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Abstract: The goal of this paper is to introduce various forms of sober objects in a topological category and investigate
the relationships among these various forms. Moreover, we characterize quasi-sober objects, T0 objects and each of
various forms of sober objects in some topological categories and give some invariance properties of them. Finally, we
compare our results with some well-known results in the category of topological spaces.
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1. Introduction
The sober spaces, which are one of the most important classes in the theory of non-Hausdorff topological
spaces, were introduced in [12]. The usual notion of closedness and T0 -axiom of topology were generalized
the topological categories [1, 17, 20] and they are being used in defining separation axioms Ti, i = 2, 3, 4 ,
compactness and perfectness [1, 5].

In this paper, we introduce various forms of sober objects and quasi sober objects in topological categories.
Moreover, we try to:

(i) find the relationships as well as interrelationships among these notions,
(ii) give the charactarization of these notions in the category of PBorn (resp. CP and RRel) of all

prebornological (resp. pair and reflexive relation) spaces and show whether the subcategories T′
0SobE (resp.

T0SobE , T0SobE ) of E consisting of all T ′
0 sober (resp. T0 sober, T 0 sober) objects of E are isomorphic or

not, where E = PBorn,CP or RRel ,
(iii) examine some invariance properties of these various forms of sober objects in these topological

categories,
(iv) compare our results with some results in the category of topological spaces.

2. Preliminaries
The category of prebornological spaces, PBorn , has as objects the pair (X,F) , where F is a family of subsets
of X that is closed under finite union and contains all finite subsets of X and has morphisms (X,F) → (Y,G)
those functions f : X → Y such that f(C) ∈ G if C ∈ F [16]. PBorn is a topological category over Set , the
category of all sets and functions [16].
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The category of pair, CP , has as objects the pair (X,Y ) , where Y ⊂ X and has as morphisms (X,Y ) →
(X1, Y1) those functions f : X → X1 such that f(Y ) ⊂ Y1 . This is a topological category [2].
The category of reflexive relation spaces (spatial graphs), RRel , has as objects the pair (B,R) , where B is a
set and R is reflexive relation on B , and as morphisms (B,R) → (B1, R1) those functions f : B → B1 such
that if sRt , then f(s)R1f(t) for all s, t ∈ B [9, 18].
A source fi : (B,R) −→ (Bi, Ri), i ∈ I is initial in RRel iff for all s, t ∈ B , sRt iff fi(s)Rifi(t) for all i ∈ I

[9, 18].
An epimorphism f : (B,R) −→ (B1, R1) is final in RRel iff for all s, t ∈ B1 , sR1t holds in B1 precisely when
there exist c, d ∈ B , such that cRd and f(c) = s and f(d) = t [18].
RRel is a topological category.
Let B be a set, p ∈ B , and the wedge B2

∨
∆ B2 (resp. the infinity wedge

∨∞
p B ) be two distinct copies of

B2 identified along the diagonal ∆ (resp. taking countably many disjoint copies of B and identifying them at
the point p) [1]. Define A : B2

∨
∆ B2 → B3 by

A((a, b)i) =

{
(a, b, a), i = 1

(a, a, b), i = 2
,

∇ : B2
∨

∆ B2 → B2 by

▽((a, b)i) = (a, b)

for i = 1, 2

A∞
p :

∨∞
p B → B∞ by

A∞
p (ai) = (p, ..., p, a, p, p, ...)

where ai is in the i -th component of
∨∞

p B and B∞ = B × B × ... is the countable cartesian product of B ,

and ▽∞
p :

∨∞
p B −→ B by

▽∞
p (ai) = a

for all i ∈ I , where I is the index set {i : ai is in the i -th component of
∨∞

p B} [1].

