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Abstract: In this paper we study the spectral geometry of a 4 -dimensional Lie group. The main focus of this paper is
to study the 2 -Stein and 2 -Osserman structures on a 4 -dimensional Riemannian Lie group. In this paper, we study the
spectrum and trace of Jacobi operator and also we study the characteristic polynomial of generalized Jacobi operator
on the non-abelian 4 -dimensional Lie group G , whenever G is equipped with an orthonormal left invariant Riemannian
metric g . The Lie algebra structures in dimension four have key role in this paper. It is known that in the classification
of 4 -dimensional non-abelian Lie algebras there are nineteen classes of Lie algebras up to isomorphism [12]. We consider
these classes and study all of them. Finally, we study the space form problem and spectral properties of Szabo operator
on G .
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1. Introduction
Spectral geometry is an area of differential geometry that studies the spectrum of operators and it has inter-
section with analysis, partial differential equations and differential geometry. Originally, spectral geometry
investigates the dependence and properties of eigenvalues and eigenfunctions of the Laplacian, Jacobi operator
and other operators. Recently, many applications of spectral geometry are given in the field of computer science,
shape recognition, machine learning, heat propagation and vibration (see [13, 15] for instance). Furthermore,
Osserman spaces, k -Osserman spaces, 1 and 2 -Stein spaces are samples of the study of eigenvalues in the
spectral geometry [4–6, 8, 11, 14].

In recent years, there are a lot of papers and results appeared about Osserman spaces in both Riemannian
and Lorentzian setting such as [1–3, 7, 9, 10], but as mentioned in [9], [10], spectral geometry is a big branch
and it has a lot of unsolved problems. Also there are a few papers and results in the spectral geometry of Lie
groups, so in this paper we focus on the spectral geometry of a 4 -dimensional Lie group G in the Riemannian
setting.

The Jacobi operator JX(Y ) = R(Y,X)X is a very important tool for understanding the relation between
the curvature and the geometry of Riemannian manifold (M, g) . The Jacobi operator is a self adjoint operator
and it plays an important role in the curvature theory. Let spec(JX) be the set of eigenvalues of Jacobi operator
JX and S(M, g) be the sphere bundle of unit tangent vectors. One says that (M, g) is Osserman at p ∈ M , if
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for every X,Y ∈ Sp(M, g) the characteristic polynomial of JX is equal to characteristic polynomial of JY . In
fact the eigenvalues of JX are independent of X ∈ Sp(M) . Furthermore, (M, g) is called pointwise Osserman,
if it is Osserman at each p ∈ M . Also (M, g) is called globally Osserman manifold if for any point p ∈ M

and any unit tangent vector X ∈ TpM , the eigenvalues of Jacobi operator depend neither on X nor on p . In
fact the eigenvalues of JX are constant on S(M, g) . We recall that globally Osserman manifolds are clearly
pointwise Osserman.
Let (M, g) be a Riemannian manifold, p ∈ M , Z ∈ Sp(M) , associated to the Jacobi operators and natural

number t , there are functions ft defined by ft(p, Z) = trace(J
(t)
Z ) , where J

(t)
Z is the tth power of the Jacobi

operator JZ . We say that the Riemannian manifold (M, g) is k -Stein at p ∈ M , if ft(p, Z) is independent of
Z ∈ Sp(M) for every 1 ⩽ t ⩽ k . Also (M, g) is called k -Stein, if it is k -Stein at each p ∈ M .

Let Grk(TpM) be the Grasmannian of k -planes in TpM of a Riemannian manifold (M, g) . For each
E ∈ Grk(TpM) , we define the generalized Jacobi operator as follows

JE(.) = R(., x1)x1 + · · ·+R(., xk)xk,

where {x1, · · · , xk} is an orthonormal basis for E and R is the Riemannian curvature tensor (note that JE is
independent of the choice of orthonormal basis).

A Riemannian manifold (M, g) is called k -Osserman at p ∈ M , if the characteristic polynomial of JE(.)

is independent of E ∈ Grk(TpM) , that is, the eigenvalues of linear operator JE(.) counted with multiplicities are
constant for every E ∈ Grk(TpM) . Also (M, g) is called globally k -Osserman if the characteristic polynomial
of JE(.) is independent of E ∈ ∪p∈MGrk(TpM) [10]. It is known that any Riemannian Osserman manifold is
1 -Osserman.

This paper is concerned with the spectral properties of Jacobi operator and generalized Jacobi operator
of 4 -dimensional Lie group G , whenever G is equipped with orthonormal left invariant Riemannian metric
g . It is remarkable that if we replace Riemannian metric with an orthonormal left invariant Lorentzian or
orthonormal left invariant neutral metrics then we have gap and different results. We do this work by the study
of characteristic polynomials, trace and spectrum of the Jacobi operator and the generalized Jacobi operator.
Our paper has two parts and two geometric consequences. At the first part, we are looking for Lie algebras
such that G equipped with them be a Osserman manifold at identity, and in the second part, we introduce the
concept of Szabo manifold at a point, then we find Lie algebras that can provide Szabo manifold at identity
on the Lie group G . It is known that there exist nineteen classes of non-abelian 4 -dimensional Lie algebras as
mentioned in [12], and this classification has key role in our investigation. Also according to this classification
we study 2 -Stein, 1 -Stein and 2 -Osserman structures at identity element of the Lie group G , also we study
on the pointwise Osserman property. Furthermore, we check the constancy of sectional curvature at identity in
the all of options for the Lie algebras of the Lie group G .

2. 2-Stein, 2-Osserman and space form structures
Throughout the paper we consider a non-abelian 4 -dimensional Lie group G equipped with a left invariant
Riemannian metric g . The goal of this section is to examine the 2 -stein and 2 -Osserman property and constancy
of the sectional curvature of the Lie group G . Our aim is to show which of 4 -dimensional Lie algebra structures
on a Lie group G can provide pointwise Osserman structure on it.

Let gn be an n -dimensional Lie algebra over the field of real numbers with generator e1, · · · , en , n ≤ 4 .
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It is known that there exists only one non-abelian Lie algebra of dimension two, that is the solvable af(1) with
Lie bracket [e1, e2] = e1 . This Lie algebra is denoted by g2,1 . In [12], Mubarakzyanov has proved that there
exist eight classes of non-abelian Lie algebra of dimension 3. These Lie algebras are denoted by g2,1 ⊕ g1 , g3,k ,
k = 1, · · · , 7 . Also, he classified the Lie algebras of dimensional 4 in nineteen classes.

Lemma 2.1 [7] Let (M, g) be a 4-dimensional Riemannian manifold. Then (M, g) is pointwise Osserman if
and only if (M, g) is 2-Stein.

We divide our study in all of cases as the following;
g3,1 ⊕ g1 : This is a decomposable nilpotent Lie algebra with [e2, e3] = e1 .

It can easily check that the only nonzero components of the left invariant Levi-Civita connection for Lie
groups are as follows

∇e1e2 = ∇e2e1 = −1

2
e3, ∇e1e3 = ∇e3e1 =

1

2
e2, ∇e2e3 = −∇e3e2 =

1

2
e1.

We consider e3, e4 ∈ Se(G, g) . Using the Levi-Civita connection and the Riemannian curvature tensor we get
the Jacobi operator as follows

Je3(e1) =
1

4
e1, Je3(e2) = −3

4
e2, Je3(ej) = 0, Je4(ek) = 0, j = 3, 4, k = 1, 2, 3, 4.

