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Abstract: In this paper, we deal with singularly perturbed Fredholm integro differential equation (SPFIDE) with
mixed boundary conditions. By using interpolating quadrature rules and exponential basis function, fitted second order
difference scheme has been constructed on a Shishkin mesh. The stability and convergence of the difference scheme have
been analyzed in the discrete maximum norm. Some numerical examples have been solved and numerical outcomes are
obtained.
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1. Introduction
This paper deals with the following (SPFIDE) with mixed boundary conditions:

LNu := −εu′′ + a(x)u+ λ

l∫
0

K(x, s)u(s)ds = f(x), x ∈ (0, l) , (1.1)

L0u := −
√
εu′(0) + βu(0) = A, (1.2)

u(l) = B, (1.3)

where ε ∈ (0, 1] is a perturbation parameter, β > 0 , λ , A , B are given constant. It was presumed that
a(x) ≥ α > 0, f(x), (x ∈ [0, l]), K(x, s)

(
(x, s) ∈ [0, l]2

)
are the sufficiently smooth functions, to be specified.

Underneath these conditions, the solution u(x) of the problem (1.1)-(1.3) has in general boundary layers at
x = 0 and x = l .

Singularly perturbed problems (SPPs) are mostly characterized by a small parameter ε that multiplies
some or all of the higher order terms in the equation, because boundary layers are generally found in their
solutions. To cite a few, one can find the exact solutions of SPPs and their applications in [16, 19]. SPPs
possess a vast number of applications in the fields of fluid dynamics, population dynamics, heat transport
problems, nanofluid, neurobiology, mathematical biology, viscoelasticity, and simultaneous control systems etc.
It is notable that, whenever a small ε parameter is multiplied with the derivative, the vast majority of the
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classic numerical methods on uniform meshes are not proper for handling problems until severe diminutions are
being made on the step-size of discretization. So, as the ε perturbation parameter gets small, the truncation
error happens boundless. In order to solve SPPs, mostly approaches are made called the fitted finite difference
method and are used extensively [9, 13, 18, 20–22].

Most applications of engineering and various branches of science have been governed by Fredholm integro
differential equations (FIDEs). Population dynamics, fluid mechanics, financial mathematics, oceanography,
plasma physics, artificial neural networks, electromagnetic theory and biological processes are among these (see,
e.g., [5, 7, 14]). Thus, many papers have been written about FIDEs. Solving such kinds of problems is so
difficult. Therefore, we need uniform and robust numerical techniques [6, 8, 10, 11, 15, 23, 25, 28](see, also
references therein).

These mentioned studies related to FIDEs were only related to the regular cases (i.e. when the boundary
layers are absent). Until now, numerical investigation of SPFIDEs has not been common yet. Amiraliyev
et al. recently constructed an exponential-difference scheme with an accuracy of O(N−1) for a first-order
linear SPFIDE on a uniform grid in [1], and a finite-difference scheme with an accuracy of O

(
N−2 lnN

)
on

a Shishkin grid for the same problem in [2]. The major contribution of this study is to offer an elegant and
effective numerical technique with O

(
N−2 lnN

)
accuracy for second order linear SPFIDE with Robin boundary

condition on Shishkin mesh.
This study is organized in a subsequent manner. Properties of the solution, description of discretization

are given in Section 2. Mesh and error estimates are presented in Section 3. Computational results are given
to support the predicted theory in Section 4. Finally, inferences and discussions are given in the conclusion.

2. The continuous problem and difference scheme
Here, we have stated some analytical bounds that will be used later during our error analysis.

Lemma 2.1 Let a, f ∈ C2[0, l] , ∂mK
∂xm ∈ C[0, l]2 , (m = 0, 1, 2) and

|λ| < α

max
0≤x≤l

l∫
0

|K(x, s)| ds

,

then the solution u(x) of the problem (1.1)-(1.3) satisfies the estimates:

∥u∥∞ ≤ C, (2.1)

∣∣∣u(k)(x)
∣∣∣ ≤ C

(
1 + ε−

k
2

(
e
−

√
αx√
ε + e

−
√

α(l−x)√
ε

))
, (k = 1, 2) , x ∈ [0, l]. (2.2)

Proof The proof is by like approach as in [3, 26]. 2

Now, we now turn to the establishment of the difference scheme. Let ωN be any nonuniform mesh on
[0, l] :

ωN = {0 < x1 < ... < xN−1 < l, hi = xi − xi−1}
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and
ω̄N = ωN ∪ {x0 = 0, xN = l} .

