Turkish Journal of Mathematics<br>http://journals.tubitak.gov.tr/math/<br>Research Article

Turk J Math
(2022) 46: $299-310$
© TÜBİTAK
doi:10.3906/mat-2109-95

## Sober spaces

Mehmet BARAN* ${ }^{*}$ ( , Hassan ABUGHALWA ©<br>Department of Mathematics, Faculty of Science, Erciyes University, Kayseri, Turkey

Received: 23.09.2021 • Accepted/Published Online: 04.01.2022 • Final Version: 19.01 .2022


#### Abstract

The goal of this paper is to introduce various forms of sober objects in a topological category and investigate the relationships among these various forms. Moreover, we characterize quasi-sober objects, $T_{0}$ objects and each of various forms of sober objects in some topological categories and give some invariance properties of them. Finally, we compare our results with some well-known results in the category of topological spaces.


Key words: Topological category, $T_{0}$ objects, $T_{1}$ objects, sober spaces, irreducible spaces.

## 1. Introduction

The sober spaces, which are one of the most important classes in the theory of non-Hausdorff topological spaces, were introduced in [12]. The usual notion of closedness and $T_{0}$-axiom of topology were generalized the topological categories $[1,17,20]$ and they are being used in defining separation axioms $T_{i}, i=2,3,4$, compactness and perfectness $[1,5]$.

In this paper, we introduce various forms of sober objects and quasi sober objects in topological categories. Moreover, we try to:
(i) find the relationships as well as interrelationships among these notions,
(ii) give the charactarization of these notions in the category of PBorn (resp. CP and RRel) of all prebornological (resp. pair and reflexive relation) spaces and show whether the subcategories $\mathbf{T}_{\mathbf{0}}^{\prime} \mathbf{S o b} \mathcal{E}$ (resp. $\mathbf{T}_{\mathbf{0}} \mathbf{S o b} \mathcal{E}, \overline{\mathbf{T}}_{\mathbf{0}} \mathbf{S o b} \mathcal{E}$ ) of $\mathcal{E}$ consisting of all $T_{0}^{\prime}$ sober (resp. $T_{0}$ sober, $\bar{T}_{0}$ sober) objects of $\mathcal{E}$ are isomorphic or not, where $\mathcal{E}=\mathbf{P B o r n}, \mathbf{C P}$ or RRel,
(iii) examine some invariance properties of these various forms of sober objects in these topological categories,
(iv) compare our results with some results in the category of topological spaces.

## 2. Preliminaries

The category of prebornological spaces, PBorn, has as objects the pair $(X, \mathcal{F})$, where $\mathcal{F}$ is a family of subsets of $X$ that is closed under finite union and contains all finite subsets of $X$ and has morphisms $(X, \mathcal{F}) \rightarrow(Y, \mathcal{G})$ those functions $f: X \rightarrow Y$ such that $f(C) \in \mathcal{G}$ if $C \in \mathcal{F}$ [16]. PBorn is a topological category over Set, the category of all sets and functions [16].

[^0]The category of pair, $\mathbf{C P}$, has as objects the pair $(X, Y)$, where $Y \subset X$ and has as morphisms $(X, Y) \rightarrow$ $\left(X_{1}, Y_{1}\right)$ those functions $f: X \rightarrow X_{1}$ such that $f(Y) \subset Y_{1}$. This is a topological category [2].
The category of reflexive relation spaces (spatial graphs), RRel, has as objects the pair $(B, R)$, where $B$ is a set and $R$ is reflexive relation on $B$, and as morphisms $(B, R) \rightarrow\left(B_{1}, R_{1}\right)$ those functions $f: B \rightarrow B_{1}$ such that if $s R t$, then $f(s) R_{1} f(t)$ for all $s, t \in B[9,18]$.
A source $f_{i}:(B, R) \longrightarrow\left(B_{i}, R_{i}\right), i \in I$ is initial in $\mathbf{R R e l}$ iff for all $s, t \in B$, sRt iff $f_{i}(s) R_{i} f_{i}(t)$ for all $i \in I$ [9, 18].
An epimorphism $f:(B, R) \longrightarrow\left(B_{1}, R_{1}\right)$ is final in $\mathbf{R R e l}$ iff for all $s, t \in B_{1}, s R_{1} t$ holds in $B_{1}$ precisely when there exist $c, d \in B$, such that $c R d$ and $f(c)=s$ and $f(d)=t[18]$.
RRel is a topological category.
Let $B$ be a set, $p \in B$, and the wedge $B^{2} \bigvee_{\Delta} B^{2}$ (resp. the infinity wedge $\bigvee_{p}^{\infty} B$ ) be two distinct copies of $B^{2}$ identified along the diagonal $\Delta$ (resp. taking countably many disjoint copies of $B$ and identifying them at the point $p$ ) [1]. Define $A: B^{2} \bigvee_{\Delta} B^{2} \rightarrow B^{3}$ by