Thus, the spectrums of Jacobi operators are as follows

spec(Je3) = {0, 1
4
,−3

4
}, spec(Je4) = {0}.

Since spec(Je3) ̸= spec(Je4) , hence the spectrum of the Jacobi operator depends on the unit tangent vectors.
Therefore G is not Osserman at identity, especially G is not pointwise Osserman. Also we have

f1(e, e3) = trace(Je3) = −1

2
, f1(e, e4) = trace(Je4) = 0.

Thus, G is not 1 -stein. Also, according to Lemma 2.1, G is not 2 -Stein.
Here, we consider 2 -planes E = span{e1, e2} and F = span{e2, e3} in TeG . Using the Levi-Civita

connection and the Riemannian curvature tensor we get the generalized Jacobi operator as follows

JE(e1) =
1

2
JF (e1) =

1

4
e1, JE(e2) = −1

3
JF (e2) =

1

4
e2, JE(e3) =

2

3
JF (e3) = −1

2
e3, JE(e4) = JF (e4) = 0.

Thus, the characteristic polynomial of the generalized Jacobi operators are as follows

p
JE

(x) = (x− 1

4
)2(x+

1

2
)x, p

JF
(x) = (x− 1

2
)(x+

3

4
)2x.

Since we have different characteristic polynomials, hence the characteristic polynomials of the generalized Jacobi
operators depend on 2 -planes E and F. Therefore G is not 2 -Osserman at identity. Also, if we take 2 -planes
π = {e1, e2} and σ = {e1, e4} , then we have κπ = 1

4 and κσ = 0 , so G is not a space form.
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g4,1 : This is an indecomposable nilpotent with Lie brackets [e2, e4] = e1 , [e3, e4] = e2 .
From the Koszul’s formula we obtain all of nonzero components of left invariant Levi-Civita connection ∇ as
follows

∇e1e2 = ∇e2e1 = −1

2
e4, ∇e1e4 = ∇e4e1 =

1

2
e2, ∇e2e3 = ∇e3e2 = −1

2
e4,

∇e2e4 =
1

2
e1 +

1

2
e3, ∇e3e4 = −∇e4e3 =

1

2
e2, ∇e4e2 = −1

2
e1 +

1

2
e3.

Considering e3, e4 ∈ Se(G, g) and using the Levi-Civita connection and the Riemannian curvature tensor we
get

Je3(e1) = Je3(e3) = Je4(e4) = 0, Je3(e2) = −1

2
Je4(e2) =

1

4
e2, Je3(e4) = −3

4
e4,

Je4(e1) =
1

4
e1 −

1

4
e3, Je4(e3) = −1

4
e1 −

3

4
e3.

So {0, 1
4 ,−

3
4} = spec(Je3) ̸= spec(Je4) = {0,− 1

2 ,
−1±

√
5

4 } and consequently G is not Osserman at identity. Also
we have

f1(e, e3) = trace(Je3) = −1

2
, f1(e, e4) = trace(Je4) = −1.

Thus, G is not 1 -stein. Also, according to Lemma 2.1, G is not 2 -Stein.
We consider E = span{e1, e2} and F = span{e1, e3} in TeG , so we can get again the generalized Jacobi

operators as follows

JE(e1) =
1

4
e1 +

1

4
e3, JE(e2) =

1

2
JF (e2) =

1

4
e2, JE(e3) =

1

4
e1 +

1

4
e3, JE(e4) =

1

2
JF (e4) = −1

4
e4,

JF (e1) = JF (e3) = 0, JF (e4) = −1

2
e4.

Also we have p
JE

(x) = (x+ 1
4 )(x−

1
4 )x(x−

1
2 ) and p

JF
(x) = x2(x− 1

2 )(x+
1
2 ) , therefore G is not 2 -Osserman

at identity. If we take 2 -planes π = {e1, e2} and σ = {e1, e3} , we have κπ = 1
4 and κσ = 0 . Hence G is not a

space form.

g3,7 ⊕ g1 : This is an unsolvable Lie algebra with the Lie brackets [e1, e2] = e3 , [e2, e3] = e1 and
[e3, e1] = e2 .

By virtue of the Koszul’s formula the left invariant Levi-Civita connection is as follows

∇e1e2 = −∇e2e1 =
1

2
e3, ∇e1e3 = −∇e3e1 = −1

2
e2, ∇e2e3 = −∇e3e2 =

1

2
e1.

Also we have

Je3(e1) =
1

4
e1, Je3(e2) =

1

4
e2, Je3(ei) = 0, i = 3, 4.
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Also Je4(ei) = 0 , for i = 1, 2, 3, 4 . Since {0} = spec(Je4) ̸= spec(Je3) = {0, 1
4} , as the same proof in the last

cases we deduce that G is not pointwise Osserman. Also we obtain

f1(e, e3) = trace(Je3) =
1

2
, f1(e, e4) = trace(Je4) = 0.

Thus, G is not 1 -stein, and so according to Lemma 2.1, G is not 2 -Stein.
Here, we get the generalized Jacobi operators associated to 2 -planes E = span{e1, e2} and F =

span{e1, e4} in TeG as follows

JE(e1) =
1

4
e1, JE(e2) = JF (e2) =

1

4
e2, JE(e3) = 2JF (e3) =

1

2
e3, JF (e1) = JF (e4) = JE(e4) = 0.

Since p
JE

(x) = (x− 1
4 )

2(x− 1
2 )x and p

JF
(x) = (x− 1

4 )
2x2 , as the same proof in the last cases this implies that

G is not 2 -Osserman. If we take 2 -planes π = {e1, e2} and σ = {e1, e4} , then we have κπ = 1
4 and κσ = 0 ,

thus, G is not a space form.

g3,6 ⊕ g1 : This is an unsolvable Lie algebra with the Lie brackets [e1, e2] = e1 , [e1, e3] = 2e2 and
[e2, e3] = e3 .

From the Koszul’s formula we get

∇e1e1 = −e2, ∇e1e2 = e1 − e3, ∇e1e3 = ∇e3e3 = −∇e3e1 = e2, ∇e2e1 = −e3,

∇e2e3 = e1, ∇e3e2 = e1 − e3.

We get also

Je3(e1) = −2e1, Je3(ei) = 0, i = 2, 3, 4,

and Je4(ei) = 0 , for i = 1, 2, 3, 4 . In this case we have {0,−2} = spec(Je3) ̸= spec(Je4) = {0} , thus, G is not
pointwise Osserman. We have also

f1(e, e3) = trace(Je3) = −2, f1(e, e4) = trace(Je4) = 0.

Hence, G is not 1 -stein, and so from Lemma 2.1, we have (G, g) is not 2 -Stein at identity.
Considering 2 -planes E = span{e1, e2} and F = span{e1, e4} in TeG , we get

JE(e1) = 2e3, JE(e2) = 0, JE(e3) = 2e1 − 2e3, JE(e4) = 0,

JF (e1) = 0, JF (e2) = 0, JF (e3) = −2e3, JF (e4) = 0.