To any mesh function v(x) defined on ω̄N , we use

vi = v(xi), ℏi =
hi + hi+1

2
, ∥v∥∞ ≡ ∥v∥∞,ω̄N

:= max
0≤i≤N

|vi| , v
x,i

=
vi+1 − vi
hi+1

, v_
x,i

=
vi − vi−1

hi
.

We construct the numerical method using the identity

χiℏ−1
i

xi+1∫
xi−1

(−εu′′ + a(x)u)φi(x)dx + χiℏ−1
i λ

xi+1∫
xi−1

φi(x)

 l∫
0

K (x, s)u (s) ds

 dx

= χiℏ−1
i

xi+1∫
xi−1

f(x)φi(x)dx, 1 ≤ i ≤ N − 1, (2.3)

with the basis functions

φi(x) =


φ
(1)
i (x) ≡ sinhγi(x−xi−1)

sinhγihi
, xi−1 < x < xi,

φ
(2)
i (x) ≡ sinhγi(xi+1−x)

sinhγihi+1
, xi < x < xi+1,

0, x /∈ (xi−1, xi+1) ,

where φ
(1)
i (x) and φ

(2)
i (x) are the solutions of the following problems, respectively:

−εφ′′(x) + aiφ(x) = 0, xi−1 < x < xi,

φ(xi−1) = 0, φ(xi) = 1.

−εφ′′(x) + aiφ(x) = 0, xi < x < xi+1,

φ(xi) = 1, φ(xi+1) = 0.

and

γi =

√
a (xi)

ε
,

χi =

ℏ−1
i

xi+1∫
xi−1

φi(x)dx

−1

=
γiℏi

tanh
(

γihi

2

)
+ tanh

(
γihi+1

2

) .
Using the appropriate quadratures formulas with the remainder term in integral form [4, 12, 17, 27] (see also
[24], pp. 207-214), to the first term at the right side of (2.3) we get

χiℏ−1
i

xi+1∫
xi−1

(−εu′′ + a(x)u)φi(x)dx = −εδ2ui + aiui + χiℏ−1
i

xi+1∫
xi−1

[a (x)− a (xi)]u (x)φi(x)dx, (2.4)
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where

δ2ui =
θ
(2)
i u

x,i
− θ

(1)
i u_

x,i

ℏi
, (2.5)

with

θ
(1)
i =

aihiℏi
εsinh (γihi)

[
tanh

(
γihi

2

)
+ tanh

(
γihi+1

2

)] ,
θ
(2)
i =

aihi+1ℏi
εsinh (γihi+1)

[
tanh

(
γihi

2

)
+ tanh

(
γihi+1

2

)] .
By Newton interpolation formula in respect to mesh points xi , xi+1 we have

a(x) = a(xi) + (x− xi)ax,i
+

1

2
(x− xi)(x− xi+1)a

′′(ξi(x)).
Therefore we get

χiℏ−1
i

xi+1∫
xi−1

[a(x)− a(xi)]u(x)φi(x)dx = χiℏ−1
i a

x,i

xi+1∫
xi−1

(x− xi)u(x)φi(x)dx

+
1

2
χiℏ−1

i

xi+1∫
xi−1

(x− xi)(x− xi+1)a
′′(ξi(x))u(x)φi(x)dx. (2.6)

Also using

u(x) = u(xi) +

x∫
xi

u′(t)dt,

in the first term at the right side of (2.6), we have

χih
−1
i

xi+1∫
xi−1

[a(x)− a(xi)]u(x)φi(x)dx = a
x,i
χiµiui +R

(1)
i ,

where

µi = ℏ−1
i

xi+1∫
xi−1

(x− xi)φi(x)dx,

R
(1)
i =

1

2
χiℏ−1

i

xi+1∫
xi−1

(x− xi)(x− xi+1)a
′′(ξi(x))u(x)φi(x)dx+χiℏ−1

i a
x,i

xi+1∫
xi−1

(x− xi)φi(x)

( x∫
xi

u′(t)dt

)
dx. (2.7)

Easy computation gives

µi = ℏ−1
i γ−1

i

(
hi

sinh (γihi)
− hi+1

sinh (γihi+1)

