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Abstract: In this work, we define the notion of commutativity degree of crossed modules and find some bounds on
commutativity degree for special types of crossed modules. Also, we give a function for finding commutativity degree of
crossed modules in GAP and classify crossed modules by using this function.
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1. Introduction
The notion of commutativity degree of groups was introduced by Gallagher [13] in 1970. The probability that
two elements of a group commute is called the commutativity degree of the group. Finding the commutativity
degree of a finite group is equivalent to finding the number of conjugacy classes of the group or to finding
the number of irreducible characters of the group. This relates commutativity degree to many areas of group
theory; there are many questions and a long history of results, concerning the relationship between irreducible
characters of group and group-theoretic properties of the group.

A crossed module (S,R, ∂) is a group homomorphism S
∂−→ R with an action of R on S satisfying

certain conditions. MacLane and Whitehead, [24], show that crossed modules modeled homotopy 2-types. Later
crossed modules had been considered as “2-dimensional groups”, [8, 9]. We refer to [7, 21, 22] for detail and
comprehensive research of crossed modules. On the other hand, the concept of isoclinism of crossed modules
was defined in [23]. A shared package XMod was described in [1]. Also, one can find several algorithms about
these notions in [2, 6, 11].

Crossed modules of groups provide a simultaneous generalization of the concepts of groups. Thus, it
is interest to investigate generalizations of groups theoretic concepts and structures to crossed modules. In
this paper, we generalize the notion of commutativity degree, obtain some bounds for special crossed modules
and show that two isoclinic crossed modules have same commutativity degree. Also, we have developed new
functions for GAP which used to compute commutative degree of a group and a crossed module.

2. Crossed modules
In this section we recall some needed material about crossed modules. We refer to [7, 19–22].
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A crossed module is a group homomorphism such that

∂ : S −→ R

with an action R on S written (r, s) 7→ rs, for r ∈ R, s ∈ S satisfying the following conditions:

1) ∂(rs) = r∂(s)r−1,
2) ∂(s)s′ = ss′s−1,

for all r ∈ R, s, s′ ∈ S.

Examples of crossed modules:
(1) A conjugation crossed module is an inclusion of a normal subgroup N ⊴ R, where R acts on N by

conjugation.
(2) A zero boundary crossed module has a R -module as source and ∂ = 0.

(3) Any homomorphism ∂ : S −→ R, with S Abelian and im∂ in the center of R, provides a crossed
module with R acting trivially on S.

(4) The direct product of ∂1 : S1 −→ R1 and ∂2 : S2 −→ R2 is ∂1× ∂2 : S1 × S2 −→ R1 × R2 with
direct product action (r1,r2)(s1, s2) = (r1s1,

r2 s2) .
A morphism between two crossed modules ∂ : S −→ R and ∂′ : S′ −→ R′ is a pair (α, β) of group

homomorphisms α : S −→ S′, β : R −→ R′, such that β∂ = ∂′α and α(rs) = β(r)α(s), for all r ∈ R, s ∈ S .
Consequently we have the category XMod whose objects are the crossed modules and its morphisms are the
morphisms of crossed modules.

A crossed module ∂′ : S′ −→ R′ is a subcrossed module of a crossed module ∂ : S −→ R if S′, R′ are
subgroups of S, R, respectively, ∂′ = ∂|S′ and the action of R′ on S′ is induced by the action of R on S.

Also, a subcrossed module ∂′ : S′ −→ R′ of a crossed module ∂ : S −→ R is normal if R′ is a normal subgroup
of R, rs′ ∈ S′ and r′ss−1 ∈ S′, for all r ∈ R, r′ ∈ R′, s ∈ S, s′ ∈ S′. So, we have the quotient crossed module
S/S′ −→ R/R′ with the induced boundary map and action.

Now, we recall some notions about crossed modules from [21].

Let ∂ : S −→ R be a crossed module. Then the center of the crossed module S
∂−→ R, Z(S,R, ∂), is

defined as the normal subcrossed module

SR ∂|−→ StR(S) ∩ Z(R)

where
SR = {s ∈ S : rs = s, for all r ∈ R},

StR(S) = {r ∈ R : rs = s, for all s ∈ S}.
Any crossed module which coincides with its center is called Abelian.

Let ∂ : S −→ R be a crossed module. The commutator subcrossed module of S
∂−→ R is defined by

DR(S)
∂|−→ [R,R]

where DR(S) is the subgroup generated by {rss−1 : s ∈ S, r ∈ R} and [R,R] is the commutator subgroup of
R. Shortly, we show that commutator of (S,R, ∂) with (S,R, ∂)′.

243



ARVASİ et al./Turk J Math

A crossed module S
∂−→ R is called finite if S and R are finite groups.