In this case we have p
JE

(x) = x2(x2 + 2x− 4) and p
JF

(x) = x3(x+ 2) , so G is not 2 -Osserman at identity. If
we take 2 -planes π = {e1, e3} and σ = {e1, e4} , then we have κπ = −2 and κσ = 0 , thus, G is not a space form.

g2,1 ⊕ 2g1 : The decomposable solvable Lie algebra with the Lie bracket [e1, e2] = e1 .
The Koszul’s formula implies that the only nonzero components of the left invariant Levi-Civita connection

∇ are as follows
∇e1e1 = −e2, ∇e1e2 = e1.
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We get also

Je1(ei) = 0, i = 1, 3, 4, Je1(e2) = −e2,

and Je4(ei) = 0 , for i = 1, 2, 3, 4 . So we have {0,−1} = spec(Je1) ̸= spec(Je4) = {0} , thus, G is not pointwise
Osserman. We get also

f1(e, e1) = trace(Je1) = −1, f1(e, e4) = trace(Je4) = 0.

Hence, G is not 1 -stein, and so (G, g) is not 2 -Stein.
Consider 2 -planes E = span{e1, e2} and F = span{e3, e4} in TeG . Therefore we get

JE(e1) = −e1, JE(e2) = −e2, JE(e3) = 0, JE(e4) = 0,

JF (e1) = 0, JF (e2) = 0, JF (e3) = 0, JF (e4) = 0.

In this case we have p
JE

(x) = (x+ 1)2x2 and p
JF

(x) = x4 . Thus, G is not 2 -Osserman at identity. If we take
2 -planes π = {e1, e2} and σ = {e1, e4} , then we have κπ = −1 and κσ = 0 , therefore G is not a space form.

The following is the first case of Lie algebra structure g such that (G, g) has 1 -Stein property at identity
element in Riemannian setting. Also we emphasize that in Lorentzian setting there exists the same result, if G

equipped with the following Lie algebra structure.

2g2,1 : The decomposable solvable Lie algebra with the Lie brackets [e1, e2] = e1 and [e3, e4] = e3 .
In this case, the only nonzero components of the left invariant Levi-Civita connection ∇ are as follows

∇e1e1 = −e2, ∇e1e2 = e1, ∇e3e3 = −e4, ∇e3e4 = e3.

Now we consider the unit vector v = re1 + se2 + te3 + ke4 ∈ Se(G, g) . Using the Levi-Civita connection and
the Riemannian curvature tensor, we get

Jv(e1) = −s2e1 + sre2, Jv(e2) = rse1 − r2e2, Jv(e3) = −k2e3 + kte4, Jv(e4) = tke3 − t2e4.

Finally we obtain trace(Jv) = −(r2 + s2 + t2 + k2) = −1 . Since trace is independent of v , thus, G is 1 -Stein
at identity. We get also spec(Jv) = {0,−(s2 + r2),−(t2 + k2)} . Therefore the spectrum depends to the unit
vector v . Hence, G is not pointwise Osserman. Using Lemma 2.1 , we deduce that (G, g) is not 2 -Stein at
identity.

Now we consider the 2 -plane A = span{v1, v2} , where v1 = re1+se2+te3+ke4 , v2 = xe1+ye2+ze3+we4

and {v1, v2} is a orthonormal basis for A . Direct computations give us

JA(e1) = (−s2 − y2)e1 + (sr + xy)e2, JA(e2) = (rs+ xy)e1 + (−r2 − x2)e2,

JA(e3) = (−k2 − w2)e3 + (kt+ wz)e4, JA(e4) = (tk + zw)e3 + (−t2 − z2)e4.

We obtain also

p
JA

(X) = (X2 + (x2 + y2 + s2 + r2)X + (sx− yr)2)(X2 + (z2 + w2 + t2 + k2)X + (kz − wt)2). (2.1)
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Here we consider the 2 -palnes E = span{e1, e2} and F = span{ 1
2e1 +

1
2e2 +

1√
2
e3, e4} . According to (2.1),

we have p
JE

(x) = x2(x + 1)2 and p
JF

(x) = x(x + 1
2 )

2(x + 1) . So we conclude that G is not 2 -Osserman at
identity. If we take the 2 -planes π = {e1, e2} and σ = {e1, e4} , then we have κπ = −1 and κσ = 0 , thus, G

is not a space form.

g3,2 ⊕ g1 : The decomposable solvable Lie algebra with the Lie brackets [e1, e3] = e1 and [e2, e3] =

e1 + e2 .
In this case, we conclude that all components of the left invariant Levi-Civita connection ∇ are zero,

except

∇e1e1 = −e3, ∇e1e2 = ∇e2e1 = −1

2
e3, ∇e1e3 = e1 +

1

2
e2,

∇e2e2 = −e3, ∇e2e3 =
1

2
e1 + e2, ∇e3e1 =

1

2
e2, ∇e3e2 = −1

2
e1.

We get also

Je3(e1) = −3

4
e1 − e2, Je3(e2) = −e1 −

7

4
e2, Je3(ei) = 0, i = 3, 4,

and Je4(ei) = 0 , for i = 1, 2, 3, 4 . So we obtain spec(Je3) = {0, −5±2
√
5

4 } and spec(Je4) = {0} . Thus, G is not
pointwise Osserman. Furthermore we have

f(e, e3) = trace(Je3) = −5

2
, f(e, e4) = trace(Je4) = 0.

Hence, G is not 1 -Stein. Also according to Lemma 2.1, we imply that (G, g) is not 2 -Stein. Considering the
2 -planes E = span{e1, e2} and F = span{e3, e4} , we obtain

JE(e1) = −3

4
e1, JE(e2) = −3

4
e2, JE(e3) = −5

2
e3, JE(e4) = 0.

JF (e1) = −3

4
e1 − e2, JF (e2) = −e1 −

7

4
e2, JF (e3) = 0, JF (e4) = 0.

We get also

p
JE

(x) = (x+
3

4
)2(x+

5

2
)x, p

JF
(x) = x2(x2 +

5

2
x+

5

16
).

Thus, G is not 2 -Osserman. If we take the 2 -planes π = {e1, e2} and σ = {e1, e4} , then we have κπ = − 3
4

and κσ = 0 , thus, G is not a space form.

g3,3 ⊕ g1 : The decomposable solvable Lie algebra with Lie brackets [e1, e3] = e1 and [e2, e3] = e2 .
Here we study the left invariant Levi-Civita connection ∇ . From the Koszul’s formula we deduce that

the following are the nonzero components of ∇ :

∇e1e1 = −e3, ∇e1e3 = e1, ∇e2e2 = −e3, ∇e2e3 = e2,
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We have also

Je3(e1) = −e1, Je3(e2) = −e2, Je3(ei) = 0, i = 3, 4,

and Je4(ei) = 0 , for i = 1, 2, 3, 4 . Therefore spec(Je3) = {0,−1} and spec(Je4) = {0} . Thus, G is not
pointwise Osserman. Furthermore we have

f(e, e3) = trace(Je3) = −2, f(e, e4) = trace(Je4) = 0.

Hence, G is not 1 -Stein, and consequently (G, g) is not 2 -Stein.
Consider the 2 -planes E = span{e1, e2} and F = span{e3, e4} . So we get the following

JE(e1) = −e1, JE(e2) = −e2, JE(e3) = −2e3, JE(e4) = 0.

JF (e1) = −e1, JF (e2) = −e2, JF (e3) = 0, JF (e4) = 0.

So

p
JE

(x) = (x+ 1)2(x+ 2)x, p
JF

(x) = (x+ 1)2x2.