)
. (2.8)
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To fixed step size we possess µi = 0 .
Thereby the identity (2.4) degrades to

χiℏ−1
i

xi+1∫
xi−1

L1uφi(x)dx = −εδ2ui + āiui +R
(1)
i , (2.9)

where
āi = ai + a

x,i
χiµi. (2.10)

Similarly, we derive

χiℏ−1
i

xi+1∫
xi−1

f (x)φi (x) dx = fi + f
x,i
χiµi +R

(2)
i = f̄i +R

(2)
i , (2.11)

where
f̄i = fi + f

x,i
χiµi, (2.12)

R
(2)
i =

1

2
χiℏ−1

i

xi+1∫
xi−1

(x− xi) (x− xi+1) f
′′ (ξi (x))φi (x) dx. (2.13)

For hi = h = const., will be f̄i = fi .
Subsequently, for the integral part in (2.3), using the Taylor expansion

K(x, s) = K(xi, s) + (x− xi)
∂

∂x
K(xi, s) +

(x− xi)
2

2

∂2

∂x2
K
(
ξi(x), s

)
, (2.14)

we get

χiℏ−1
i λ

xi+1∫
xi−1

φi(x)

( l∫
0

K(x, s)u(s)ds

)
dx = λ

l∫
0

K(xi, s)u(s)ds+ µiλ

l∫
0

∂

∂x
K(xi, s)u(s)ds+R

(3)
i

≡ λ

l∫
0

K(xi, s)u(s)ds+R
(3)
i , (2.15)

where

K(xi, s) = K(xi, s) + µi
∂

∂x
K(xi, s), (2.16)

R
(3)
i =

1

2
χiℏ−1

i

xi+1∫
xi−1

(x− xi)
2φi(x)

( l∫
0

∂2

∂x2
K
(
ξi(x), s

)
u(s)ds

)
dx (2.17)

and µi is given by (2.8).
Finally, if the first term at the right side of (2.15) is operated by applying the composite trapezoidal integration
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[3], we get

λ

l∫
0

K(xi, s)u(s)ds = λ

N∑
j=0

ℏjKijuj +R
(4)
i , (2.18)

where

R
(4)
i =

1

2
λ

N∑
j=1

xj∫
xj−1

(xj − ξ)(xj−1 − ξ)
d2

dξ2
(
K(xi, ξ)u(ξ)

)
dξ. (2.19)

Combining (2.9),(2.11),(2.15) and (2.18) in (2.3) we obtain following difference scheme

LNui := −εδ2ui + āiui + λ

N∑
j=0

ℏjKijuj = f̄i −Ri (2.20)

with remainder term

Ri =

4∑
k=1

R
(k)
i , (2.21)

where R
(k)
i , (k = 1, 2, 3, 4) are defined by (2.7),(2.13),(2.17), and (2.19), respectively.

To define an approximation for the boundary condition (1.2), we start with the identity

χ−1
0

x1∫
0

L1uφ0(x)dx+ χ−1
0 λ

x1∫
0

φ0(x)

 l∫
0

K(x, s)u(s)ds

 dx = χ−1
0

x1∫
0

f(x)φ0(x)dx, (2.22)

where

χ0 =
√
ε+

a0
β

x1∫
0

φ0(x)dx =
√
ε+ a0β

−1γ−1
0 tanh

(
γ0h1

2

)
, γ0 =

√
a0
ε
,

φ0(x) =

{
sinh γ0(x1−x)

sinh γ0h1
, x0 < x < x1,

0, x /∈ (x0, x1)

and the basis function φ0(x) is the solution of the problem

−εφ′′(x) + a0φ(x) = 0, x0 < x < x1,

φ(x0) = 1, φ(x1) = 0.

Using the appropriate quadratures formulas with the remainder term in integral form [4, 12, 17, 27] (see also
[24], pp. 207-214), for the differential part from (2.22) we have

χ−1
0

x1∫
0

L1uφ0(x)dx = −
√
εθ0ux,0 + βu0 − Ā+ χ−1

0

x1∫
0

[a (x)− a (0)]u (x)φ0(x)dx, (2.23)
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where

θ0 = χ−1
0

√
ε− a0√

ε

x1∫
0

xφ0(x)dx

 , Ā = χ−1
0

√
εA.