$$
A\left((a, b)_{i}\right)= \begin{cases}(a, b, a), & i=1 \\ (a, a, b), & i=2\end{cases}
$$

$$
\nabla: B^{2} \bigvee_{\Delta} B^{2} \rightarrow B^{2} \text { by }
$$

$$
\nabla\left((a, b)_{i}\right)=(a, b)
$$

for $i=1,2$

$$
\begin{aligned}
& A_{p}^{\infty}: \bigvee_{p}^{\infty} B \rightarrow B^{\infty} \text { by } \\
& \qquad A_{p}^{\infty}\left(a_{i}\right)=(p, \ldots, p, a, p, p, \ldots)
\end{aligned}
$$

where $a_{i}$ is in the $i$-th component of $\bigvee_{p}^{\infty} B$ and $B^{\infty}=B \times B \times \ldots$ is the countable cartesian product of $B$, and $\nabla_{p}^{\infty}: \bigvee_{p}^{\infty} B \longrightarrow B$ by

$$
\nabla_{p}^{\infty}\left(a_{i}\right)=a
$$

for all $i \in I$, where $I$ is the index set $\left\{i: a_{i}\right.$ is in the $i$-th component of $\left.\bigvee_{p}^{\infty} B\right\}[1]$.
Definition 2.1 (cf. [1, 17]) Let $U: \mathcal{E} \rightarrow$ Set be topological and $X$ be an object in $\mathcal{E}$ with $p \in U(X)=B$. (1) If the initial lift of the $U$-source

$$
\left\{A: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(X^{3}\right)=B^{3} \quad \text { and } \quad \nabla: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(D\left(B^{2}\right)\right)=B^{2}\right\}
$$

is discrete, then $X$ is called a $\overline{T_{0}}$ object, where $D$ is the discrete functor. (2) If the initial lift of the $U$-source

$$
\left\{i d: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(B^{2} \vee_{\Delta} B^{2}\right)^{\prime}=B^{2} \vee_{\Delta} B^{2} \quad \text { and } \quad \nabla: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(D\left(B^{2}\right)\right)=B^{2}\right\}
$$

is discrete, then $X$ is called $T_{0}^{\prime}$ object, where $\left(B^{2} \bigvee_{\Delta} B^{2}\right)^{\prime}$ is the final lift of the $U$-sink

$$
\left\{q \circ i_{1}, q \circ i_{2}: U\left(X^{2}\right)=B^{2} \rightarrow B^{2} \vee_{\Delta} B^{2}\right\}
$$

where $i_{k}: B^{2} \rightarrow B^{2} \amalg B^{2}, k=1,2$ are the canonical injection maps and $q: B^{2} \coprod B^{2} \rightarrow B^{2} \bigvee_{\Delta} B^{2}$ is the quotient map. (3) If $X$ does not contain an indiscrete subspace with (at least) two points, then $X$ is called a $T_{0}$ object. (4) $\{p\}$ is closed iff the initial lift of the U-source

$$
\left\{A_{p}^{\infty}: \vee_{p}^{\infty} B \rightarrow B^{\infty}=U\left(X^{\infty}\right) \quad \text { and } \quad \nabla_{p}^{\infty}: \vee_{p}^{\infty} B \rightarrow U D(B)=B\right\}
$$

is discrete.
(5) $\emptyset \neq Z \subset B$ is closed iff $\{*\}$, the image of $Z$, is closed in $X / Z$, where $X / Z$ is the final lift of the epi $U-\sin k$

$$
Q: U(X)=B \rightarrow B / Z=(B \backslash Z) \cup\{*\}
$$

identifying $Z$ with a point *. (6) If $Z=B=\emptyset$, then we define $Z$ to be closed.