Thus, G is not 2 -Osserman. If we take the 2 -planes π = {e1, e2} and σ = {e1, e4} , then we have κπ = −1

and κσ = 0 , so G is not a space form.

g3,4 ⊕ g1 : The decomposable solvable Lie algebra with [e1, e3] = e1 and [e2, e3] = αe2 , −1 ≤ α <

1 ,α ̸= 0 .
In this case we have

∇e1e1 = −e3, ∇e1e3 = e1, ∇e2e2 = −αe3, ∇e2e3 = αe2.

We obtain also

Je3(e1) = −e1, Je3(e2) = −α2e2, Je3(ei) = 0, i = 3, 4,

and Je4(ei) = 0 , for i = 1, 2, 3, 4 . So spec(Je3) = {0,−1,−α2} and spec(Je4) = {0} . Thus, G is not Osserman
at identity. Furthermore we have

f(e, e3) = trace(Je3) = −1− α2, f(e, e4) = trace(Je4) = 0.

Hence, G is not 1 -Stein. Also according to Lemma 2.1, we derive that (G, g) is not 2 -Stein. Considering
E = span{e1, e2} and F = span{e3, e4} , we get

JE(e1) = −αe1, JE(e2) = −αe2, JE(e3) = (−α2 − 1)e3, JE(e4) = 0.

JF (e1) = −e1, JF (e2) = −α2e2, JF (e3) = 0, JF (e4) = 0,

and

p
JE

(x) = (x+ α)2(x+ α2 + 1)x, p
JF

(x) = (x+ 1)(x+ α2)x2.
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Hence, G is not 2 -Osserman. If we take the 2 -planes π = {e1, e2} and σ = {e1, e4} , then we have κπ = −α

and κσ = 0 , so G is not a space form.
The following is the first case of Lie algebra structure g , in Riemannian setting such that (G, g) has

2 -Stein and 2 -Osserman property at the identity element and this achievement will gain by little effort. Also
we emphasize that about 2 -Stein property there exists a gap and different result in Lorentzian setting whenever
G eqipped with the following Lie algebra structure.

g3,5 ⊕ g1 : The decomposable Lie algebra with [e1, e3] = βe1 − e2 , [e2, e3] = e1 + βe2 , β ≥ 0 .
Koszul’s formula concludes that the nonzero coefficients of the left invariant Levi-Civita connection are

as follows

∇e1e1 = ∇e2e2 = −βe3, ∇e1e3 = −β∇e3e2 = βe1, ∇e2e3 = β∇e3e1 = βe2.

If β > 0 , we get

Je3(e1) = −β2e1, Je3(e2) = −β2e2, Je3(ei) = 0, i = 3, 4,

and Je4(ei) = 0 , for i = 1, 2, 3, 4 . So spec(Je3) = {0,−β2} and spec(Je4) = {0} . Thus, G is not Osserman at
identity. Furthermore we have

f(e, e3) = trace(Je3) = −2β2, f(e, e4) = trace(Je4) = 0.

Hence, G is not 1 -Stein. Now we consider β = 0 and assume that v = re1 + se2 + te3 + ke4 ∈ Se(G, g) . The
Riemann curvature tensor and direct computations give us

Jv(e1) = Jv(e2) = Jv(e3) = Jv(e4) = 0.

Thus, matrix representation of Jv is zero. Therefore, spec(Jv) = {0} , i.e. the spectrum is independent of unit
vector v . Hence, G is Osserman at identity. Also according to the Lemma 2.1, we have G is 2 -Stein at identity.

For β > 0 , we get E = span{e1, e2} and F = span{e3, e4} . So we have

JE(e1) = JF (e1) = −β2e1, JE(e2) = JF (e2) = −β2e2, JE(e3) = −2β2e3,

JE(e4) = JF (e4) = JF (e3) = 0.

Also we get

p
JE

(x) = (x+ β2)2(x+ 2β2)x, p
JF

(x) = (x+ β2)2x2.

Thus, in this case G is not 2 -Osserman at identity. If β = 0 and E = span{v1, v2} is an arbitrary 2 -plane,
where v1 = re1 + se2 + te3 + ke4 and v2 = xe1 + ye2 + ze3 +we4 , using the Riemann curvature tensor and the
Levi-Civita connection we obtain

JE(e1) = JE(e2) = JE(e3) = JE(e4) = 0.

Thus matrix representation of JE is zero. Therefore, p
JE

(x) = x4 , i.e. the characteristic polynomial of gen-
eralized Jacobi operator is independent of 2 -plane E . Hence, G is 2 -Osserman at identity. Now we take
2 -planes π = {e1, e2} and σ = {e1, e4} , then we have κπ = −β2 and κσ = 0 , if β ̸= 0 . Therefore, κσ ̸= κπ

and consequently, G is not a space form. If β = 0 , we take arbitrary orthonormal basis π = {v1, v2} , where
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v1 = re1 + se2 + te3 + ke4 and v2 = xe1 + ye2 + ze3 + we4 . Then direct computations give us κπ = 0 , so in
this case G has constant sectional curvature at identity.

g4,3 : The indecomposable solvable Lie algebra with [e1, e4] = e1 , [e3, e4] = e2 .
Koszul’s formula implies that the nonzero coefficients of the left invariant Levi-Civita connection ∇ are

as follows

∇e1e4 = e1, ∇e2e3 = ∇e3e2 =
1

2
∇e1e1 = −1

2
e4,

∇e3e4 = −∇e4e3 =
1

2
e2, ∇e4e2 = ∇e2e4 =

1

2
e3.

Considering e1, e4 ∈ Se(G, g) , we get

Je1(e2) =
2

3
Je4(e3) = −1

2
e3, Je1(e3) = −2Je4(e2) = −1

2
e2, Je1(e4) = −e4,

Je4(e1) = −e1, Jei(ei) = 0, i = 1, 4.

Therefore

spec(Je1) = {0,−1,±1

2
}, spec(Je4) = {0,−1,

1

4
,−3

4
}.

Since spec(Je1) ̸= spec(Je4) , so G is not Osserman at identity, especially G is not pointwise Osserman. We
have also

f1(e, e1) = trace(Je1) = −1, f1(e, e4) = trace(Je4) = −3

2
.

Thus, G is not 1 -Stein, and consequently G is not 2 -Stein.
Considering E = span{e1, e2} and F = span{e2, e3} , we get

JE(e1) = JF (e1) = 0, JE(e2) = −2JF (e3) = −1

2
e3, JE(e3) = −1

2
e2 +

1

4
e3,

JF (e2) =
1

4
e2, JE(e4) =

3

2
JF (e4) = −3

4
e4.

Therefore,

p
JE

(x) = x(x+
3

4
)(x2 − x

4
− 1

4
), p

JF
(x) = x(x− 1

4
)2(x+

1

2
).

Hence, G is not 2 -Osserman at identity. If we take 2 -planes π = {e1, e2} and σ = {e1, e4} , then we have
κπ = 0 and κσ = −1 . This implies that G is not a space form.

g4,2 : The indecomposable solvable Lie algebra with [e1, e4] = βe1 , [e2, e4] = e2 , [e3, e4] = e2 + e3 ,
β ̸= 0 .

In this case, we get the following nonzero coefficients for the left invariant Levi-Civita connection ∇ :

∇e1e1 = −βe4, ∇e1e4 = βe1, ∇e2e2 = −e4, ∇e2e3 = ∇e3e2 = −1

2
e4, ∇e2e4 = e2 +

1

2
e3,
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∇e3e3 = −e4, ∇e3e4 =
1

2
e2 + e3, ∇e4e2 =

1

2
e3, ∇e4e3 = −1

2
e2.