The order of a finite crossed module is defined as the pair [m,n] where m, n are the orders of S, R,

respectively.

Let H
∂′

−→ K (here shortly show (H,K)) be a subcrossed module of the crossed module S
∂−→ R (here

shortly show (S,R)) . Suppose that there is a finite sequence (H,K)i : (Hi −→ Ki)0≤i≤n of the subcrossed
modules of (S,R) such that

(H,K) = (H,K)0 ⊴ (H,K)1 ⊴ . . . ⊴ (H,K)n−1 ⊴ (H,K)n = (S,R).

This will be called a series of length n from (H,K) to (S,R). The subcrossed modules (H,K)0, (H,K)1,… ,

(H,K)n are called the terms of the series and quotient crossed modules (H,K)i/(H,K)i−1, i = 1, . . . , n, are
called the factors of the series. A series 1 to (S,R) is shortly called a series of (S,R). A series is called central
if all factors are central. (S,R) is called nilpotent if it has a series all of whose factors are central factors of
(S,R).

Let S
∂−→ R be nilpotent. Then, for any central series

1 = (S,R)0 ⊴ (S,R)1 ⊴ · · · ⊴ (S,R)r = R

of (S,R) , we have
Γr−i+1((S,R)) ≤ (S,R)i ≤ ξi((S,R)),

i = 0, 1, . . . , r where Γ1((S,R)) = ((S,R)) , ξ0((S,R)) = 1 and

Γn((S,R)) = [Γn−1((S,R)), (S,R)], n > 1

ξn(R)/ξn−1(R) = ξ(R/ξn−1(R)) , n > 0.

Furthermore, the least integer c such that Γc+1((S,R)) = 1 is equal to the least integer c such that ξc((S,R)) =

(S,R) . The integer c is called the nilpotency class of the crossed module (S,R).

3. Commutativity degree of crossed modules
In this section, we introduce two dimensional version of commutativity degree and give fundamental idea can
be found in [17]. Another investigation of that is given in [18]. Before this, we recall commutativity degree of
finite groups and give some bounds for this commutativity degree. For details, see [10, 14, 16–18].

3.1. Commutativity degree of groups
Let G be a finite group. The probability that two elements of G commute is called the commutativity degree
and denoted by d(G).

Formally, the commutativity degree d(G) of G is defined by

d(G) =
|{(x, y) ∈ G×G | xy = yx}|

|G|2
.

Obviously, G is Abelian if and only if d(G) = 1; furthermore, the following results are known:
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1. d(G) = k(G)
|G| , where k(G) is the number of distinct conjugacy classes of G.

2. Let p be a prime. If G is non-Abelian with |G| = p3 then d(G) = p2+p−1
p3 .

3. If d(G) > 1
2 , then G is nilpotent.

4. Let G and H be 2 isoclinic finite groups, then d(G) = d(H).

3.2. Bounds on commutativity degree of crossed modules
Let S and R be two finite groups. What is the probability that a random chosen pair of crossed modules
written between S and R commute? This probability is called the commutativity degree of the crossed module,
(S,R, ∂).

Definition 3.1 Let (S,R, ∂) be a finite crossed module. The commutativity degree of (S,R, ∂) is defined by

d(S,R, ∂) =

[
|{(r, s) ∈ R× S | rs = s}|

|R| |S|
,
|{(r, r′) ∈ R×R | rr′ = r′r}|

|R| |R|

]
.

Example 3.2 Let D8 = 〈a, b | a2, b2, (ab)4〉 be the dihedral group of order 8 , and let c = [a, b] = (ab)2 so that
ab = ac and ba = bc . (The standard permutation representation is given by a = (1, 2)(3, 4), b = (1, 3), ab =

(1, 2, 3, 4), c = (1, 3)(2, 4) .) Define C4 = 〈(1, 2, 3, 4)〉 is the subgroup of D8 . Then, (C4, D8, i) conjugation
crossed module and

d(C4, D8, i) =

[
3

4
,
5

8

]
.

Theorem 3.3 Let (S,R, ∂) be finite crossed module. Then the commutativity degree of (S,R, ∂) is

d(S,R, ∂) =

[
|Orb(S,R)|

|S|
,
k(R)

|R|

]
where k(R) is the number of distinct conjugacy classes of R and Orb(S,R) is the number of orbits of R on S.

Proof Let {[x1], [x2], . . . , [xk]} be the set of distinct conjugacy classes of R such that k(R) = k and |Orb(S,R)|
be the number of orbits of R on S. It is well known that we can write

|{(r, r′) ∈ R×R | rr′ = r′r}| = k(R) |R| .

So, we get
|{(r, r′) ∈ R×R | rr′ = r′r}|

|R| |R|
=

k(R) |R|
|R| |R|

=
k(R)

|R|
.

