λ

〉
A

∣∣∣
=
∣∣∣〈(T ∗A (T ∗A)∗A +

(
T ∗A)∗A T ∗AK̂λ, K̂λ

)〉
A

+e−2iθ
〈
T ∗AT ∗AK̂λ, K̂λ

〉
A
+ e2iθ

〈(
T ∗A)∗A (T ∗A)∗A K̂λ, K̂λ

〉
A

∣∣∣
=
〈(

T ∗A (T ∗A)∗A +
(
T ∗A)∗A T ∗A

)
K̂λ, K̂λ

〉
A
+ 2

∣∣∣〈K̂λ, T
2K̂λ

〉
A

∣∣∣
(by inequality (2.11))

≥
〈(

T ∗A (T ∗A)∗A +
(
T ∗A)∗A T ∗A

)
K̂λ, K̂λ

〉
A
+ 2 inf

λ∈Ω

∣∣∣〈K̂λ, T
2K̂λ

〉
A

∣∣∣
=
〈(

T ∗A (T ∗A)∗A +
(
T ∗A)∗A T ∗A

)
K̂λ, K̂λ

〉
A
+ 2c̃A

(
T 2
)
.

From this it follows that

1

2

√〈(
T ∗A (T ∗A)

∗A
+ (T ∗A)

∗A
T ∗A

)
K̂λ, K̂λ

〉
A
+ 2c̃A (T 2) ≤ berA (T ) .
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Taking the supremum over λ ∈ Ω in the above inequality we get

1

2

√
∥TT ∗A + T ∗AT∥A−ber + 2c̃A (T 2) ≤ berA (T ) . (2.12)

Furthermore, since T ∗AT is an A -positive operator, from
∥∥TT ∗A + T ∗AT

∥∥
A−Ber

≥
∥∥TT ∗A

∥∥
A−Ber

= ∥T∥2A−Ber

it follows that

1

2

√
∥TT ∗A + T ∗AT∥A−ber + 2c̃A (T 2) ≥ 1

2

√
∥TT ∗A + T ∗AT∥A−Ber ≥

1

2
∥T∥A−Ber . (2.13)

Now, by (2.12) and (2.13) we conclude that

1

2
∥T∥A−Ber ≤

1

2

√
∥TT ∗A + T ∗AT∥A−Ber + 2c̃A (T 2) ≤ berA (T ) .

2

Another improvement of the first inequality in (2.7) is stated.

Theorem 2.12 Let T ∈ BA,r (H) and λ ∈ Ω. Then

1

2
∥T∥A−Ber ≤

√
ber2A (T )

2
+

berA (T )

2

√
ber2A (T )− c̃2A (T ) ≤ berA (T ) .

Proof Clearly,
√

ber2A(T )

2 + berA(T )
2

√
ber2A (T )− c̃2A (T ) ≤ berA (T ) . Now, let λ ∈ Ω be arbitrary. Sup-

pose that
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ = eiθ
〈
TK̂λ, K̂λ

〉
A

for some real number θ. Put P :=
eiθT+(eiθT)

∗A

2 and Q :=

eiθT−(eiθT)
∗A

2i . Then P + iQ = eiθT and

〈
PK̂λ, K̂λ

〉
A
+ i
〈
QK̂λ, K̂λ

〉
A
= eiθ

〈
TK̂λ, K̂λ

〉
A
=
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣ ≥ 0.

It follows from
〈
QK̂λ, K̂λ

〉
A
= Im

〈
eiθTK̂λ, K̂λ

〉
A
∈ R that

〈
eiθTK̂λ, K̂λ

〉
A
=
〈
PK̂λ, K̂λ

〉
A

since
〈
QK̂λ, K̂λ

〉
A
= 0
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So, we have

1

4

∥∥∥TK̂λ

∥∥∥2
A
=

1

4

(∥∥∥eiθTK̂λ −
〈
eiθTK̂λ, K̂λ

〉
A
K̂λ

∥∥∥2
A−Ber

+
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2)
=

1

4

(∥∥∥PK̂λ −
〈
PK̂λ, K̂λ

〉
A
K̂λ + i

〈
QK̂λ, K̂λ

〉
A
K̂λ

∥∥∥2
A−Ber

+
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2)
since

〈
QK̂λ, K̂λ

〉
A
= 0

≤ 1

4

((∥∥∥PK̂λ −
〈
PK̂λ, K̂λ

〉
A
K̂λ

∥∥∥
A−Ber

+
∥∥∥QK̂λ

∥∥∥
A

)2

+
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2)