Simple calculation gives

θ0 =
γ0h1

sinh (γ0h1) + 2
√
a0β−1 sinh2

(
γ0h1

2

) , (2.24)

Ā =
A
√
ε

√
ε+ a0β−1γ−1

0 tanh
(

γ0h1

2

) . (2.25)

By Newton interpolation formula, we have

a(x)− a(0) = xax,0 +
1

2
x (x− x1) a

′′(ξ0(x)).

Therefore we get

χ−1
0

x1∫
0

[a (x)− a (0)]u (x)φ0(x)dx = χ−1
0 ax,0

x1∫
0

xu (x)φ0(x)dx

+
1

2
χ−1
0

x1∫
0

x (x− x1) a
′′(ξ0(x))u(x)φ0(x)dx. (2.26)

Also using

u(x) = u(0) +

x∫
0

u′(t)dt,

in the first term at the right side of (2.26), we have

χ−1
0

x1∫
0

[a (x)− a (0)]u (x)φ0(x)dx = χ−1
0 ax,0µ0u0 + r(1),

where

µ0 =

x1∫
0

xφ0(x)dx =
1

γ2
0

sinh (γ0h1)−
h1

γ0
, (2.27)

r(1) =
1

2
χ−1
0

x1∫
0

x (x− x1) a
′′(ξ0(x))u(x)φ0(x)dx+ χ−1

0 ax,0

x1∫
0

xφ0(x)

 x∫
0

u′(t)dt

 dx. (2.28)

Thereby the identity (2.23) degrades to

χ−1
0

x1∫
0

L1uφ0(x)dx = −
√
εθ0ux,0 + β̄u0 − Ā+ r(1), (2.29)
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where
β̄ = β + χ−1

0 ax,0µ0 (2.30)

and µ0 is given by (2.27).
Analogously we derive

χ−1
0

x1∫
0

f(x)φ0(x)dx = k1f0 + k2fx,0 + r(2), (2.31)

where

k1 = χ−1
0

x1∫
0

φ0(x)dx =
tanh

(
γ0h1

2

)
√
a0 + a0β−1γ−1

0 tanh
(

γ0h1

2

) , (2.32)

k2 = χ−1
0 µ0 =

1
γ2
0
sinh (γ0h1)− h1

γ0

√
ε+ a0β−1γ−1

0 tanh
(

γ0h1

2

) , (2.33)

r(2) =
1

2
χ−1
0

x1∫
0

x(x− x1)f
′′(ξ0(x))φ0(x)dx. (2.34)

Using (2.14) for i = 0 we get

χ−1
0 λ

x1∫
0

φ0(x)

 l∫
0

K(x, s)u(s)ds

 dx = k1λ

l∫
0

K(0, s)u(s)ds+ k2λ

l∫
0

∂

∂x
K(0, s)u(s)ds+ r(3)

≡ λ

l∫
0

M(s)u(s)ds+ r(3), (2.35)

where

M(s) = k1K(0, s) + k2
∂

∂x
K(0, s), (2.36)

r(3) =
1

2
χ−1
0 λ

x1∫
0

x2φ0(x)

 l∫
0

∂2

∂x2
K(ξ0 (x) , s)u(s)ds

 dx. (2.37)

Further applying the composite trapezoidal rule [3] on [0, l] , we have

λ

l∫
0

M(s)u(s)ds = λ

N∑
j=0

ℏjMjuj + r(4), (2.38)

where

r(4) =
1

2
λ

N∑
j=1

xj∫
xj−1

(xj − ξ) (xj−1 − ξ)
d2

dξ2
(M (ξ)u (ξ)) dξ. (2.39)
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After taking into consideration (2.29), (2.31), (2.35) and (2.38) in (2.22), we obtain

L0u := −
√
εθ0ux,0 + β̄u0 + λ

N∑
j=0

ℏjMjuj = Ā+ k1f0 + k2fx,0 − r, (2.40)

with remainder term
r = r(1) − r(2) + r(3) + r(4), (2.41)

where r(1) , r(2) , r(3) and r(4) are identified by (2.28), (2.34), (2.37) and (2.39) separately.
Based on (2.20) and (2.40), we present the following difference scheme for approximating the problem (1.1)-(1.3):

LNyi := −εδ2yi + āiui + λ

N∑
j=0

ℏjKijyj = f̄i, 1 ≤ i ≤ N − 1, (2.42)

L0y := −
√
εθ0yx,0 + β̄y0 + λ

N∑
j=0

ℏjMjyj = Ā+ k1f0 + k2fx,0, (2.43)

yN = B, (2.44)

where δ2 , āi , f̄i , Kij , θ0 , Ā , β̄ , k1 , k2 and Mj are given by (2.5), (2.10), (2.12), (2.16), (2.24), (2.25), (2.30),
(2.32), (2.33), and (2.36) respectively.