On the other hand, from the Burnside Lemma, we can write

|{(r, s) ∈ R× S | rs = s}| = |R| |Orb(S,R)|

and we have
|{(r, s) ∈ R× S | rs = s}|

|R| |S|
=

|R| |Orb(S,R)|
|R| |S|

=
|Orb(S,R)|

|S|
.

2
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Proposition 3.4 Let (S,R, ∂) be finite crossed module. Then

(S,R, ∂) is Abelian if and only if d(S,R, ∂) = [1, 1].

Proof We know that if (S,R, ∂) is Abelian, then R is Abelian and the action of R on S is trivial. So,
we have |{(r, s) ∈ R× S | rs = s}| = |R× S| = |R| |S| and |{(r, r′) ∈ R×R | rr′ = r′r}| = |R×R| , that is
d(S,R, ∂) = [1, 1]. 2

Theorem 3.5 If (S,R, ∂) and (S′, R′, ∂′) are two finite crossed modules, then

d((S,R, ∂)× (S′, R′, ∂′)) = d(S,R, ∂)× d(S′, R′, ∂′).

Proof d((S,R, ∂)× (S′, R′, ∂′)) = d(S × S′, R×R′, ∂̃)

=
[

1
|R||S| |{(a, b) ∈ R× S |ab = b }| , 1

|R||R| |{(a1, a
′
1) ∈ R×R | a1a′1 = a′1a1}|

]
=

[
1

|R||R′||S||S′| |{(r, s) ∈ R× S | rs = s}|
∣∣∣{(r′, s′) ∈ R′ × S′ | r′s′ = s′

}∣∣∣ ,
1

|R||R′||R||R′| |{(r1, r
′
1) ∈ R×R | r1r′1 = r′1r1}| |{(r2, r′2) ∈ R′ ×R′ | r2r′2 = r′2r2}|

]
=

[
1

|R||S| |{(r, s) ∈ R× S | rs = s}| , 1
|R||R| |{(r1, r

′
1) ∈ R×R | r1r′1 = r′1r1}|

]
×

[
1

|R′||S′|

∣∣∣{(r′, s′) ∈ R′ × S′ | r′s′ = s′
}∣∣∣ , 1

|R′||R′| |{(r2, r
′
2) ∈ R′ ×R′ | r2r′2 = r′2r2}|

]
= d(S,R, ∂)× d(S′, R′, ∂′)

where R =R×R′, S =S × S′, a = (r, r′), b = (s, s′), a1 = (r1, r2), a′1 = (r′1, r
′
2). 2

Now, we will find some useful bounds on commutativity degree for special types of crossed modules.
(non-Abelian, simply connected, aspherical and nilpotent)

Theorem 3.6 If (S,R, ∂) is a finite crossed module and |(S,R, ∂)/Z(S,R, ∂)| = [l,m], then

d(S,R, ∂) ≥
[
2l − 1

l2
|S|
|R|

,
2m− 1

m2

]
.

Proof Let |(S,R, ∂)/Z(S,R, ∂)| = [l,m]. The set of pairs {{(r, s) ∈ R× S | rs = s} , {(r, r′) ∈ R×R | rr′ = r′r}}
contains 2 copies of Z(S,R, ∂) so that

[|{(r, s) ∈ R× S | rs = s}| , |{(r, r′) ∈ R×R | rr′ = r′r}|] ≥ |(S,R, ∂)× Z(S,R, ∂)|+|Z(S,R, ∂)× (S,R, ∂)|−
|Z(S,R, ∂)× Z(S,R, ∂)| . Then,

d(S,R, ∂) =

[
|{(r,s)∈R×S | rs=s}|

|R||S| ,
|{(r,r′)∈R×R | rr′=r′r}|

|R||R|

]
≥ |(S,R,∂)×Z(S,R,∂)|+|Z(S,R,∂)×(S,R,∂)|−|Z(S,R,∂)×Z(S,R,∂)|

[|R||S|,|R||R|]
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=
[|S×SR|,|R×A|]+[|SR×S|,|A×R|]−[|SR×SR|,|A×A|]

[|R||S|,|R||R|]

=
|S||SR|+|SR||S|−|SR||SR|,|R||A|+|A||R|−|A||A|

[|R||S|,|R||R|]

=

[
l|SR|2+|SR|2l−|SR|2

|R||S| , m|A|2+|A|2m−|A|2
|R||R|

]

=

[
(2l−1)|SR|2
lm|SR||A| , (2m−1)|A|2

m2|A|2

]

=
[
2l−1
l2

|S|
|R| ,

2m−1
m2

]
where A = StR(S) ∩ Z(R). 2

Theorem 3.7 If (S,R, ∂) is a finite crossed module and [q, p] is the smallest prime pairs dividing |(S,R, ∂)/Z(S,R, ∂)| ,
then

d(S,R, ∂) ≤
[
q2 + q − 1

q3
,
p2 + p− 1

p3

]
.