Definition 2.1 (cf. [1, 17]) Let U : E → Set be topological and X be an object in E with p ∈ U(X) = B .
(1) If the initial lift of the U -source

{A : B2 ∨∆ B2 → U(X3) = B3 and ∇ : B2 ∨∆ B2 → U(D(B2)) = B2}

is discrete, then X is called a T0 object, where D is the discrete functor. (2) If the initial lift of the U -source

{id : B2 ∨∆ B2 → U(B2 ∨∆ B2)
′
= B2 ∨∆ B2 and ∇ : B2 ∨∆ B2 → U(D(B2)) = B2}

is discrete, then X is called T ′
0 object, where (B2

∨
∆ B2)

′ is the final lift of the U -sink

{q ◦ i1, q ◦ i2 : U(X2) = B2 → B2 ∨∆ B2},
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where ik : B2 → B2
⨿

B2, k = 1, 2 are the canonical injection maps and q : B2
⨿

B2 → B2
∨

∆ B2 is the
quotient map. (3) If X does not contain an indiscrete subspace with (at least) two points, then X is called a
T0 object. (4) {p} is closed iff the initial lift of the U-source

{A∞
p : ∨∞

p B → B∞ = U(X∞) and ▽∞
p : ∨∞

p B → UD(B) = B}

is discrete.
(5) ∅ ̸= Z ⊂ B is closed iff {∗} , the image of Z , is closed in X/Z, where X/Z is the final lift of the epi
U -sink

Q : U(X) = B → B/Z = (B\Z) ∪ {∗},

identifying Z with a point *. (6) If Z = B = ∅ , then we define Z to be closed.

Remark 2.2 For the category Top of topological spaces and continuous functions, all of T0 , T ′
0 , and T0 are

equivalent and they reduce to the usual T0 separation axiom and the notion of closedness coincides with the
usual closedness [1, 17, 20].

3. Sober spaces

Let E be a topological category over Set and X ∈ Ob(E) [18].

Definition 3.1
cl(Z) =

∩
{U ⊂ X : Z ⊂ U and U is closed}

is called the closure of a subobject Z of X .

It is shown that the notion of closedness forms closure operator [8] in some topological categories [5–7, 10, 11,
14, 19].
In Exercise 2.D of [9], let M be the class of all closed subobjects of an object of E . If M is stable under
pullback, then cl is an idempotent closure operator of E .

Definition 3.2 ([7]) X is said to be irreducible if A,B are closed subobjects of X and X = A ∪ B , then
A = X or B = X .

Definition 3.3 (1) X is called quasi-sober if every nonempty irreducible closed subset of X is the closure of
a point.
(2) X is called T0 sober if X is T0 and quasi-sober.
(3) X is called T ′

0 sober if X is T ′
0 and quasi-sober.

(4)X is called T0 sober if X is T0 and quasi-sober.

Remark 3.4 For Top all of T0 sober, T ′
0 sober, and T0 sober are equivalent and they reduce to the usual

sober [15] and quasi-sober reduces to the usual quasi-sober [13].

Theorem 3.5 If X is T0 sober, then X is T ′
0 sober.

Proof If X is T0 sober, then in particular, X is T0 and by Theorem 3.2, of [3], X is T ′
0 . Hence, by Definition

3.3, X is T ′
0 sober. 2
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Recall that if the initial lift of the U -source

{S : B2 ∨∆ B2 → U(X3) = B3 and ∇ : B2 ∨∆ B2 → U(D(B2)) = B2}

is discrete, then X is called a T1 object and if the initial lift of the U -source

S : B2 ∨∆ B2 → U(X3) = B3

and the initial lift of the U -source
A : B2 ∨∆ B2 → U(X3) = B3

coincide, then X is called a PreT 2 object, where S is the skewed axis map defined as

S((a, b)i) =

{
(a, b, b), i=1

(a, a, b), i=2

[1]. If X is T ′
0 and PreT 2 , then X is called KT2 [4].

Theorem 3.6 Let (X,F) be a prebornological space.
(A) (1) (X,F) is T ′

0 .
(2) (X,F) is T0 .
(3) (X,F) is T1 .
(B) The following are equivalent:
(1) (X,F) is quasi-sober.
(2) (X,F) is T0 sober.
(3) (X,F) is T ′

0 sober.
(4) (X,F) is irreducible.
(C) The following are equivalent

(1) (X,F) is T0 .
(2) (X,F) is T0 sober.
(3)X = ∅ or X is a one-point set.