3. The mesh and convergence

In order for the difference scheme (2.42)-(2.44) to be ε -uniform convergent, we use the Shishkin mesh. For
a positive integer N , that can be divided by four, the interval [0, l] is divided into three subintervals [0, σ] ,
[σ, l− σ] and [l − σ, l] . Here σ is meant the transition point, which splits the fine and coarse parts of the mesh
is acquired by receiving

σ = min

{
l

4
,
(√

α
)−1 √

ε lnN

}
.

The mesh is fine on [0, σ] and [l − σ, l] and coarse on [σ, l]. Therefore, if we indicate the step sizes in [0, σ] ,
[σ, l − σ] , and [l − σ, l] by h(1) and h(2) , separately, our Shishkin mesh can be phrased as

ωN =


xi = ih(1), i = 0, 1, ..., N

4 ; h(1) = 4σ
N ;

xi = σ +

(
i− N

4

)
h(2), i = N

4 + 1, ..., 3N
4 ; h(2) = 2(l−2σ)

N ;

xi = l − σ +

(
i− 3N

4

)
h(1), i = 3N

4 + 1, ..., N ; h(1) = 4σ
N .

Lemma 3.1 For a, f ∈ C2[0, l] and ∂mK
∂xm ∈ C2[0, l]2, (m = 0, 1, 2) . Then the truncation errors of the difference

scheme (2.20) and (2.40) satisfy

|Ri| ≤ CN−2 lnN, 1 ≤ i ≤ N − 1, (3.1)

|r| ≤ CN−2 lnN. (3.2)
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Proof We estimate R
(1)
i , R

(2)
i , R

(3)
i and R

(4)
i individually. We will handle the case σ = (

√
α)

−1 √
ε lnN . The

case σ = l/4 can be analysed in the classic way. Here we will make the estimate on [0, σ] , [σ, l−σ] and [l−σ, l]

separately.

First, for R
(2)
i . Since f ∈ C2[0, l] , h(1) and h(2) ≤ CN−1 , |x− xi+1| ≤ 2ℏi and |x− xi| ≤ max (hi, hi+1) , by

then evidently from R
(2)
i :

∣∣∣R(2)
i

∣∣∣ ≤ Cχiℏ−1
i

xi+1∫
xi−1

|(x− xi) (x− xi+1)| f ′′ (ξi (x))φi (x) dx

≤ C {max (hi, hi+1)}2

≤ CN−2. (3.3)

Secondly, for R
(3)
i in the similar way as above, the boundedness of ∂2K

∂x2 and considering (2.1), from (2.17) it
follows that

∣∣∣R(3)
i

∣∣∣ ≤

∣∣∣∣∣∣12χiℏ−1
i

xi+1∫
xi−1

(x− xi)
2φi(x)

( l∫
0

∂2

∂x2
K
(
ξi(x), s

)
u(s)ds

)
dx

∣∣∣∣∣∣
≤ C {max (hi, hi+1)}2

≤ CN−2. (3.4)

Thirdly, for R
(1)
i , since |u (x)| ≤ C and a ∈ C2 [0, l] , from (2.7), we get

∣∣∣R(1)
i

∣∣∣ ≤

∣∣∣∣∣∣12χiℏ−1
i

xi+1∫
xi−1

(x− xi)(x− xi+1)a
′′(ξi(x))u(x)φi(x)dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣χiℏ−1
i a

x,i

xi+1∫
xi−1

(x− xi)φi(x)

( x∫
xi

u′(t)dt

)
dx

∣∣∣∣∣∣
≤ C {max (hi, hi+1)}2 + Cmax (hi, hi+1)

xi+1∫
xi−1

|u′ (x)| dx

≤ CN−1

N−1 +

xi+1∫
xi−1

1√
ε

(
e−

√
αx√
ε + e−

√
α(l−x)√

ε

)
dx

 . (3.5)