Proof Let (S,R, ∂) be a finite crossed module and [q, p] be the smallest prime pairs dividing |(S,R, ∂)/Z(S,R, ∂)| .
Then q is the smallest prime dividing

∣∣S/SR
∣∣ and p is the smallest prime dividing |R/StR(S) ∩ Z(R)| . It is

well known that when p is the smallest prime dividing |R/Z(R)| , then d(R) ≤ p2+p−1
p3 . If p is the smallest

prime dividing |R/StR(S) ∩ Z(R)| , then p is the smallest prime dividing |R/Z(R)| , too. So we can write

d(R) ≤ p2+p−1
p3 .

On the other hand, we have that q is the smallest prime dividing
∣∣S/SR

∣∣ . Also, the class equation yields
the bound

|S| ≥
∣∣SR

∣∣+ q(|Orb(S,R)| −
∣∣SR

∣∣).
Solving for |Orb(S,R)| yields

|Orb(S,R)| ≤
|S|+ (q − 1)

∣∣SR
∣∣

q
.

Then since q is the smallest prime dividing
∣∣S/SR

∣∣ , we have |S| = ql
∣∣SR

∣∣ and also we can write

|Orb(S,R)|
|S|

≤
|S|+ (q − 1)

∣∣SR
∣∣

q |S|
=

(q − 1)
∣∣SR

∣∣+ ql
∣∣SR

∣∣
q2l |SR|

=
(q − 1) + ql

q2l
.

Next consider the ratio

(q − 1) + ql

q2l

/
q − 1 + q2

q3
=

(q − 1 + ql)q3

q2l(q − 1 + q2)

=
(q − 1 + ql)q

l(q − 1 + q2)

=
q2l + q(q − 1)

q2l + l(q − 1)

≤ 1.
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Since this ratio is less than or equal to 1 and |Orb(S,R)|
|S| is less than or equal to the numerator (q−1)+ql

q2l , it

follows that |Orb(S,R)|
|S| is less than or equal to denominator as well. So we have |Orb(S,R)|

|S| ≤ q−1+q2

q3 . That is,

d(S,R, ∂) ≤
[
q2 + q − 1

q3
,
p2 + p− 1

p3

]
.

2

Corollary 3.8 Let q and p be primes. If (S,R, ∂) is non-Abelian crossed module with |(S,R, ∂)| = [q3, p3]

then

d(S,R, ∂) =

[
q2 + q − 1

q3
,
p2 + p− 1

p3

]
.

Theorem 3.9 If (S,R, ∂) is a finite crossed module, then

(i) d(S,R, ∂) ≤
[
1
4

(
1 + 3

|DR(S)|

)
, 1
4

(
1 + 3

|[R,R]|

)]
and

(ii)
[

1
|DR(S)| ,

1
|[R,R]|

]
≤ d(S,R, ∂).

Proof (i) We can write the degree equation in the form

|S| = [S : DR(S)] +

|Orb(S,R)|∑
(ni)

2

i=[S:DR(S)]+1

with each ni ≥ 2. It follows that

|S| ≥ [S : DR(S)] + 4(|Orb(S,R)| − [S : DR(S)]).

Solving for |Orb(S,R)| ,

|Orb(S,R)| ≤ 1

4
(|S|+ 3[S : DR(S)]).

So we can write
|Orb(S,R)|

|S|
≤ 1

4

(
1 +

3

|DR(S)|

)
.

On the other hand, we know that

d(R) ≤ 1

4

(
1 +

3

|[R,R]|

)
by group theory. That is

d(S,R, ∂) ≤
[
1

4

(
1 +

3

|DR(S)|

)
,
1

4

(
1 +

3

|[R,R]|

)]
.

(ii) Since [S : DR(S)] < |Orb(S,R)| , we have

|S|
|DR(S)| |S|

≤ |Orb(S,R)|
|S|

.
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Also since [R : [R,R]] < k(R), we have
1

[R,R]
≤ k(R)

|R|
= d(R).

That is [
1

|DR(S)|
,

1

|[R,R]|

]
≤ d(S,R, ∂).

2

Theorem 3.10 Let (S,R, ∂) be a finite simply connected and aspherical crossed module. If |(S,R, ∂)′| = [2, 2],

then (S,R, ∂)′ ⊆ Z(S,R, ∂).

Proof As |(S,R, ∂)′| =
∣∣∣(DR(S), [R,R], ∂̃)

∣∣∣ = [2, 2] , we have |DR(S)| = 2 and |[R,R]| = 2. It is well

known that if |[R,R]| = 2, then [R,R] ⊆ Z(R). Since (S,R, ∂) is simply connected, we have SR = Z(S) and
DR(S) = [S, S]. On the other hand, since (S,R, ∂) is aspherical we have Z(R) ⊆ StR(S). So we can write
|DR(S)| = 2 =⇒ |[S, S]| = 2 and

DR(S) = [S, S] ⊆ Z(S) = SR.