Remark 2.2 For the category Top of topological spaces and continuous functions, all of $\overline{T_{0}}, T_{0}^{\prime}$, and $T_{0}$ are equivalent and they reduce to the usual $T_{0}$ separation axiom and the notion of closedness coincides with the usual closedness [1, 17, 20].

## 3. Sober spaces

Let $\mathcal{E}$ be a topological category over Set and $X \in \operatorname{Ob}(\mathcal{E})$ [18].

## Definition 3.1

$$
\boldsymbol{c l}(Z)=\bigcap\{U \subset X: Z \subset U \quad \text { and } \quad U \quad \text { is } \quad \text { closed }\}
$$

is called the closure of a subobject $Z$ of $X$.
It is shown that the notion of closedness forms closure operator [8] in some topological categories [5-7,10, 11, 14, 19].
In Exercise 2.D of [9], let $\mathcal{M}$ be the class of all closed subobjects of an object of $\mathcal{E}$. If $\mathcal{M}$ is stable under pullback, then $\boldsymbol{c l}$ is an idempotent closure operator of $\mathcal{E}$.

Definition 3.2 ([7]) $X$ is said to be irreducible if $A, B$ are closed subobjects of $X$ and $X=A \cup B$, then $A=X$ or $B=X$.

Definition 3.3 (1) $X$ is called quasi-sober if every nonempty irreducible closed subset of $X$ is the closure of a point.
(2) $X$ is called $\overline{T_{0}}$ sober if $X$ is $\overline{T_{0}}$ and quasi-sober.
(3) $X$ is called $T_{0}^{\prime}$ sober if $X$ is $T_{0}^{\prime}$ and quasi-sober.
(4) $X$ is called $T_{0}$ sober if $X$ is $T_{0}$ and quasi-sober.

Remark 3.4 For Top all of $\overline{T_{0}}$ sober, $T_{0}^{\prime}$ sober, and $T_{0}$ sober are equivalent and they reduce to the usual sober [15] and quasi-sober reduces to the usual quasi-sober [13].

Theorem 3.5 If $X$ is $\overline{T_{0}}$ sober, then $X$ is $T_{0}^{\prime}$ sober.
Proof If $X$ is $\overline{T_{0}}$ sober, then in particular, $X$ is $\overline{T_{0}}$ and by Theorem 3.2, of [3], $X$ is $T_{0}^{\prime}$. Hence, by Definition $3.3, X$ is $T_{0}^{\prime}$ sober.

Recall that if the initial lift of the $U$-source

$$
\left\{S: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(X^{3}\right)=B^{3} \quad \text { and } \quad \nabla: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(D\left(B^{2}\right)\right)=B^{2}\right\}
$$

is discrete, then $X$ is called a $T_{1}$ object and if the initial lift of the $U$-source

$$
S: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(X^{3}\right)=B^{3}
$$

and the initial lift of the $U$-source

$$
A: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(X^{3}\right)=B^{3}
$$

coincide, then $X$ is called a $\operatorname{Pre} \bar{T}_{2}$ object, where $S$ is the skewed axis map defined as

$$
S\left((a, b)_{i}\right)= \begin{cases}(a, b, b), & \mathrm{i}=1 \\ (a, a, b), & \mathrm{i}=2\end{cases}
$$

[1]. If $X$ is $T_{0}^{\prime}$ and $\operatorname{Pre} \bar{T}_{2}$, then $X$ is called $K T_{2}$ [4].

Theorem 3.6 Let $(X, \mathcal{F})$ be a prebornological space.
(A) (1) $(X, \mathcal{F})$ is $T_{0}^{\prime}$.
(2) $(X, \mathcal{F})$ is $\overline{T_{0}}$.
(3) $(X, \mathcal{F})$ is $T_{1}$.
(B) The following are equivalent:
(1) $(X, \mathcal{F})$ is quasi-sober.
(2) $(X, \mathcal{F})$ is $\overline{T_{0}}$ sober.
(3) $(X, \mathcal{F})$ is $T_{0}^{\prime}$ sober.
(4) $(X, \mathcal{F})$ is irreducible.
(C) The following are equivalent
(1) $(X, \mathcal{F})$ is $T_{0}$.
(2) $(X, \mathcal{F})$ is $T_{0}$ sober.
(3) $X=\emptyset$ or $X$ is a one-point set.