The estimate of R
(1)
i in the layer area [0, σ] degrades to∣∣∣R(1)

i

∣∣∣ ≤ CN−1

(
N−1 +

4h(1)

√
ε

)
= CN−1

(
N−1 + 4

(√
α
)−1

N−1 lnN
)

≤ CN−2 lnN, 1 ≤ i ≤ N

4
− 1. (3.6)
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The same evaluation is acquired in the layer area [l − σ, l] in the similarly.
For N

4 + 1 ≤ i ≤ 3N
4 − 1 from (3.5) it follows that

∣∣∣R(1)
i

∣∣∣ ≤ CN−1

{
N−1 +

(√
α
)−1

(
e−

√
αxi−1√

ε − e−
√

αxi+1√
ε

)}

+ CN−1

{
N−1 +

(√
α
)−1

(
e−

√
α(l−xi+1)√

ε − e−
√

α(l−xi−1)√
ε

)}

≤ CN−1

{
N−1 +

(√
α
)−1 e−

√
αxi−1√

ε

(
1− e−

2
√

αh
(2)
i√

ε

)}

+ CN−1

{
N−1 +

(√
α
)−1 e−

√
α(l−xi+1)√

ε

(
1− e−

2
√

αh
(2)
i√

ε

)}

≤ CN−1

N−1 +
(√

α
)−1 e−

√
αxN

4√
ε +

(√
α
)−1 e−

√
α

(
l−x 3N

4

)
√

ε


≤ CN−2. (3.7)

It remains to estimate R
(1)
i for i = N

4 and i = 3N
4 . For the i = N

4 inequality (3.5) degrades to

∣∣∣R(1)
N
4

∣∣∣ ≤ CN−1

N−1 +

xN
4

+1∫
xN

4
−1

1√
ε

(
e−

√
αx√
ε + e−

√
α(l−x)√

ε

)
dx


= CN−1

{
N−1 +

(√
α
)−1

(
e−

√
αxN

4
−1

√
ε − e−

√
αxN

4
+1

√
ε

)}

+ CN−1
(√

α
)−1

e−
√

α

(
l−xN

4
+1

)
√

ε − e−
√

α

(
l−xN

4
−1

)
√

ε



= CN−1

N−1 +
(√

α
)−1 e−

√
αxN

4
−1

√
ε

1− e−
√

α

(
xN

4
+1

−h(1)−h(2)

)
√

ε


+ CN−1

N−1 +
(√

α
)−1 e−

√
α

(
l−xN

4
+1

)
√

ε

1− e−
√

α

(
l−xN

4
−1

−h(1)−h(2)

)
√

ε


≤ CN−1

{
N−1 +

(√
α
)−1 e−

√
αxN

4√
ε e

√
αh(1)
√

ε +
(√

α
)−1 e−

√
ασ√
ε e−

√
α(l−h(2))

√
ε

}

≤ CN−1

{
N−1 +

(√
α
)−1 e 4 lnN

N e−
√

αxN
4√

ε +
(√

α
)−1 e−

√
ασ√
ε

}

≤ CN−2. (3.8)

217



DURMAZ et al./Turk J Math

The same evaluation is acquired for i = 3N
4 in the similarly.

Based on (3.6)-(3.8), it is possible to deduce the following inequality∣∣∣R(1)
i

∣∣∣ ≤ CN−2 lnN, 1 ≤ i ≤ N − 1. (3.9)

Finally, for R
(4)
i from (2.19), by virtue of (2.2), we get

∣∣∣R(4)
i

∣∣∣ ≤

∣∣∣∣∣∣∣
1

2

N∑
j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)
d2

dξ2
(
K(xi, ξ)u(ξ)

)
dξ

∣∣∣∣∣∣∣
≤ C

N∑
j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) (1 + |u′ (ξ)|+ |u′′ (ξ)|) dξ

≤ C


N∑
j=1

h3
j +

N∑
j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)
1

ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ

 . (3.10)

For the right side first term of (3.10), we get
N∑
j=1

h3
j =

N

2

∣∣∣h(1)
∣∣∣3 + N

2

∣∣∣h(2)
∣∣∣3 ≤ CN−2. (3.11)