Proof (A) (1) Let (X,F) be a prebornological space, G be the final prebornological structure on X2
⨿

X2

induced by the injection maps

i1, i2 : (X2,F2) −→ X2
⨿

X2,

H be the final prebornological structure on X2
∨

∆ X2 induced by the quotient map

q : (X2
⨿

X2,G) −→ X2 ∨∆ X2,

and F be the initial structure on X2
∨

∆ X2 induced by

id : X2 ∨∆ X2 −→ (X2 ∨∆ X2,H) and ▽ : X2 ∨∆ X2 −→ (X2,DF),
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where DF is discrete structure on X2 i.e. DF is the set of all finite subsets of X2 [16] and F 2 is the
product structure on X2 .
Let U be any element in F . In particular, ▽(U) ∈ DF ,
If ▽(U) = ∅ , then it follows that U = ∅ . Suppose that ▽(U) ̸= ∅ . Since DF is discrete structure on X2 and
▽(U) ∈ DF , ▽(U) is finite and consequently, U is finite. Hence, F is discrete and by Definition 2.1, (X,F)

is T ′
0 .

(2) Let F be the initial prebornological structure on X2
∨

∆ X2 induced by

A : X2 ∨∆ X2 → (X3,F3) and ▽ : X2 ∨∆ X2 → (X2,DF),

where F 3 is the product structure on X3 .
Let U be any element in F . Since F is initial by [16], ▽(U) ∈ DF and πiA(U) ∈ F , where πi : X

3 → X ,
i = 1, 2, 3 are the projection maps.
If ▽(U) = ∅ , then it follows that U = ∅ . Suppose that ▽(U) ̸= ∅ . Since DF is discrete structure on X2 and
▽(U) ∈ DF , ▽(U) is finite and consequently, U is finite. Hence, F is discrete and by Definition 2.1, (X,F)

is T0 .
The proof for T1 is similar.
(B) By Definition 3.3 and part (A), (1)-(3) are equivalent.
Suppose (X,F) is quasi-sober and X = M ∪N , where M and N are closed subsets of X . By Theorem 3.9
of [2], M = X or M = ∅ and N = X or N = ∅ . Hence, by Definition 3.2, (X,F) is irreducible.
Suppose (X,F) is irreducible and ∅ ̸= M ⊂ X is irreducible closed. Since M is closed , by Theorem 3.9 of
[2], M = X and by Definition 3.1, X = M = cl{a} for some a ∈ X . Hence, by Definition 3.3, (X,F) is
quasi-sober. Hence, (1) and (4) are equivalent.
(C) (1) ⇒ (2) : Suppose (X,F) is T0 and M is ∅ ̸= M ⊂ X is irreducible closed. Since M is closed, by
Theorem 3.9 of [2], M = X and by Definition 3.1, M = X = cl{a} for some a ∈ X . Hence, by Definition 3.2,
(X,F) is quasi-sober and by Definition 3.3, (X,F) is T0 sober.
(2) ⇒ (3) : Suppose (X,F) is T0 sober and X ̸= ∅ and X is not a one-point set. Then, there exist distinct
points c and d of X and by [16] ({c, d}, P ({c, d})) is the indiscrete subspace of (X,F) , contradicting to (X,F)

is being T0 sober. Hence, X = ∅ or X is a one-point set.
(3) ⇒ (1) : If X = ∅ or X is a one-point set, then by Definition 2.1, (X,F) is T0 . 2

Theorem 3.7 Let (X,Y ) be a pair space.
(A) (1) (X,Y ) is T0 .
(2) (X,Y ) is T ′

0 .