Proof (A)(1) Let $(X, \mathcal{F})$ be a prebornological space, $\mathcal{G}$ be the final prebornological structure on $X^{2} \coprod X^{2}$ induced by the injection maps

$$
i_{1}, i_{2}:\left(X^{2}, \mathcal{F}^{2}\right) \longrightarrow X^{2} \coprod X^{2}
$$

$\mathcal{H}$ be the final prebornological structure on $X^{2} \bigvee_{\Delta} X^{2}$ induced by the quotient map

$$
q:\left(X^{2} \coprod X^{2}, \mathcal{G}\right) \longrightarrow X^{2} \vee_{\Delta} X^{2}
$$

and $\overline{\mathcal{F}}$ be the initial structure on $X^{2} \bigvee_{\Delta} X^{2}$ induced by

$$
i d: X^{2} \vee_{\Delta} X^{2} \longrightarrow\left(X^{2} \vee_{\Delta} X^{2}, \mathcal{H}\right) \text { and } \nabla: X^{2} \vee_{\Delta} X^{2} \longrightarrow\left(X^{2}, \mathcal{D} \mathcal{F}\right)
$$

## BARAN and ABUGHALWA/Turk J Math

where $\mathcal{D} \mathcal{F}$ is discrete structure on $X^{2}$ i.e. $\mathcal{D F}$ is the set of all finite subsets of $X^{2}[16]$ and $\mathcal{F}^{2}$ is the product structure on $X^{2}$.
Let $U$ be any element in $\overline{\mathcal{F}}$. In particular, $\nabla(U) \in \mathcal{D} \mathcal{F}$,
If $\nabla(U)=\emptyset$, then it follows that $U=\emptyset$. Suppose that $\nabla(U) \neq \emptyset$. Since $\mathcal{D} \mathcal{F}$ is discrete structure on $X^{2}$ and $\nabla(U) \in \mathcal{D} \mathcal{F}, \nabla(U)$ is finite and consequently, $U$ is finite. Hence, $\overline{\mathcal{F}}$ is discrete and by Definition 2.1, $(X, \mathcal{F})$ is $T_{0}^{\prime}$.
(2) Let $\overline{\mathcal{F}}$ be the initial prebornological structure on $X^{2} \bigvee_{\Delta} X^{2}$ induced by

$$
A: X^{2} \vee_{\Delta} X^{2} \rightarrow\left(X^{3}, \mathcal{F}^{3}\right) \quad \text { and } \quad \nabla: X^{2} \vee_{\Delta} X^{2} \rightarrow\left(X^{2}, \mathcal{D F}\right)
$$

where $\mathcal{F}^{3}$ is the product structure on $X^{3}$.
Let $U$ be any element in $\overline{\mathcal{F}}$. Since $\overline{\mathcal{F}}$ is initial by [16], $\nabla(U) \in \mathcal{D} \mathcal{F}$ and $\pi_{i} A(U) \in \mathcal{F}$, where $\pi_{i}: X^{3} \rightarrow X$, $i=1,2,3$ are the projection maps.
If $\nabla(U)=\emptyset$, then it follows that $U=\emptyset$. Suppose that $\nabla(U) \neq \emptyset$. Since $\mathcal{D F}$ is discrete structure on $X^{2}$ and $\nabla(U) \in \mathcal{D} \mathcal{F}, \nabla(U)$ is finite and consequently, $U$ is finite. Hence, $\overline{\mathcal{F}}$ is discrete and by Definition 2.1, $(X, \mathcal{F})$ is $\overline{T_{0}}$.
The proof for $T_{1}$ is similar.
(B) By Definition 3.3 and part (A), (1)-(3) are equivalent.