Considering e2, e3 ∈ Se(G, g) , we get

Je3(e1) = −βe1, Je3(e2) = −3

4
e2, Je3(e4) = −7

4
e4,

Je2(e1) = −βe1, Je2(e3) = −3

4
e3, Je2(e4) = −3

4
e4, Jei(ei) = 0 i = 2, 3.

Therefore, {0,−β,− 3
4} = spec(Je2) ̸= spec(Je3) = {0,−β,− 3

4 ,−
7
4} , i.e. G is not Osserman at identity. We

have also

f1(e, e3) = trace(Je3) = −β − 5

2
, f1(e, e2) = trace(Je2) = −β − 3

2
.

Thus, G is not 1 -Stein and G is not 2 -Stein.
Consider E = span{e2, e4} and F = span{e1, e2} . By direct computations we obtain

JE(e1) = −(β + β2)e1, JE(e2) = −3

4
e2 − e3, JE(e3) = −e2 −

5

2
e3, JE(e4) = −3

4
e4,

JF (e1) = −βe1, JF (e2) = −βe2 −
β

2
e3, JF (e3) = −β

2
e2 − (β +

3

4
)e3, JF (e4) = −(β2 +

3

4
)e4.

Also we have

p
JE

(x) = (x+ β + β2)(x+
3

4
)(x2 +

13

4
x+

7

8
), p

JF
(x) = (x+ β2 +

3

4
)(x+ β)(x2 + (2β +

3

4
)x+ (

3

4
β2 +

3

4
β)).

Since we have different characteristic polynomials, G is not 2 -Osserman at identity. If we take 2 -planes
π = {e2, e4} and σ = {e3, e4} , then we have κπ = − 3

4 and κσ = − 7
4 , so G is not a space form.

g4,4 : The indecomposable solvable Lie algebra with [e1, e4] = e1 , [e2, e4] = e1 + e2 , [e3, e4] = e2 + e3 .
Koszul’s formula implies that

∇e1e1 = −e4, ∇e1e2 = ∇e2e1 = −1

2
e4, ∇e1e4 = e1 +

1

2
e2, ∇e2e2 = −e4,

∇e2e3 = ∇e3e2 = −1

2
e4, ∇e2e4 =

1

2
e1 + e2 +

1

2
e3, ∇e3e3 = −e4,

∇e3e4 =
1

2
e2 + e3, ∇e4e1 =

1

2
e2, ∇e4e2 = −1

2
e1 +

1

2
e3, ∇e4e3 = −1

2
e2.

Considering e1, e3 ∈ Se(G, g) , we have

Je3(e1) = −e1 −
1

2
e2, Je3(e2) = −1

2
e1 −

3

4
e2, Je3(e4) = −7

4
e4,
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Jei(ei) = 0, i = 1, 3 Je1(e2) = −3

4
e2 −

1

2
e3, Je1(e3) = −1

2
e2 − e3, Je1(e4) = −3

4
e4.

Since {0,− 7
4 ,

−7±
√
17

8 } = spec(Je3) ̸= spec(Je1) = {0,− 3
4 ,

−7±
√
17

8 } , then we deduce that G is not pointwise
Osserman. Also we obtain

f1(e, e3) = trace(Je3) = −7

2
, f1(e, e1) = trace(Je1) = −5

2
.

Thus, G is not 1 -Stein and G is not 2 -Stein.
Considering E = span{e1, e2} and F = span{e1, e3} , we obtain

JE(e1) = −3

4
e1 +

1

4
e3, JE(e2) = −3

4
e2 −

1

2
e3, JE(e3) =

1

4
e1 −

1

2
e2 −

7

4
e3, JE(e4) = −9

4
e4,

JF (e1) = −e1 −
1

2
e2, JF (e2) = −1

2
e1 −

3

2
e2 −

1

2
e3, JF (e3) = −1

2
e1 − e3, JF (e4) = −5

2
e4.

We get also

p
JE

(x) = (x+
9

4
)(x+

3

4
)(x2 +

5

2
x+ 1), p

JF
(x) = (x+

5

2
)(x+ 1)(x2 +

5

2
x+ 1).

This implies that G is not 2 -Osserman at identity. If we take the 2 -planes π = {e1, e2} and σ = {e1, e3} , we
have κπ = − 3

4 and κσ = −1 . This implies that G is not a space form.
The following is the first case of the indecomposable solvable Lie algebra structure g such that (G, g)

has 1 -Stein property at identity. In this case g is not 2 -Stein.

g4,5 : The indecomposable solvable Lie algebra with [e1, e4] = αe1 , [e2, e4] = βe2 , [e3, e4] = γe3 ,
αβγ ̸= 0 .

From the Koszul’s formula we obtain the nonzero components of the left invariant Levi-Civita connection
∇ are as follows

∇e1e1 = −αe4, ∇e1e4 = αe1, ∇e2e2 = −βe4,

∇e2e4 = βe2, ∇e3e3 = −γe4, ∇e3e4 = γe3.

We get also

Je3(e1) = −γαe1, Je3(e2) = −γβe2, Je3(e4) = −γ2e4,

Je4(e1) = −α2e1, Je4(e2) = −β2e2, Je4(e3) = −γ2e3, Jei(ei) = 0, i = 3, 4.

There are two cases. If α, β, γ are distinct, then in this case we have {0,−γα,−γβ,−γ2} = spec(Je3) ̸=
spec(Je4) = {0,−α2,−β2,−γ2} , thus, G is not pointwise Osserman. We have also

f1(e, e3) = trace(Je3) = −γα− γβ − γ2, f1(e, e4) = trace(Je4) = −α2 − β2 − γ2.
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Hence, G is not 1 -stein. If α = β = γ and v = re1 + se2 + te3 + ke4 ∈ Se(G, g) , then in this case we have

Jv(e1) = α2{−(s2 + t2 + k2)e1 + (sr)e2 + (tr)e3 + (kr)e4},

Jv(e2) = α2{(rs)e1 − (r2 + t2 + k2)e2 + (ts)e3 + (ks)e4},

Jv(e3) = α2{(rt)e1 + (st)e2 − (r2 + s2 + k2)e3 + (kt)e4},

Jv(e4) = α2{(rk)e1 + (sk)e2 + (tk)e3 − (r2 + s2 + t2)e4}.

Therefore, we have trace(Jv) = −3α2(r2 + s2 + t2 + k2) = −3α2 . Since trace is independent of v , hence,
G is 1 -Stein at identity. Now a direct computation gives us p

Jv
(x) = x(x + (r2 + s2 + t2 + k2)α2)3 . But

(r2 + s2 + t2 + k2) = 1 , since v is unit. Therefore spec(p
Jv
) = {0,−α2} . Thus, in this case G is Osserman.

There are three states. If α, β, γ are distinct pairwise, considering E = span{e1, e2} and F =

span{e1, e3} , we obtain

JE(e1) = −βαe1, JE(e2) = −βαe2, JE(e3) = −(αγ + βγ)e3, JE(e4) = −(α2 + β2)e4,

JF (e1) = −αγe1, JF (e2) = −(αβ + γβ)e2, JF (e3) = −αγe3, JF (e4) = −(α2 + γ2)e4.

We get also

p
JE

(x) = (x+ αβ)2(x+ (α+ β)γ)(x+ (α2 + β2)), p
JF

(x) = (x+ αγ)2(x+ (α+ γ)β)(x+ (α2 + γ2)).