=
1

4

(√∥∥∥PK̂λ

∥∥∥2
A
−
∣∣∣〈PK̂λ, K̂λ

〉
A

∣∣∣2 + ∥∥∥QK̂λ

∥∥∥
A

)2

+
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2


=
1

4

(√∥∥∥PK̂λ

∥∥∥2
A
−
∣∣∣〈eiθTK̂λ, K̂λ

〉
A

∣∣∣2 + ∥∥∥QK̂λ

∥∥∥
A

)2

+
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2


since
〈
PK̂λ, K̂λ

〉
A
=
〈
eiθTK̂λ, K̂λ

〉
A

≤ 1

4

(√∥P∥2A−Ber −
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2 + ∥Q∥A−Ber

)2

+
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2


≤ 1

4

(√ber2A (T )−
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2 + berA (T )

)2

+
∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2


(since ∥P∥A−Ber , ∥Q∥A−Ber ≤ berA
(
eiθT

)
= berA (T ))

=
ber2A (T )

2
+

berA (T )

2

√
ber2A (T )−

∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2.
Hence

1

2

∥∥∥TK̂λ

∥∥∥
A
≤

√
ber2A (T )

2
+

berA (T )

2

√
ber2A (T )− inf

λ∈Ω

∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2, (2.14)

which implies

1

2

∥∥∥TK̂λ

∥∥∥
A
≤

√
ber2A (T )

2
+

berA (T )

2

√
ber2A (T )− c̃2A (T ).

Taking the supremum over λ ∈ Ω in the above inequality we get

1

2
∥T∥A−Ber ≤

√
ber2A (T )

2
+

berA (T )

2

√
ber2A (T )− c̃2A (T ).

2

A considerable improvement of the first inequality in (2.7) is said in the last theorem.
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Theorem 2.13 Let T ∈ BA,r (H) and λ ∈ Ω. Then

1

2
∥T∥A−Ber ≤ max

{
|sin|A T,

√
2

2

}
berA (T ) ≤ berA (T ) .

Proof Obviously,

max

{
|sin|A T,

√
2

2

}
berA (T ) ≤ berA (T ) .

Furthermore, by (2.14) we have

1

2

∥∥∥TK̂λ

∥∥∥
A
≤

√
ber2A (T )

2
+

berA (T )

2

√
ber2A (T )−

∣∣∣〈TK̂λ, K̂λ

〉
A

∣∣∣2
and hence

1

2

∥∥∥TK̂λ

∥∥∥
A
≤

√
ber2A (T )

2
+

berA (T )

2

√
ber2A (T )−

∥∥∥TK̂λ

∥∥∥2
A
|cos|2A T .

From this it follows that

∥∥∥TK̂λ

∥∥∥2
A
− 2ber2A (T ) ≤ 2berA (T )

√
ber2A (T )−

∥∥∥TK̂λ

∥∥∥2
A
|cos|2A T (2.15)

We contemplate two cases.

Case1.
∥∥∥TK̂λ

∥∥∥2
A
− 2ber2A (T ) ≤ 0. Then we reach that

∥∥∥TK̂λ

∥∥∥
A
≤

√
2berA (T ) and so

1

2
∥T∥A−Ber ≤

√
2

2
berA (T ) . (2.16)

Case 2.
∥∥∥TK̂λ

∥∥∥2
A
− 2ber2A (T ) > 0. By (2.15) it follows that

∥∥∥TK̂λ

∥∥∥4
A−Ber

− 4
∥∥∥TK̂λ

∥∥∥2
A−Ber

ber2A (T ) + 4ber4A (T )

≤ 4ber4A (T )− 4ber2A (T )
∥∥∥TK̂λ

∥∥∥2
A−Ber

|cos|2A T.

Thus ∥∥∥TK̂λ

∥∥∥2
A
≤ 4

(
1− |cos|2A T

)
ber2A (T ) .

This yields
1

2

∥∥∥TK̂λ

∥∥∥
A
≤ |sin|A TberA (T ) ,

and hence
1

2
∥T∥A−Ber ≤ |sin|A TberA (T ) . (2.17)
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Now, by (2.16) and (2.17) we obtain

1

2
∥T∥A−Ber ≤ max

{
|sin|A T,

√
2

2

}
berA (T ) .

2
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