(3) (X,Y ) is T1 .
(B) The following are equivalent:
(1) (X,Y ) is T0 sober.
(2) (X,Y ) is T ′

0 sober.
(3) (X,Y ) is quasi-sober.
(4) The nonempty proper irreducible closed subsets of X are exactly the one-point subsets.
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(C) The following are equivalent:
(1) (X,Y ) is T0 .
(2) (X,Y ) is T0 sober.
(3) X = ∅ or X is a one point set.
(4) (X,Y ) is irreducible.

Proof (A) (1) Note that (X, ∅) is the discrete pair space [2]. Let (X,Y ) be a pair space and V be the initial
structure on X2 ∨∆ X2 induced by

A : X2 ∨∆ X2 → (X3, Y 3) and ▽ : X2 ∨∆ X2 −→ (X2, ∅),

where Y 3 is the product structure on X3 [2]. It follows that ▽(V ) ⊂ ∅ . Hence, V = ∅ and by Definition 2.1,
(X,Y ) is T0 .
(2) Let (X,Y ) be a pair space, Z be the final structure on X2 ∨∆ X2 induced by

q ◦ i1, q ◦ i2 : (X2, Y 2) → X2 ∨∆ X2,

where the maps i1, i2 , and q are defined in Section 2 and V be the initial structure on X2 ∨∆ X2 induced by

id : X2 ∨∆ X2 → (X2 ∨∆ X2, Z) and ▽ : X2 ∨∆ X2 → (X2, ∅).

In particular, ▽(V ) ⊂ ∅ and consequently, V = ∅ and by Definition 2.1, (X,Y ) is T ′
0 .

(3) The proof of Part (3) is similar to Part (1).
(B) By Part (A) and by Definition 3.3, (1)-(3) are equivalent.
(3) ⇒ (4) : (X,Y ) is quasi-sober and ∅ ̸= A ⊂ X is proper irreducible closed. Since (X,Y ) is quasi-sober, then
A = cl{a} for some a ∈ X . By Theorem 3.8 of [2], {a} is closed. Thus, cl{a} = {a} and A = {a} .
(4) ⇒ (3) : Suppose the nonempty proper irreducible closed subsets of X are exactly the one-point subsets and
∅ ̸= A ⊂ X is proper irreducible closed. Then by assumption, A = {a} for some a ∈ X . By Theorem 3.8 of
[2], {a} is closed, we get cl({a}) = {a} = A . Hence, by Definition 3.3, (X,Y ) is quasi-sober.

(C) Suppose (X,Y ) is T0 sober and X ̸= ∅ and X is not a one point set. Then there exist distinct
points s and t of X and by [2], ({s, t}, {s, t}) is the indiscrete subspace of (X,Y ) contradicting to (X,Y ) is
being T0 sober. Hence, X = ∅ or X is a one-point set.
If X = ∅ or X is a one-point set, then by Definitions 2.1 and 3.3, (X,Y ) is T0 and quasi-sober. This shows
Parts (1)-(3) are equivalent.

Suppose (X,Y ) is irreducible and X ̸= ∅ and X is not a one-point set. Then there exist distinct points s

and t of X . By Theorem 3.8 of [2] both {t} and {t}C are closed subsets of X and X = {t}∪{t}C contradicting
to (X,Y ) is being irreducible.
If X = ∅ or X is a one-point set, then by Definition 3.2, (X,Y ) is irreducible.
This shows Parts (3) and (4) are equivalent. 2

Theorem 3.8 Let (B,R) be a reflexive space and p ∈ B .
(1) (B,R) is T ′

0 .
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(2) The following are equivalent:

(a) (B,R) is T0 .
(b) R is antisymmetric.
(c) (B,R) is T0 .
(3) (a) {p} is closed iff for each a ∈ B , if aRp and pRa , then a = p .
(b) (B,R) is T0 iff {x} is closed for each x ∈ B .
(4) The following are equivalent:
(a) A ⊂ B is closed.

(b) For each x ∈ B if there exist c, d ∈ A such that xRc and dRx , then x ∈ A .