Thus, in this case G is not 2 -Osserman.
If α ̸= β = γ , considering H = spec{e3, e4} , and in comparison with two plane E we get

p
JH

(x) = (x+ α(α+ β))(x+ 2β2)(x+ β2)2.

Thus, in this case, it implies that G is not 2 -Osserman.
If α = β = γ , considering E = span{v1, v2} , where v1 = re1 + se2 + te3 + ke4 and v2 = xe1 + ye2 + ze3 +we4 ,
we have

JE(e1) = −(s2 + t2 + k2 + y2 + z2 + w2)α2e1 + (sr + xy)α2e2 + (tr + zx)α2e3 + (kr + wx)α2e4,

JE(e2) = (rs+ xy)α2e1 − (r2 + t2 + k2 + x2 + z2 + w2)α2e2 + (ts+ zy)α2e3 + (ks+ wy)α2e4,

JE(e3) = (rt+ xz)α2e1 + (st+ yz)α2e2 − (r2 + s2 + k2 + x2 + y2 + w2)α2e3 + (kt+ wz)α2e4,

JE(e4) = (rk + xw)α2e1 + (sk + yw)α2e2 + (tk + zw)α2e3 − (r2 + s2 + t2 + x2 + y2 + z2)α2e4.

Now if E = span{e1, e2} and F = span{e1, 1√
2
e3 +

1√
2
e4} , we get

p
JE

(x) = (x+ α2)2(x+ 2α2)2, p
JF

(x) = (x+ α2)(x+ 2α2)(x2 + 3α2x+ 2α4).

Thus, in this case G is not 2 -Osserman. Now we take π = {e1, e2} and σ = {e1, e3} . Then we get κπ = −αβ

and κσ = −αγ , so if β ̸= γ , G is not a space form. If β = γ ̸= α , we take π = {e1, e2} and σ = {e2, e3} , then
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we obtain κπ = −αβ and κσ = −βγ , which implies that G is not a space form. If α = β = γ we consider
arbitrary orthonormal basis π = {v1, v2} , where v1 = re1 + se2 + te3 + ke4 and v2 = xe1 + ye2 + ze3 + we4 ,
then we have the following

r2 + s2 + t2 + k2 = 1, x2 + y2 + z2 + w2 = 1, rx+ sy + zt+ kw = 0. (2.2)

Now direct computations give us κπ = pα2 , where

p = −r2(y2 + z2 + w2)− s2(x2 + z2 + w2)− t2(x2 + y2 + w2)− k2(x2 + y2 + z2)

+ 2yxrs+ 2zxtr + 2szty + 2rkxw + 2sykw + 2tkwz.

From (2.2), we deduce that p = −1 , which implies κπ = −α2 . Therefore, the sectional curvature is independent
of orthonormal 2 -plane π . Thus, G has constant sectional curvature at identity.

The following is the second case of indecomposable solvable Lie algebra structure g such that (G, g) has
1 -Stein property at identity. Note that in this case g is not 2 -Stein.

g4,6 : The indecomposable solvable Lie algebra with [e1, e4] = αe1 , [e2, e4] = βe2−e3 , [e3, e4] = e2+βe3 ,
α > 0 .

In this case we have
∇e1e1 = −αe4, ∇e1e4 = αe1, ∇e2e2 = −βe4, ∇e2e4 = βe2,

∇e3e3 = −βe4, ∇e3e4 = βe3, ∇e4e2 = e3, ∇e4e3 = −e2,

and

Je3(e1) = −αβe1, Je3(e2) = −β2e2, Je3(e4) = −β2e4,

Je4(e1) = −α2e1, Je4(e2) = −β2e2, Je4(e3) = −β2e3, Jei(ei) = 0, i = 3, 4.

Now we consider two possible cases. If α ̸= β , then we get {0,−β2,−αβ} = spec(Je3) ̸= spec(Je4) =

{0,−β2,−α2} , so G is not pointwise Osserman. We have also

f1(e, e3) = trace(Je3) = −αβ − 2β2, f1(e, e4) = trace(Je4) = −α2 − 2β2.

Hence G is not 1 -Stein. If α = β , then considering v = re1 + se2 + te3 + ke4 ∈ Se(G, g) we conclude that the
matrix representation of Jv and its trace is the same as in the last case, i.e. trace(Jv) = −3α2 . Therefore, G

is 1 -Stein at identity. As the same proof in last case spec(Jv) = {0,−α2} . Therefore, G is Osserman space at
identity.

Now, we study the 2 -Osserman property. If α ̸= β , and β ̸= 0 , considering E = span{e1, e2} and
F = span{e3, e4} , we get

p
JE

(x) = (x+ αβ)2(x+ αβ + β2)(x+ α2 + β2), p
JF

(x) = (x+ αβ + α2)(x+ 2β2)(x+ β2)2.

Therefore, G is not 2 -Osserman. If α = β , considering E = span{v1, v2} , where v1 = re1 + se2 + te3 + ke4

and v2 = xe1+ye2+ze3+we4 , the generalized Jacobi operator is exactly as the same as the generalized Jacobi
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operator in last case.Considering E = span{e1, e2} and F = span{e1, 1√
2
e3 + 1√

2
e4} , as the same as in last

case, we conclude that G is not 2 -Osserman. If β = 0 , then JE(e2) = JE(e3) = 0 and

JE(e1) = −(k2 + w2)α2e1 + (kr + wx)α2e4, JE(e4) = (rk + xw)α2e1 − (r2 + x2)α2e4,

so we obtain JE as follows

p
JE

(x) = X2(X2 + (k2 + w2 + r2 + x2)α2X + (kx− wr)2α4) = 0.

It is clear that by different two planes we gain different characteristic polynomials, so in this case G is not
2 -Osserman. Now we take π = {e1, e2} and σ = {e1, e4} , then we get κπ = −αβ and κσ = −α2 , if α ̸= β .
Therefore, G is not a space form. If α = β , then the proof is exactly as the same as in last case, i.e. g4,5 ,
so in this case κπ = −α2 , where π is arbitrary orthonormal basis. Therefore, G has constant sectional curvature.

g4,7 : The indecomposable solvable Lie algebra with [e2, e3] = e1 , [e1, e4] = 2e1 , [e2, e4] = e2 ,
[e3, e4] = e2 + e3 .

The Koszul’s formula gives us the following

∇e1e1 = −2e4, ∇e1e2 = ∇e2e1 = −1

2
e3, ∇e1e3 = ∇e3e1 =

1

2
e2, ∇e1e4 = 2e1,

∇e2e2 = −e4, ∇e2e3 =
1

2
e1 −

1

2
e4, ∇e2e4 = e2 +

1

2
e3,

∇e3e2 = −1

2
e1 −

1

2
e4, ∇e3e3 = −e4, ∇e3e4 =

1

2
e2 + e3,

∇e4e2 =
1

2
e3, ∇e4e3 = −1

2
e2.

Considering unit vector e1, e2 ∈ Se(G, g) , we get

Je1(e2) = −7

4
e2 − e3, Je1(e3) = −e2 −

7

4
e3, Je1(e4) = −4e4,

Je2(e1) = −7

4
e1 −

1

4
e4, Jei(ei) = 0, i = 1, 2, Je2(e3) = −3

2
e3, Je2(e4) = −1

4
e1 −

3

4
e4.