On the other hand, since [R,R] ⊆ Z(R) ⊆ StR(S), we have

(S,R, ∂)′ ⊆ Z(S,R, ∂).

2

Theorem 3.11 (i) If (S,R, ∂) is a crossed module such that d(S,R, ∂) >
[
1
2 ,

1
2

]
, then |DR(S)| < 3 and

[R,R] < 3.

(ii) If (S,R, ∂) is a simply connected and aspherical crossed module such that d(S,R, ∂) >
[
1
2 ,

1
2

]
, then

(S,R, ∂) is nilpotent.

Proof (i) Suppose that d(S,R, ∂) >
[
1
2 ,

1
2

]
. By the upper degree equation bound on d(S,R, ∂), we get

[
1

2
,
1

2

]
< d(S,R, ∂) ≤

[
1

4

(
1 +

3

|DR(S)|

)
,
1

4

(
1 +

3

|[R,R]|

)]
.

Solving this equation for |DR(S)| yields |DR(S)| < 3 and solving this equation for |[R,R]| yields [R,R] < 3.

(ii) If |(S,R, ∂)′| = [1, 1], then (S,R, ∂) is trivial. Hence (S,R, ∂) is Abelian and nilpotent. Suppose
|(S,R, ∂)′| = [2, 2]. Then from above theorem (S,R, ∂)′ ⊆ Z(S,R, ∂). So, (S,R, ∂)/Z(S,R, ∂) is Abelian. That
is (S,R, ∂) is nilpotent. 2

In the following theorem, we will discuss bounds on the commutativity degree of crossed module in terms
of the commutativity degree of a normal subcrossed module. From here, we will obtain that the commutativity
degree of a crossed module is less than or equal to the commutativity degree of any of its normal subcrossed
module.
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Theorem 3.12 Let (S,R, ∂) be a finite crossed module and (S′, R′, ∂′) be a normal subcrossed module of
(S,R, ∂). We have

(i) d(S,R, ∂) ≤ d(S′, R′, ∂′)d((S,R, ∂)/(S′, R′, ∂′)).

(ii) d(S,R, ∂) = d((S,R, ∂)/(S′, R′, ∂′)) if and only if (S′, R′, ∂′) is Abelian.

(iii) If (S′, R′, ∂′) is Abelian and one has equality, then (S′, R′, ∂′) ⊆ Z(S,R, ∂).

Proof (i) Let (S′, R′, ∂′) be a normal subcrossed module of (S,R, ∂). It is well known that d(R) ≤
d(R′)d(R/R′), where R′ is a normal subgroup of R. That is, we must show that

|Orb(S,R)|
|S|

≤ |Orb(S′, R′)|
|S′|

|Orb(S/S′, R/R′)|
|S/S′|

.

It is clear that SrR′

R′ ⊆ (R/R′)rR
′ . Therefore, from the Burnside Lemma, we can write

|R||Orb(S,R)| =
∑
r∈R

|Sr|

=
∑

A∈R/R′

∑
r∈A

|Sr|

=
∑

A∈R/R′

∑
r∈A

∣∣∣∣SrR′

R′

∣∣∣∣ |S′r |

≤
∑

A∈R/R′

∑
r∈A

∣∣(S/S′)A
∣∣ |S′r |

=
∑

A∈R/R′

∣∣(S/S′)A
∣∣∑
r∈A

|{s′ ∈ S′|rs′ = s′}|

=
∑

A∈R/R′

∣∣(S/S′)A
∣∣ ∑
r′∈R′

∣∣∣Sr′ ∩A
∣∣∣ .

Let us suppose Sr′ ∩A 6= ∅ and let x0 ∈ Sr′ ∩A; then A = R′x0 whence

Sr′ ∩A = Sr′ ∩R′x0

= (Sr′ ∩R′)(x0)

= S′r′(x0).

Therefore Sr′ ∩A is either empty, or a left coset of S′r′ ; in both cases one has

|Sr′ ∩A| ≤ |S′r′ |

250



ARVASİ et al./Turk J Math

and

|R||Orb(S,R)| ≤
∑

A∈R/R′

∣∣(S/S′)A
∣∣∑ |S′r′ |

r′∈R′

= |R/R′||Orb(S/S′, R/R′)||R′||Orb(S′, R′)|

= |R||Orb(S/S′, R/R′)||Orb(S′, R′)|.