(c) A is upward-closed or downward-closed.
(5) (B,R) is quasi-sober if and only if (B,R) is T ′

0 sober.
(6) The following are equivalent:

(a) (B,R) is T0 sober.
(b) (B,R) is T0 sober.
(c) {x} is closed for each x ∈ B and the nonempty proper irreducible closed subsets of B are exactly the
one-point subsets.

Proof (1) Let (B,R) be a reflexive space, (B2
∨

∆ B2)′ be the final lift of

q ◦ i1, q ◦ i2 : (B2, R2) → B2 ∨∆ B2,

where R2 is the product relation on B2 , and R1 be the initial structure on the wedge B2
∨

∆ B2 induced by

id : B2 ∨∆ B2 → (B2 ∨∆ B2)′ and ∇ : B2 ∨∆ B2 → (B2, N)

where N is discrete relation on B2 . We have to show that R1 is discrete, i.e. for any points s and t of the
wedge B2

∨
∆ B2 if sR1t , then s = t . If sR1t , then, in particular, ∇(s) = (a, b) = ∇(t) for some a, b ∈ B , and

consequently, s and t have the form. (a, b)1 and (a, b)2 . If s = (a, b)1 (resp. (a, b)2 ) and t = (a, b)2 (resp.
(a, b)1 ), then ik((a, b)) = (a, b)1 = s, ik((a, b)) = (a, b)2 = t for k=1 or 2, which implies s and t must lie in the
same component of the wedge B2

∨
∆ B2 which means s = t for all s and t . Thus, R1 is discrete and by 2.1,

(B,R) is T ′
0 .

(2) (a) ⇒ (b) : Suppose (B,R) is T 0 and for any x, y ∈ B , xRy and yRx . We show that x = y . Assume
x ̸= y . Let s = (x, y)1 and t = (x, y)2 . Note that

π1A(s)Rπ1A(t) = xRx,

π2A(s)Rπ2A(t) = yRx,

π3A(s)Rπ3A(t) = xRy,

and
∇(s) = (x, y) = ∇(t)
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. Since (B,R) is T 0 , by Definition 2.1, s = t . Thus, x = y , i.e. R is antisymmetric.

(b) ⇒ (c) : Suppose that R is antisymmetric and A is any subset of B with at least two points. Let
c, d ∈ A with c ̸= d , D = {c, d} , and RD be the initial relation on D induced by the inclusion map i : D ⊂ B .
If RD = D2 , the indiscrete reflexive relation on D2 , then, in particular, cRDd = cRd and dRDc = dRc .
Since R is antisymmetric, c = d , a contradiction. Hence, a reflexive space (B,R) cannot contain an indiscrete
subspace with at least two points. Thus, by Definition 2.1, (B,R) is T0 .

(c) ⇒ (a) : Suppose (B,R) is T0 . Let R3 is the product relation on B3 and R1 be the initial structure
on the wedge B2

∨
∆ B2 induced by

A : B2 ∨∆ B2 → (B3, R3) and ∇ : B2 ∨∆ B2 → (B2, B2 ×B2).

We need to show that R1 is discrete. If sR1t for any points s and t of the wedge B2
∨

∆ B2 , then
π1A(s)Rπ1A(t) , π2A(s)Rπ2A(t) , π3A(s)Rπ3A(t) , and ∇(s) = ∇(t) . Since ∇(s) = ∇(t) , s and t have the
form: (x, y)1 and (x, y)2 for some x and y in B .

If s = (x, y)1 (resp.(x, y)2 ) and t = (x, y)2 ((resp.(x, y)1 )), then

π1A(s)Rπ1A(t) = xRx,

π2A(s)Rπ2A(t) = yRx (resp.xRy),

π3A(s)Rπ3A(t) = xRy (resp. yRx),

and
∇(s) = (x, y) = ∇(t).

Since xRy and yRx , x = y . Otherwise, ({x, y}, {x, y} × {x, y}) is the indiscrete subspace of (B,R) ,
which contradicts to (B,R) is being T0 . Hence, s = t and R1 is discrete, i.e. (B,R) is T0 . This completes
the proof of Part (2).