We obtain the following

p
Je1

(x) = x(x+ 4)(x2 +
7

2
x+

33

16
), p

Je2
(x) = x4 + 4x3 +

41

8
x2 +

33

16
x.

Since spec(Je1) = {0,−4,− 11
4 ,− 3

4} and (−4) do not belong to spec(Je2) , therefore, G is not Osserman at
identity. We have also trace(Je1) = − 15

2 and trace(Je2) = −4 , hence, G is not 1 -Stein. Lemma 2.1 implies
that (G, g) is not 2 -Stein. Considering E = span{e1, e2} and F = span{e1, e3} , we get

JE(e1) = −7

4
e1 −

1

4
e4, JE(e2) = −7

4
e2 − e3, JE(e3) = −e2 −

13

4
e3, JE(e4) = −1

4
e1 −

19

4
e4,
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JF (e1) = −7

4
e1 +

1

4
e4, JF (e2) = −13

4
e2 − e3, JF (e3) = −e2 −

7

4
e3, JF (e4) =

1

4
e1 −

23

4
e4.

Thus, little effort gives us the following

p
JE

(x) = (x2 +
13

2
x+

33

4
)(x2 + 5x+

75

16
), p

JF
(x) = (x2 +

15

2
x+ 10)(x2 + 5x+

87

4
).

Thus, we conclude that G is not 2 -Osserman. If we take 2 -planes π = {e1, e2} and σ = {e2, e3} , we obtain
κπ = − 7

4 and κσ = − 3
2 . Therefore, G is not a space form.

g4,8 : The indecomposable solvable Lie algebra with [e2, e3] = e1 , [e1, e4] = (1 + β)e1, [e2, e4] = e2 ,
[e3, e4] = βe3 , −1 ≤ β ≤ 1 .

Little effort gives us the following

∇e1e1 = −(1 + β)e4, ∇e1e2 = ∇e2e1 = −1

2
e3, ∇e1e3 = ∇e3e1 =

1

2
e2, ∇e1e4 = (1 + β)e1,

∇e2e2 = −e4, ∇e2e3 = −∇e3e2 =
1

2
e1, ∇e2e4 = e2,

∇e3e3 = −βe4, ∇e3e4 = βe3.

So we get

Je1(e2) = (−3

4
− β)e2, Je1(e3) = (−β2 − β +

1

4
)e3, Je1(e4) = −(1 + β)2e4.

Je2(e1) = (−3

4
− β)e1, Jei(ei) = 0, i = 1, 2, Je2(e3) = (−3

4
− β)e3, Je2(e4) = −e4.

Also we obtain spec(Je2) = {0,−( 34+β),−1} and spec(Je1) = {0,−( 34+β), (−β2−β+ 1
4 ),−(1+β)2} . Thus, G is

not pointwise Osserman. Now we study the 1 -Stein property at identity. Considering v = re1+se2+te3+ke4 ∈
Se(G, g) , by direct computation we obtain

trace(Jv) = r2(−2β2 − 4β − 3

2
) + s2(−2β − 5

2
) + t2(−2β2 − 2β − 1

2
) + k2(−2β2 − 2β − 2).

Therefore, G is not 1 -Stein. Also according to Lemma 2.1, we get (G, g) is not 2 -Stein. Considering
E = span{e1, e2} and F = span{e3, e4} , direct computations give us

JE(e1) = −(
3

4
+ β)e1, JE(e2) = −(

3

4
+ β)e2, JE(e3) = −(β2 + 2β +

1

2
)e3,

JE(e4) = −(β2 + 2β + 2)e4, JF (e1) = −(2β2 + 3β +
3

4
)e1, JF (e2) = −(β +

7

4
)e2,

JF (e3) = −β2e3, JF (e4) = −β2e4.
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So we obtain the following

p
JE

(x) = (x+
3

4
+ β)2(x+ β2 + 2β +

1

2
)(x+ β2 + 2β + 2),

p
JF

(x) = (x+ 2β2 + 3β +
3

4
)(x+ β +

7

4
)(x+ β2)2,

i.e. G is not 2 -Osserman. Now we consider 2 -planes π = {e3, e4} and σ = {e2, e4} , then we obtain κπ = −β2

and κσ = −1 . If β ̸= ±1 then G is not a space form. If β = ±1 , then we take π = {e1, e4} and σ = {e1, e2} ,
and we get κπ = −(1 + β)2 and κσ = −(β + 3

4 ) . This shows that G is not a space form.

g4,9 : The indecomposable solvable Lie algebra with [e2, e3] = e1 , [e1, e4] = 2αe1 , [e2, e4] = αe2 − e3 ,
[e3, e4] = e2 + αe3 , α ≥ 0 .
The Koszul’s formula gives us

∇e1e1 = −2αe4, ∇e1e2 = ∇e2e1 = −1

2
e3, ∇e1e3 = ∇e3e1 =

1

2
e2, ∇e1e4 = 2αe1,

∇e2e2 = −αe4, ∇e2e3 = −∇e3e2 =
1

2
e1, ∇e2e4 = αe2,

∇e3e3 = −αe4, ∇e3e4 = αe3, ∇e4e2 = e3, ∇e4e3 = −e2.

We get also the following

Je1(e2) = (−2α2 +
1

4
)e2, Je1(e3) = (−2α2 +

1

4
)e3, Je1(e4) = −4α2e4.

Je4(e1) = −4α2e1, Je4(e2) = −α2e2, Je4(e3) = −α2e3, Jei(ei) = 0, i = 1, 4.

Therefore, we have spec(Je1) = {0, (−2α2 + 1
4 ),−4α2} and spec(Je4) = {0,−α2,−4α2} . Thus, G is not

pointwise Osserman. Furthermore we have

f(e, e1) = trace(Je1) = −8α2 +
1

2
, f(e, e4) = trace(Je4) = −6α2.

Hence, G is not 1 -Stein, and so (G, g) is not 2 -Stein. Considering E = span{e1, e2} and F = span{e3, e4} ,
we get

JE(ei) = (−2α2 +
1

4
)ei, i = 1, 2, JE(e3) = (−3α2 − 1

2
)e3, JE(e4) = −5α2e4,

JF (e1) = (−6α2 +
1

4
)e1, JF (e2) = (−2α2 − 3

4
)e2, JF (ei) = −α2ei, i = 3, 4.

Therefore, we conclude that

p
JE

(x) = (x+ 2α2 − 1

4
)2(x+ 3α2 +

1

2
)(x+ 5α2), p

JF
(x) = (x+ 6α2 − 1

4
)(x+ 2α2 +

3

4
)(x+ α2)2,

273



PEYGHAN and SEIFIPOU/Turk J Math

i.e. G is not 2 -Osserman at identity. Now we consider 2 -planes π = {e1, e2} and σ = {e1, e4} . Then we
obtain κπ = −2α2 + 1

4 and κσ = −4α2 , so G is not a space form.

g4,10 : The indecomposable solvable Lie algebra with [e1, e3] = e1 , [e2, e3] = e2 , [e1, e4] = −e2 ,
[e2, e4] = e1 .

As the same proof in last cases we get
∇e1e1 = ∇e2e2 = −e3, ∇e1e3 = −∇e4e2 = e1, ∇e2e3 = ∇e4e1 = e2.

We recall that other components of the left invariant Levi-Civita connection are zero. Considering v =

re1 + se2 + te3 + ke4 ∈ Se(G, g) , we get

Jv(e1) = −(s2 + t2)e1 + (rs)e2 + (tr)e3, Jv(e2) = (rs)e1 − (r2 + t2)e2 + (ts)e3,

Jv(e3) = (rt)e1 + (st)e2 − (r2 + s2)e3, Jv(e4) = 0.