Hence |Orb(S,R)|
|S| ≤ |Orb(S′,R′)|

|S′|
|Orb(S/S′,R/R′)|

|S/S′| . That is, d(S,R, ∂) ≤ d(S′, R′, ∂′)d((S,R, ∂)/(S′, R′, ∂′)).

(ii) If (S′, R′, ∂′) is Abelian, then R′ is Abelian and the action of R′ on S′ is trivial. We have

d((S,R, ∂)/(S′, R′, ∂′)) =

(
|Orb(S/S′, R/R′)|

|S/S′|
, d(R/R′)

)
.

It is well known that if R′ is Abelian, then d(R) = d(R/R′). So, we must show that

|Orb(S/S′, R/R′)|
|S/S′|

=
|Orb(S,R)|

|S|
.

Since the action of R′ on S′ is trivial, we have |{(r′, s′) ∈ R′ × S′|rs′ = s′}| = |R′||S′|. On the other
hand, we know that ∣∣∣{(r′, s′) ∈ R′ × S′|r

′
s′ = s′

}∣∣∣ = |R′||Orb(S′, R′)|.

So, we can write |Orb(S′, R′)| = |S′|. That is,

|Orb(S/S′, R/R′)|
|S/S′|

=
|Orb(S,R)|

|S|
.

So, we have d(S,R, ∂) = d((S,R, ∂)/(S′, R′, ∂′)).

Similarly, if d(S,R, ∂) = d((S,R, ∂)/(S′, R′, ∂′)), then it is clear that (S′, R′, ∂′) is Abelian.

(iii) Let d(S,R, ∂) = d((S,R, ∂)/(S′, R′, ∂′)) and (S′, R′, ∂′) is Abelian. Since d(R) = d(R/R′) and R′

is Abelian, we have R′ ⊆ Z(R). So, it also satisfy that R′ ⊆ StR(S) since the action of R′ on S′ is trivial.
That is, R′ ⊆ StR(S) ∩ Z(R).

On the other hand, since the action of R′ on S′ is trivial, we have r′s′ = s′ for all r′ ∈ R′. So, s′ ∈ SR,

i.e S′ ⊆ SR. 2

Corollary 3.13 If (S′, R′, ∂′) is a subcrossed module of (S,R, ∂) and d(S,R, ∂) = d(S′, R′, ∂′) then (S′, R′, ∂′)

is normal subcrossed module and (S,R, ∂)/(S′, R′, ∂′) is Abelian crossed module.

3.3. Commutativity degree of isoclinic crossed modules
First, we will recall the definition of isoclinic crossed modules and give some examples. For more detail properties
of this notion, see [23].

The crossed modules S
∂−→ R and S′ ∂′

−→ R′ are isoclinic if there exist isomorphisms

251



ARVASİ et al./Turk J Math

(η1, η0) : (S
∂−→ R) −→ (S′ ∂′

−→ R′)

and

(ξ1, ξ0) : (DR(S)
∂|−→ [R,R]) −→ (DR′(S′)

∂′|−→ [R′, R′])

such that the diagrams

G1 ×G0
c1 //

η1×η0

��

DG0(G1)

ξ1

��
H1 ×H0

c1
′

// DH0
(H1)

(3.1)

and

G0 ×G0
c0 //

η0×η0

��

[G0, G0]

ξ0

��
H0 ×H0

c0
′

// [H0,H0]

(3.2)

are commutative where c1, c
′
1 defined by c1(sS

R, r(StR(S) ∩ Z(R))) = rss−1 ,
c′1(s

′S′R′
, r′(StR′(S′) ∩ Z(R′))) = r′s′s′−1, for all s ∈ S, r ∈ R, s′ ∈ S′, r′ ∈ R′ and c0, c

′
0 defined by

c0(r(StR(S)∩Z(R)), r′(StR(S)∩Z(R′))) = [r, r′], c′0(k(StR′(S′)∩Z(R′)), k′(StR′(S′)∩Z(R′))) = [k, k′], for all
r, r′ ∈ R and k, k′ ∈ R′. Here S = S/SR, R = R/StR(S)∩Z(R), S′ = S′/S′R′ and R′ = R′/StR′(S′)∩Z(R′).

The pair ((η1, η0), (ξ1, ξ0)) is called an isoclinism from S
∂−→ R to S′ ∂′

−→ R′.

Example 3.14 (1) All Abelian crossed modules are isoclinic.

(2) Let M and N be isoclinic groups. Then M
id−→ M is isoclinic to N

id−→ N.

(3) Let M be a group and let N be a normal subgroup of M with NZ(M) = M. Then N � � inc. // M is

isoclinic to M
id−→ M.

Now, we will show that isoclinic crossed modules have same commutativity degrees.

Theorem 3.15 Let (S,R, ∂) and (S′, R′, ∂′) be two isoclinic finite crossed modules, then d(S,R, ∂) =

d(S′, R′, ∂′).