For the right side remaining term of (3.10) we can write

N∑
j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)
1

ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ

=

N
4∑

j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)
1

ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ

+

3N
4∑

j=N
4 +1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)
1

ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ

+

N∑
j= 3N

4 +1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)
1

ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ. (3.12)

For the right side first sum of (3.12), we get

N
4∑

j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)
1

ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ ≤

∣∣∣h(1)
∣∣∣2 σ∫

0

1

ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ

≤
∣∣∣h(1)

∣∣∣2 2 (
√
α)

−1

√
ε

≤ CN−2 lnN. (3.13)
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The same evaluation is acquired for the right side third sum of (3.12) in the similarly.
Further, for the right side second sum of (3.12) after integration in parts, we have

3N
4∑

j=N
4 +1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)
1

ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ

= 2
(√

α
)−1

3N
4∑

j=N
4 +1

xj∫
xj−1

(
xj − ξ − h(2)

2

)
1√
ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ

≤ 2
(√

α
)−1

h(2)

l−σ∫
σ

1√
ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

)
dξ

= 4
(√

α
)−2

h(2)

(
e−

√
ασ√
ε − e−

√
α(l−σ)√

ε

)
≤ 4

(√
α
)−2

h(2)N−1 ≤ CN−2. (3.14)

Based on (3.11)-(3.14), it is possible to deduce the following inequality

∣∣∣R(4)
i

∣∣∣ ≤ CN−2 lnN, 1 ≤ i ≤ N − 1. (3.15)

Substituting the estimates (3.3), (3.4), (3.9) and (3.15) in (2.21), we arrive at (3.1).
We now prove the inequality (3.2). First, we estimate r(1) . Since |u (x)| ≤ C and a ∈ C2 [0, l] , from (2.28), we
get

∣∣∣r(1)∣∣∣ ≤

∣∣∣∣∣∣12χ−1
0

x1∫
0

x (x− x1) a
′′(ξ0(x))u(x)φ0(x)dx

∣∣∣∣∣∣+
∣∣∣∣∣∣χ−1

0 ax,0

x1∫
0

xφ0(x)

 x∫
0

u′(t)dt

 dx

∣∣∣∣∣∣
≤ Ch(1)

h(1) +

x1∫
0

|u′ (x)| dx



≤ CN−1

N−1 +
1√
ε

x1∫
0

(
e−

√
αx√
ε + e−

√
α(l−x)√

ε

)
dx


≤ CN−1

(
N−1 +

h(1)

√
ε

)
= CN−1

(
N−1 +

(√
α
)−1

N−1 lnN
)

≤ CN−2 lnN. (3.16)
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Secondly for r(2) , since f ∈ C2 [0, l] , from (2.34), we have

∣∣∣r(2)∣∣∣ ≤

∣∣∣∣∣∣12χ−1
0

x1∫
0

x (x− x1) f
′′(ξ0(x))φ0(x)dx

∣∣∣∣∣∣
≤ C

∣∣∣h(1)
∣∣∣2

≤ CN−2. (3.17)

Thirdly, for r(3) in the same way as above, the boundedness of ∂2K
∂x2 and considering (2.1), from (2.37) it follows

that

∣∣∣r(3)∣∣∣ ≤

∣∣∣∣∣∣12χ−1
0 λ

x1∫
0

x2φ0(x)

 l∫
0

∂2

∂x2
K(ξ0 (x) , s)u(s)ds

 dx

∣∣∣∣∣∣
≤ C

∣∣∣h(1)
∣∣∣2

≤ CN−2. (3.18)

Finally, for r(4) in the same manner as in (3.15) one can show that∣∣∣r(4)∣∣∣ ≤ CN−2 lnN. (3.19)

The inequalities (3.16)-(3.19) imply that
|r| ≤ CN−2 lnN.

Thus, the proof of lemma is completed. 2

For the error zi = yi − ui considering (2.20) and (2.40), we get

−εδ2zi + āizi + λ

N∑
j=0

ℏjKijzj = Ri, 1 ≤ i ≤ N − 1, (3.20)

−
√
εθ0zx,0 + β̄z0 + λ

N∑
j=0

ℏjMjzj = r, (3.21)

zN = 0, (3.22)

where Ri and r(0) are defined by (2.21) and (2.41). We note that since a ∈ C2 [0, l] , then exists a number ᾱ

such that for sufficiently large values of N will be āi ≥ ᾱ > 0 .