(3) (a) : Suppose {p} is closed and for each a ∈ B aRp and pRa . Note that

∇∞
p (a, p, p, ...) = a = ∇∞

p (p, a, p, ...),

π1A
∞
p (a, p, p, ...)R(p, a, p, ...) = aRp,

π2A
∞
p (a, p, p, ...)R(p, a, p, ...) = pRa,

and
πiA

∞
p (a, p, p, ...)R(p, a, p, ...) = pRp

for all i ≥ 3 , where πi : B
∞ → B are the projection maps, for all i ∈ I . Since {p} is closed, by Definition

2.1, (a, p, p, ...) = (p, a, p, ...) which implies a = p .

Conversely, suppose for each a ∈ B , if aRp and pRa , then a = p . Let s and t be any points in ∨∞
p B

with πiA
∞
p (s)RπiA

∞
p (t) for all i , and ∇∞

p (s) = ∇∞
p (t) . It follows s = ak and t = an for some k and n . Note

that
πkA

∞
p (s)RπkA

∞
p (t) = aRp,
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πnA
∞
p (s)RπnA

∞
p (t) = pRa,

and
πiA

∞
p (s)RπiA

∞
p (t) = pRp

for all i ̸= k . By the assumption, a = p , and consequently, s = ak = an = t . Thus, by Definition 2.1, {p} is
closed.

(b) : Combine Part (2) and Part 3(a).

(4) (a) ⇒ (b) : Suppose A is closed and for each x ∈ B ∃c, d ∈ A such that xRc and dRx . Note
that Q(x)R1(Q(c) = ∗) and (∗ = Q(d))R1Q(x) , where R1 is the final structure on B/A that is induced by
Q : B → B/A . Since {∗} is closed, by (3)(a), Q(x) = ∗ which means x ∈ A .

(b) ⇒ (c) : Assume (b) holds. If for each x ∈ B there exists c ∈ A such that xRc (resp. cRx), then, by
assumption, x ∈ A and so, A is downward-closed (resp. upward-closed) [9, 15].

(c) ⇒ (a) : Suppose A is upward-closed or downward-closed. Assume yR1∗ and ∗R1y for some y ∈ B/A .
It follows that there exist x ∈ B and c, d ∈ A such that xRc and cRx with Q(x) = y and Q(c) = ∗ = Q(d) .

If xRc , then x ∈ A since A is downward-closed. Thus, y = Q(x) = ∗ .

If dRx , then x ∈ A since A is upward-closed. Thus, y = Q(x) = ∗ and by Part (3)(a), {∗} is closed.
Hence, by Definition 2.1, A is closed.

(5) We get the proof from Part (1) and Definition 3.3.

(6) By Part (2), (a) and (b) are equivalent.

(b) ⇒ (c) : Suppose (B,R) is T0 sober. In particular, by Parts (2) and (3), {x} is closed for each x ∈ B .
If ∅ ̸= A ⊂ B is proper irreducible closed, then A = cl{a} for some a ∈ B since (B,R) is quasi-sober. Since
{a} is closed, we have {a} = cl{a} = A .

(c) ⇒ (b) : Suppose that {x} is closed for each x ∈ B and every nonempty proper irreducible closed
subset of B is a one-point set. By Parts (2) and (3), (B,R) is T0 .

If ∅ ̸= A ⊂ B is proper irreducible closed subset of B , then by assumption, A = {a} for some a ∈ B .
But since {a} is closed, cl({a}) = {a} = A . Hence, by Definition 3.3, (B,R) is quasi-sober and consequently,
(B,R) is T0 sober. 2

Let T′
0E (resp. T0E , T0E , T1E ) be the full subcategory of E consisting of all T ′

0 (resp. T0 , T 0 , T1 ) objects
of E . Let T′

0SobE (resp. T0SobE , T0SobE ) be the full subcategory of E consisting of all T ′
0 sober (resp.

T0 sober, T 0 sober) objects of E .
By Theorem 3.6, we get:

Theorem 3.9 (1) The categories T′
0PBorn , T0PBorn , and T1PBorn are pairwise isomorphic.