Proof Suppose that (S,R, ∂) and (S′, R′, ∂′) are isoclinic. Then S is isoclinic to S′ and R is isoclinic to R′.

So, d(S) = d(S′) and d(R) = d(R′), by group theory. On the other hand, we have

|S×R|
|SR×A|

|{(r,s)∈R×S|rs=s}|
|R×S| = 1

|SR×A| |{(r, s) ∈ R× S|rs = s}|

= 1
|SR×A|

∣∣{(r, s) ∈ R× S|c1(sSR, r(A)) = 1}
∣∣

=
∣∣{(α, β) ∈ S

SR × R
A |ξ1(c1(α, β)) = 1

}∣∣ (∵ ξ1 iso.)
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=
∣∣{(α, β) ∈ S

SR × R
A |c′1(η1 × η0)(α, β) = 1

}∣∣ (∵ com.diag)

=
∣∣{(α, β) ∈ S

SR × R
A |c′1(η1(α), η0(β)) = 1

}∣∣
=

∣∣∣{(γ, δ) ∈ S′

S′R′ × R′

A′ |c′1(γ, δ) = 1
}∣∣∣ (∵ η1, η0 iso.)

= 1

|S′R′×A′|

∣∣∣{(r′, s′) ∈ R′ × S′|r
′
s′ = s′}

∣∣∣
where A = StR(S)∩Z(R) and A′ = StR′(S′)∩Z(R′). Since S/SR ∼= S′/S′R′ and R/A ∼= R′/A′, we can write

|S ×R|
|SR ×A|

=
|S′ ×R′|
|S′R′ ×A′|

.

That is d(S,R, ∂) = d(S′, R′, ∂′). 2

Corollary 3.16 Let (S′, R′, ∂′) be a subcrossed module of (S,R, ∂) and (S,R, ∂) = (S′, R′, ∂′)Z(S,R, ∂). Then
d(S,R, ∂) = d(S′, R′, ∂′).

Proof It is clear from the proposition 4 of [23]. 2

Corollary 3.17 Let (S,R, ∂) be a finite crossed module such that (S,R, ∂)′ ∩ Z(S,R, ∂) = (1, 1, id); then

there is a finite crossed module (H,K, ∂̃) such that d(S,R, ∂) = d(H,K, ∂̃), (H,K, ∂̃)′ ' (S,R, ∂)′ and

Z(H,K, ∂̃) = (1, 1, id).

Proof By Proposition 3 of [23], there exists a finite crossed module (H,K, ∂̃) isoclinic to (S,R, ∂) and such

that Z(H,K, ∂̃) ⊆ (H,K, ∂̃)′. Then we have∣∣∣Z(H,K, ∂̃)
∣∣∣ =

∣∣∣Z(H,K, ∂̃) ∩ (H,K, ∂̃)′
∣∣∣

= |Z(S,R, ∂) ∩ (S,R, ∂)′|

= (1, 1, id) = [1, 1]

from the hypothesis on (S,R, ∂), i.e,

Z(H,K, ∂̃) = (1, 1, id).

On the other hand, the isoclinism between (H,K, ∂̃) and (S,R, ∂) implies (H,K, ∂̃)′ ' (S,R, ∂)′ by definition,

and d(H,K, ∂̃) = d(S,R, ∂) by Theorem 3.15. 2

3.4. Hyper order commutativity degree

We can define the “n -th commutativity degree” of a finite crossed module (S,R, ∂).

Definition 3.18 Let (S,R, ∂) be a finite crossed module. The n-th commutativity degree of (S,R, ∂) is defined
by

dn(S,R, ∂) =

 |{(r1,r2,...,rn,s1,s2,...sn)∈Rn×Sn|(r1,r2,...,rn)(s1,s2,...,sn)=(s1,s2,...,sn)}|
|R|n|S|n ,

|{(r1,r2,...,rn,rn+1)∈Rn+1|rirj=rjri where i,j∈{1,2,...,n+1}}|
|R|n+1

 .
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Clearly, d0(S,R, ∂) = [1, 1], d1(S,R, ∂) = d(S,R, ∂).

Theorem 3.19 If (S,R, ∂) and (S′, R′, ∂′) are isoclinic, then for n ∈ N

dn(S,R, ∂) = dn(S
′, R′, ∂′).

Proof It is similar to the proof of Theorem 3.15. 2

4. Computer implementation

GAP (Groups, Algorithms, Programming [12]) is the leading symbolic computation system for solving computa-
tional discrete algebra problems. Symbolic computation has underpinned several key advances in Mathematics
and Computer Science, for example, in number theory and coding theory (see [5] ). The system consists of a
library of implementations of mathematical structures: groups, vector spaces, modules, algebras, graphs, codes,
designs, etc., plus databases of groups of small order, character tables, etc. The system has world wide usage
in the area of education and scientific research.