Theorem 3.2 Let ∂mK
∂xm , ∂m+1K

∂x∂sm ∈ C2 [0, l]
2
(m = 0, 1, 2) , a, f ∈ C2 [0, l] and

|λ| < 1
N∑
j=0

ℏj
[
(ᾱ)

−1
max

1≤i≤N
|Kij |+

(
β̄
)−1 |Mj |

] .
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Then for the error of the scheme (2.42)-(2.44), we get

∥y − u∥∞,ω̄N
≤ CN−2 lnN.

Proof By applying the discrete maximum principle, from (3.20)-(3.22) we have

∥z∥∞,ω̄N
≤ (ᾱ)

−1

∥∥∥∥∥∥R− λ

N∑
j=0

ℏjKijzj

∥∥∥∥∥∥
∞,ωN

+
(
β̄
)−1

∣∣∣∣∣∣r − λ

N∑
j=0

ℏjMjzj

∣∣∣∣∣∣
≤ (ᾱ)

−1 ∥R∥∞,ωN
+ |λ| (ᾱ)−1

max
1≤i≤N

N∑
j=0

ℏj |Kij | ∥z∥∞,ω̄N
+
(
β̄
)−1 |r|+ |λ|

(
β̄
)−1

N∑
j=0

ℏj |Mj | |zj | ,

hence

∥z∥∞,ω̄N
≤

(ᾱ)
−1 ∥R∥∞,ωN

+
(
β̄
)−1 |r|

1− |λ|

(ᾱ)
−1

max
1≤i≤N

N∑
j=0

ℏj |Kij |+
(
β̄
)−1

N∑
j=0

ℏj |Mj |

 .

Thereby
∥z∥∞,ω̄N

≤ C ∥R∥∞,ωN
.

This inequality together with (3.1) and (3.2) gives the desired result. 2

4. Numerical results
Our particular example is

−εu′′ +
(
2− e−x

)
u+

1

2

1∫
0

(
excos(πs) − 1

)
u(s)ds =

1

1 + x
,

−
√
εu′(0) + 2u(0) = 1, u(1) = 0.

The exact solution of this problem is unknown. Hereby, we use the double mesh principle. We define the
maximum point-wise errors and the computed ε -uniform maximum point-wise errors as follows

eNε = max
i

|yε,Ni − ỹε,2N2i |∞,ωN
, eN = max

ε
eNε ,

where ỹε,2Ni is the approximate solution of the respective method on the mesh

ω̃2N = {xi/2 : i = 0, 1, ..., 2N}

with

xi+1/2 =
xi + xi+1

2
for i = 0, 1, ..., N − 1.

We also define the rates of convergence and computed ε -uniform the rates of convergence of the form

pNε =
ln
(
eNε /e2Nε

)
ln 2

, pN =
ln
(
eN/e2N

)
ln 2

.
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Results in Table display that the rate of convergence of the difference scheme is substantially in accordance
with the theoretical analysis.

Table . Maximum point-wise errors and the rates of convergence for different vales of ε and N .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

20 0.028066 0.008212 0.002228 0.000583 0.000149
1.773 1.822 1.934 1.968

2−2 0,034153 0.009931 0.002776 0.000726 0.000185
1.782 1.839 1.935 1.973

2−4 0.055712 0.016144 0.004497 0.001167 0.000294
1.787 1.844 1.946 1.989

2−6 0.058525 0.016912 0.004688 0.001215 0.000305
1.791 1.851 1.948 1.993

2−8 0.061625 0.017636 0.004865 0.001253 0.000314
1.805 1.858 1.957 1.997

eN 0.061625 0.017636 0.004865 0.001253 0.000314
pN 1.805 1.858 1.957 1.997

5. Conclusion
A novel second order numerical approach for solving the second order Fredholm integro differential equation with
boundary layers has been proposed. It has been done some estimates for the exact solution and its derivative
before giving the numerical method. To solve the problem numerically, an exponential fitted finite difference
approach on a nonequidistant mesh has been used. The difference method has been established by applying
interpolating quadrature rules, with the remaining terms in integral form and including the basis functions. It
has proved that the numerical scheme is almost second order convergent. The example is given which authorizes
our proposed numerical approach. As expected, the accuracy increases with larger values of N . The presented
method can be applied to different linear and nonlinear integro differential equations.
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