(2) The categories T′
0SobPBorn , T0SobPBorn and QSobPBorn are pairwise isomorphic, where QSobPBorn

is the full subcategory of PBorn consisting of all quasi-sober prebornological spaces.
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(3) The categories T0PBorn and T0SobPBorn are isomorphic.

By Theorem 3.7, we get:

Theorem 3.10 (1) The categories T′
0CP , T0CP , and T1CP are pairwise isomorphic.

(2) The categories T′
0SobCP , T0SobCP , and QSobCP are pairwise isomorphic, where QSobCP is the

full subcategory of CP consisting of all quasi-sober pair spaces.
(3) The categories T0CP and T0SobCP are isomorphic.

Theorem 3.11 (1) The categories RRel and T′
0RRel are isomorphic.

(2) The categories T0RRel and T0RRel are isomorphic.
(3) The categories T′

0SobRRel and QSobRRel are isomorphic, where QSobRRel is the full subcategory
of RRel consisting of all quasi-sober reflexive spaces.
(4) The categories T0SobRRel and T0SobRRel are isomorphic.

Proof It follows from Theorem 3.8. 2

We now state some well-known results [15] in Top .

Theorem 3.12 (1) Every T2 topological space is sober.

(2) Sobriety is between T0 and T2 .
(3) Being T1 and being sober are incomparable properties.
(4) Being T0 and being quasi-sober are incomparable properties.

(5) Every irreducible and T2 is a one-point space.
(6) X is T1 iff {x} is closed for each x ∈ X .
(7) Let X be a topological space, S(X) be the set of all irreducible closed subsets of X , and the map
f : X → S(X) be defined as f(x) = cl{x} .
(i) X is sober iff f is bijective.
(ii) X is T0 iff f is injective.
(iii) X is quasi-sober iff f is surjective.

Theorem 3.13 Let (X, d) be an extended pseudo-quasi-semi metric space.
(1) (X, d) is quasi-sober iff (X, d) is T ′

0 sober,
(2) (X, d) is T0 sober iff {x} is closed for each x ∈ X and the nonempty proper irreducible closed subsets of
X are exactly the one-point subsets,
(3) (X, d) is T0 sober iff (X, d) is a quasi-sober and an extended quasi-semi metric space.

Proof (1) By Theorem 3.5 of [14], (X, d) is T ′
0 and by Definition 3.3, the result follows.

(2) Suppose that (X, d) is T0 sober. By Theorem 3.5 of [14] and Theorem 3.2 of [7], {x} is closed for each
x ∈ X . If A is any nonempty proper irreducible closed subset of X , then by Definition 3.3, A = cl{a} for
some a ∈ X and Theorem 3.5 of [14], cl{a} = {a} . Hence, A = {a} .
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Suppose that {x} is closed for each x ∈ X and every nonempty proper irreducible closed subset of X is a
one-point set. By Theorem 3.5 of [14] and Theorem 3.2 of [7], (X, d) is T0 . If A is any nonempty proper
irreducible closed subset of X , then by the assumption, A = {a} = cl{a} for some a ∈ X . Hence, by Definition
3.3, (X, d) is quasi-sober and T0 sober.
(3) By Theorem 3.3 of [14], an extended pseudo-quasi-semi metric space (X, d) is T0 iff d is pseudo. The result
follows from this fact and Definition 3.3. 2