Suppose $(X, \mathcal{F})$ is quasi-sober and $X=M \cup N$, where $M$ and $N$ are closed subsets of $X$. By Theorem 3.9 of [2], $M=X$ or $M=\emptyset$ and $N=X$ or $N=\emptyset$. Hence, by Definition 3.2, $(X, \mathcal{F})$ is irreducible.
Suppose $(X, \mathcal{F})$ is irreducible and $\emptyset \neq M \subset X$ is irreducible closed. Since $M$ is closed, by Theorem 3.9 of [2], $M=X$ and by Definition 3.1, $X=M=\operatorname{cl\{ a\} }$ for some $a \in X$. Hence, by Definition 3.3, $(X, \mathcal{F})$ is quasi-sober. Hence, (1) and (4) are equivalent.
(C) (1) $\Rightarrow(2)$ : Suppose $(X, \mathcal{F})$ is $T_{0}$ and $M$ is $\emptyset \neq M \subset X$ is irreducible closed. Since $M$ is closed, by Theorem 3.9 of [2], $M=X$ and by Definition 3.1, $M=X=\operatorname{cl}\{a\}$ for some $a \in X$. Hence, by Definition 3.2, $(X, \mathcal{F})$ is quasi-sober and by Definition 3.3, $(X, \mathcal{F})$ is $T_{0}$ sober.
$(2) \Rightarrow(3)$ : Suppose $(X, \mathcal{F})$ is $T_{0}$ sober and $X \neq \emptyset$ and $X$ is not a one-point set. Then, there exist distinct points $c$ and $d$ of $X$ and by [16] ( $\{c, d\}, P(\{c, d\}))$ is the indiscrete subspace of $(X, \mathcal{F})$, contradicting to $(X, \mathcal{F})$ is being $T_{0}$ sober. Hence, $X=\emptyset$ or $X$ is a one-point set.
$(3) \Rightarrow(1):$ If $X=\emptyset$ or $X$ is a one-point set, then by Definition 2.1, $(X, \mathcal{F})$ is $T_{0}$.
Theorem 3.7 Let $(X, Y)$ be a pair space.
(A) (1) $(X, Y)$ is $\overline{T_{0}}$.
(2) $(X, Y)$ is $T_{0}^{\prime}$.
(3) $(X, Y)$ is $T_{1}$.
(B) The following are equivalent:
(1) $(X, Y)$ is $\overline{T_{0}}$ sober.
(2) $(X, Y)$ is $T_{0}^{\prime}$ sober.
(3) $(X, Y)$ is quasi-sober.
(4) The nonempty proper irreducible closed subsets of $X$ are exactly the one-point subsets.
(C) The following are equivalent:
(1) $(X, Y)$ is $T_{0}$.
(2) $(X, Y)$ is $T_{0}$ sober.
(3) $X=\emptyset$ or $X$ is a one point set.
(4) $(X, Y)$ is irreducible.

Proof (A) (1) Note that $(X, \emptyset)$ is the discrete pair space [2]. Let $(X, Y)$ be a pair space and $V$ be the initial structure on $X^{2} \vee_{\Delta} X^{2}$ induced by

$$
A: X^{2} \vee_{\Delta} X^{2} \rightarrow\left(X^{3}, Y^{3}\right) \text { and } \nabla: X^{2} \vee_{\Delta} X^{2} \longrightarrow\left(X^{2}, \emptyset\right)
$$

where $Y^{3}$ is the product structure on $X^{3}$ [2]. It follows that $\nabla(V) \subset \emptyset$. Hence, $V=\emptyset$ and by Definition 2.1, $(X, Y)$ is $\overline{T_{0}}$.
(2) Let $(X, Y)$ be a pair space, $Z$ be the final structure on $X^{2} \vee_{\Delta} X^{2}$ induced by

$$
q \circ i_{1}, q \circ i_{2}:\left(X^{2}, Y^{2}\right) \rightarrow X^{2} \vee_{\Delta} X^{2}
$$

where the maps $i_{1}, i_{2}$, and $q$ are defined in Section 2 and $V$ be the initial structure on $X^{2} \vee_{\Delta} X^{2}$ induced by

$$
i d: X^{2} \vee_{\Delta} X^{2} \rightarrow\left(X^{2} \vee_{\Delta} X^{2}, Z\right) \quad \text { and } \quad \nabla: X^{2} \vee_{\Delta} X^{2} \rightarrow\left(X^{2}, \emptyset\right)
$$