The XMod package for GAP contains functions for computing with crossed modules, cat1 -groups and
their morphisms, and was first described in [1]. Moreover, The XMod package has many functions for isoclinism
classes of groups and crossed modules and some family invariants. A GAP package XModAlg [3] was written to
compute cat1 -algebras and crossed modules of algebras, as described in [4].

On the other hand, we implement the functions CommutativeDegreeOfGroup and Commuta-
tiveDegreeOfXMod which used to compute commutative degree of a group and a crossed module, respec-
tively.

The following GAP session illustrates the use of these functions.

gap> Q16 := QuaternionGroup(IsPermGroup,16);
Group([ (1,9,5,13)(2,16,6,12)(3,15,7,11)(4,14,8,10),
(1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16) ])
gap> C8 := Subgroup(Q16, [Q16.2]);
Group([ (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16) ])
gap> StructureDescription(C8);
"C8"
gap> CM := XModByNormalSubgroup(Q16,C8);
[Group( [ ( 1, 2, 3, 4, 5, 6, 7, 8)( 9,10,11,12,13,14,15,16) ] )->
Group([ ( 1, 9, 5,13)( 2,16, 6,12)( 3,15, 7,11)( 4,14, 8,10),
( 1, 2, 3, 4, 5, 6, 7, 8)( 9,10,11,12,13,14,15,16) ] )]
gap> CommutativeDegreeOfGroup(Q16);
7/16
gap> CommutativeDegreeOfXMod(CM);
[ 5/8, 7/16 ]

Following GAP session shows that two crossed modules in different isoclinism families would be a same
commutative degree.

gap> all := AllXModsFromData();;
gap> Length(all);
2692
gap> CM1 := all[413];
[Group( [ f2, f4 ] )->Group( [ f1, <identity> of ..., f2*f3*f4 ] )]
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gap> CM2 := all[2381];
[Group( [ f3, f6 ] )->Group( [ f1, f2*f6, <identity> of ..., f4*f6 ] )]
gap> CommutativeDegreeOfXMod(CM1);
[ 3/4, 5/8 ]
gap> CommutativeDegreeOfXMod(CM2);
[ 3/4, 5/8 ]

Following GAP session shows that the numbers of all crossed modules of order [4, 8] are 336, which give
rise 59 isomorphism classes and 5 isoclinism families. The commutative degree of the crossed modules in the
same isoclinism family are equal, as expected.

gap> all48 := AllXMods([4,8]);;
gap> Length(all48);
336
gap> iso_all48 := AllXModsUpToIsomorphism(all48);;
gap> Length(iso_all48);
59
gap> f_1 := IsoclinicXModFamily(iso_all48[1],iso_all48);
[ 1, 3, 4, 6, 9, 10, 12, 27, 29, 31, 33, 35, 38, 40, 43, 55, 57, 59 ]
gap> f_2 := IsoclinicXModFamily(iso_all48[2],iso_all48);
[ 2, 5, 7, 8, 11, 13, 14, 28, 30, 32, 34, 36, 37, 39, 41, 42, 56, 58 ]
gap> f_3 := IsoclinicXModFamily(iso_all48[15],iso_all48);
[ 15, 18, 22, 25, 44, 47, 51, 53 ]
gap> f_4 := IsoclinicXModFamily(iso_all48[16],iso_all48);
[ 16, 17, 19, 20, 23, 26, 45, 46, 48, 49, 52, 54 ]
gap> f_5 := IsoclinicXModFamily(iso_all48[21],iso_all48);
[ 21, 24, 50 ]
gap> CommutativeDegreeOfXMod(iso_all48[1]);
[ 1, 1 ]
gap> ForAll(f_1, i -> CommutativeDegreeOfXMod(iso_all48[i]) = [1,1]);
true
gap> CommutativeDegreeOfXMod(iso_all48[2]);
[ 3/4, 1 ]
gap> ForAll(f_2, i -> CommutativeDegreeOfXMod(iso_all48[i]) = [3/4,1]);
true
gap> CommutativeDegreeOfXMod(iso_all48[15]);
[ 1, 5/8 ]
gap> ForAll(f_3, i -> CommutativeDegreeOfXMod(iso_all48[i]) = [1,5/8]);
true
gap> CommutativeDegreeOfXMod(iso_all48[16]);
[ 3/4, 5/8 ]
gap> ForAll(f_4, i -> CommutativeDegreeOfXMod(iso_all48[i]) = [3/4,5/8]);
true
gap> CommutativeDegreeOfXMod(iso_all48[21]);
[ 3/4, 5/8 ]
gap> ForAll(f_5, i -> CommutativeDegreeOfXMod(iso_all48[i]) = [3/4,5/8]);
true
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