We can infer the following results:
(1) By Theorems 3.9-3.11, the categories T′

0PBorn , T0PBorn , T1PBorn , T′
0CP , T0CP , T1CP ,

T′
0RRel , T′

0SobPBorn , T0SobPBorn , and QSobPBorn have all limits and colimits.
(2) By Theorems 3.3 and 3.25 of [14], if the extended pseudo-quasi-semi metric space (X, d) is T1 , then each
subset of X is closed and if (X, d) is a nonempty irreducible T1 , then (X, d) must be a one-point space.
Every irreducible and KT2 may not be a one-point space. For example, let X = {a, b} and d be defined as
d(a, a) = 0 = d(b, b), d(a, b) = 2 = d(b, a) . By Theorem 3.13 of [14], (X, d) is KT2 and by Theorem 3.19 of
[14], (X, d) is irreducible but (X, d) is not a one-point space. This shows Theorem 3.12(5) does not hold in
the category pqsMet of all extended pseudo-quasi-semi metric spaces and nonexpansive maps. Let X = {a, b}
and d be defined as d(a, a) = 0 = d(b, b), d(a, b) = ∞ and d(b, a) = 1 . By Theorem 3.4 of [7], both {a} and
{b} are closed but by Theorem 3.3 of [14], (X, d) is not T1 . This shows Theorem 3.12(6) does not hold in
pqsMet . If (R, d) is the indiscrete extended pseudo-quasi-semi metric space, i.e. d(a, b) = 0 for all a, b ∈ R ,
where R is the set of reel numbers, then by Theorem 3.13 of [14] and Theorem 3.13, (R, d) is both T0 sober
and KT2 but by Theorem 3.4 of [14], (R, d) is neither T 0 sober nor T 0 . This shows Theorem 3.12(2) is not
valid in pqsMet .
(3) By Theorem 3.6, a T0 sober prebornological space is a quasi-sober, T ′

0 sober, and T 0 sober. The pre-
bornological space (R,P (R)) is quasi-sober, T ′

0 sober, and T 0 sober but it is not T0 sober, where R is the set
of reel numbers. Moreover, By Theorem 3.6, all of quasi-sober prebornological spaces, T ′

0 sober prebornological
spaces, and T 0 sober prebornological spaces are equivalent. By Theorem 3.6, every T0 is T 0 sober but the
reverse implication may not be true. This shows Theorem 3.12(2) does not hold in PBorn .
(4) By Theorem 3.9 of [2] and Definition 3.1, cl = ι , the trivial closure operator [9] of PBorn .
(5) By Theorem 3.7, each of a quasi-sober pair space, T ′

0 sober pair space, T0 sober pair space, and T 0 sober
pair space is T1 . The pair space (R,N) is T1 but it none of quasi-sober, T ′

0 sober, T0 sober, and T 0 sober,
where N is the set of natural numbers. Moreover, by Theorem 3.7, T0 implies T ′

0 and T 0 and the pair space
(R,N) is T ′

0 and T 0 but it is not T0 .
(6) By Theorem 3.8 of [2] and Definition 3.1, cl = δ , the discrete closure operator [9] of CP .
(7) By Theorems 3.3 and 3.4 of [14], the indiscrete extended pseudo-quasi-semi metric space (R, d) is both T0

sober and quasi-sober, (R, d) is neither T1 nor T 0 . By Theorem 3.7, the pair space (R,N) is both T 0 and T1

but it is neither T0 sober nor quasi-sober. By Theorem 3.6, being T1 (resp. T 0 ) and being T 0 sober (resp.
quasi-sober) are the same. This shows Theorem 3.12(3) and (4) do not hold in PBorn .
(8) By Theorem 3.6, a nonempty prebornological space (X,F) is T 0 but f : X → S(X) is not injective, where
S(X) is the set of all irreducible closed subsets of X . This shows Theorem 3.12(7) does not hold in an arbitrary
topological category.
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(9) By Theorem 3.8, T 0 sober=T0 sober (resp. T 0=T0 ) implies T ′
0 sober (resp. T ′

0 ). Let B be an infinite
set. Then by Theorem 3.8, the indiscrete reflexive space (B,B2) is T ′

0 sober and quasi sober but it is neither
T0 sober nor T0 . Moreover, a reflexive space (B,R) is T0 iff {x} is closed for each x ∈ B .
(10) In arbitrary topological category, by Theorem 3.5, every T0 sober object is T ′

0 sober. By Theorem 3.13
and Parts (2) and (3), there is no implication between T0 sober and T 0 sober.
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