Now we consider v1 = e1 and v2 = 1
2e1 +

1
2e3 +

1√
2
e4 ∈ Se(G, g) . Therefore, we have

p
Jv1

(x) = x2(x+ 1)2, p
Jv2

(x) = x2(x+
1

2
)2.

Thus, G is not Osserman at identity. Furthermore we have

trace(Jv) = −2(r2 + s2 + t2).

Since trace depends to the coordinate of v , G is not 1 -Stein. Also according to Lemma 2.1, we conclude that
(G, g) is not 2 -Stein. Considering E = span{e1, e2} and F = span{e3, e4} , as the same as in last cases, we
obtain

JE(ei) = −ei, i = 1, 2, JE(e3) = −2e3, JE(e4) = 0,

JF (ei) = −ei, i = 1, 2, JF (ei) = 0, i = 3, 4.

Thus, we have p
JE

(x) = (x+1)2(x+2)x and p(JF ) = (x+1)2x2 , and we conclude that G is not 2 -Osserman.
Now we consider 2 -planes π = {e1, e2} and σ = {e1, e4} , then we obtain κπ = −1 and κσ = 0 , so G is not a
space form.

We summarize the above discussion in the following that is the main result of this section.

Theorem 2.2 If G is a non-abelian 4-dimensional Lie group with an orthonormal left invariant Riemannian
metric, then the following assertions hold

(1) The only structures that can provide 1-Stein property are 2g2,1 , g4,5 , (whenever α = β = γ ), g4,6 ,
(whenever α = β ) and g3,5 ⊕ g1 (whenever β = 0).

(2) The only structures that can provide Osserman (2-Stein) property are g3,5 ⊕ g1 , (whenever β = 0), g4,5 ,
(whenever α = β = γ ), and g4,6 , (whenever α = β ).

(3) The only structure that can provide 2-Osserman property is g3,5 ⊕ g1 , whenever β = 0 .

(4) g4,5 , (whenever α = β = γ ), g4,6 , (whenever α = β ), and g3,5 ⊕ g1 (whenever β = 0) are the only Lie
algebras of constant sectional curvature.
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3. Szabo structure at identity element

As mentioned in ([9], [10]) spectral geometry is a big branch in differential geometry and there are a lot of
unsolved problems in it. Thus, in this section we study the spectrum of Szabo operator SX(Y ) = (∇XR)(Y,X)X

at identity element. In fact we are looking for Lie algebra structures such that G equipped with them be a
Szabo manifold at identity, whenever G equipped with an orthonormal left invariant metric g that introduced
in last section. We do this work by Lie algebra classification in dimension four.

Definition 3.1 Let (M, g) be a Riemannian manifold, (M, g) is said to be Szabo manifold if spec(SX) is
constant on the unit sphere bundle S(M, g) . Also (M, g) is called Szabo manifold at p ∈ M , if spec(SX) is
independent of any X ∈ Sp(M, g) = {X ∈ TpM | gp(X,X) = 1} . Moreover, we say that (M, g) is pointwise
Szabo if (M, g) is Szabo at any p ∈ M .

The main result of this section is the following:

Theorem 3.2 If G is a non-abelian 4-dimensional Lie group with an orthonormal left invariant Riemannian
metric , then the only Lie algebra structures that can provide Szabo structure at identity of G are g3,7 ⊕ g1 ,
g2,1 ⊕ 2g1 , 2g2,1 , g3,3 ⊕ g1 , g3,4 ⊕ g1 , g3,5 ⊕ g1 , g4,5 whenever α = β = γ , and g4,6 whenever β = 0 .

Proof Considering unit vectors e1, e2 , we obtain spec(Se1) = {0} and spec(Se2) = {0,± 1
2} for g3,1 ⊕ g1 ;

spec(Se1) = {0} and spec(Se2) = {0, 1
32 ±

√
17
16 } for g4,1 ; spec(Se1) = {0,±

√
5
2 } and spec(Se2) = {0,±

√
2
2 }

for g4,4 ; spec(Se1) = {0} and spec(Se2) = {0,±(2α2 − 1
2 )} for g4,9 ; spec(Se1) = {0,−2, 3

2} and spec(Se2) =

{0,± 3
√
2

2 } for g4,7 ; spec(Se1) = {0,±(1 − β2)} and spec(Se2) = {0,±(β + 1
2 )} for g4,8 . Therefore, from

Definition 3.1 it implies that G is not Szabo manifold at identity. Considering unit vectors e1, e3 , also we

obtain spec(Se1) = {0} and spec(Se3) = {0,±
√
5
2 } for g3,2 ⊕ g1 ; spec(Se1) = {0} and spec(Se3) = {0,± 1

2}

for g4,3 ; spec(Se1) = {0} and spec(Se3) = {0,± 1
2} for g4,2 , thus, in this case G is not Szabo manifold at

identity. For g3,6 ⊕ g1 , if we consider unit vectors e1, e4 , we get spec(Se1) = {0,±4} and spec(Se4) = {0} , and
consequently from Definition 3.1 we deduce that G is not Szabo at identity. For g4,10 if we consider v1 = e1

and v2 = 1√
2
e1 + 1√

2
e2 , then we get spec(Sv1) = {0} and spec(Sv2) = {0,

√
2
2 } , thus, in this case G is not

Szabo manifold.
Let v = re1+se2+te3+ke4 be a unit tangent vector on g2,1⊕2g1 (or 2g2,1 ). Direct computations imply

that the Szabo operator is zero map, so spec(Sv) = {0} . Hence, the spectrum of Szabo operator is independent
of unit tangent vector, and consequently G is Szabo manifold at identity.

For g3,7⊕g1 , g3,3⊕g1 , g3,4⊕g1 and g3,5⊕g1 , if we consider v = re1+ se2+ te3+ke4 as a unit tangent
vector, then direct computations give us spec(Sv) = {0} , i.e. Szabo operator is zero map, so the spectrum of
Szabo operator is independent of unit tangent vector. Thus, G is Szabo manifold at identity.

For g4,5 there are three cases. If α = β = γ , by direct computations we deduce that the Szabo operator
is zero, so in this case G is Szabo manifold at identity. If α = β ̸= γ , then G is not Szabo at identity, because
if α = β = 1 and γ = 2 , we can consider tangent unit vectors v1 = e1 and v2 = 1√

2
e1 + 1

2e2 + 1
2e3 to

obtain spec(Sv1) = {0} and spec(Sv2) = {0,±
√
3
2 } . If α, β, γ are pairwise distinct, G is not Szabo manifold,

because if α = 1, β = 2, γ = 3 , putting v1 = e1 and v2 = 1√
2
e1 + 1

2e2 + 1
2e3 , we get spec(Sv1) = {0} and
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spec(Sv2) = {0,±
√

19
2 } .

For g4,6 there are two cases. If β = 0 then for every unit tangent vector v , Szabo operator is the zero
map, so in this case G is Szabo manifold at identity. If β ̸= 0 then in this case G is not Szabo manifold,
because if we consider α = β = 1 and v1 = e1 and v2 = 1√

2
e2 +

1
2e3 +

1
2e4 we obtain spec(Sv1

) = {0} and

spec(Sv2) = {0, 1
8} .

2
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