In particular, $\nabla(V) \subset \emptyset$ and consequently, $V=\emptyset$ and by Definition $2.1,(X, Y)$ is $T_{0}^{\prime}$.
(3) The proof of Part (3) is similar to Part (1).
(B) By Part (A) and by Definition 3.3, (1)-(3) are equivalent.
$(3) \Rightarrow(4):(X, Y)$ is quasi-sober and $\emptyset \neq A \subset X$ is proper irreducible closed. Since $(X, Y)$ is quasi-sober, then $A=\operatorname{cl}\{a\}$ for some $a \in X$. By Theorem 3.8 of [2], $\{a\}$ is closed. Thus, $\boldsymbol{c l}\{a\}=\{a\}$ and $A=\{a\}$.
$(4) \Rightarrow(3)$ : Suppose the nonempty proper irreducible closed subsets of $X$ are exactly the one-point subsets and $\emptyset \neq A \subset X$ is proper irreducible closed. Then by assumption, $A=\{a\}$ for some $a \in X$. By Theorem 3.8 of [2], $\{a\}$ is closed, we get $\boldsymbol{c l}(\{a\})=\{a\}=A$. Hence, by Definition 3.3, $(X, Y)$ is quasi-sober.
(C) Suppose $(X, Y)$ is $T_{0}$ sober and $X \neq \emptyset$ and $X$ is not a one point set. Then there exist distinct points $s$ and $t$ of $X$ and by [2], $(\{s, t\},\{s, t\})$ is the indiscrete subspace of $(X, Y)$ contradicting to $(X, Y)$ is being $T_{0}$ sober. Hence, $X=\emptyset$ or $X$ is a one-point set.
If $X=\emptyset$ or $X$ is a one-point set, then by Definitions 2.1 and $3.3,(X, Y)$ is $T_{0}$ and quasi-sober. This shows Parts (1)-(3) are equivalent.

Suppose $(X, Y)$ is irreducible and $X \neq \emptyset$ and $X$ is not a one-point set. Then there exist distinct points $s$ and $t$ of $X$. By Theorem 3.8 of [2] both $\{t\}$ and $\{t\}^{C}$ are closed subsets of $X$ and $X=\{t\} \cup\{t\}^{C}$ contradicting to $(X, Y)$ is being irreducible.
If $X=\emptyset$ or $X$ is a one-point set, then by Definition $3.2,(X, Y)$ is irreducible.
This shows Parts (3) and (4) are equivalent.

Theorem 3.8 Let $(B, R)$ be a reflexive space and $p \in B$.
(1) $(B, R)$ is $T_{0}^{\prime}$.

## BARAN and ABUGHALWA/Turk J Math

(2) The following are equivalent:
(a) $(B, R)$ is $\overline{T_{0}}$.
(b) $R$ is antisymmetric.
(c) $(B, R)$ is $T_{0}$.
(3) (a) $\{p\}$ is closed iff for each $a \in B$, if $a R p$ and $p R a$, then $a=p$.
(b) $(B, R)$ is $\overline{T_{0}}$ iff $\{x\}$ is closed for each $x \in B$.
(4) The following are equivalent:
(a) $A \subset B$ is closed.
(b) For each $x \in B$ if there exist $c, d \in A$ such that $x R c$ and $d R x$, then $x \in A$.
(c) A is upward-closed or downward-closed.
(5) $(B, R)$ is quasi-sober if and only if $(B, R)$ is $T_{0}^{\prime}$ sober.
(6) The following are equivalent:
(a) $(B, R)$ is $\overline{T_{0}}$ sober.
(b) $(B, R)$ is $T_{0}$ sober.
(c) $\{x\}$ is closed for each $x \in B$ and the nonempty proper irreducible closed subsets of $B$ are exactly the one-point subsets.

Proof (1) Let $(B, R)$ be a reflexive space, $\left(B^{2} \bigvee_{\Delta} B^{2}\right)^{\prime}$ be the final lift of

$$
q \circ i_{1}, q \circ i_{2}:\left(B^{2}, R^{2}\right) \rightarrow B^{2} \vee_{\Delta} B^{2}
$$

where $R^{2}$ is the product relation on $B^{2}$, and $R_{1}$ be the initial structure on the wedge $B^{2} \bigvee_{\Delta} B^{2}$ induced by

$$
i d: B^{2} \vee_{\Delta} B^{2} \rightarrow\left(B^{2} \vee_{\Delta} B^{2}\right)^{\prime} \quad \text { and } \quad \nabla: B^{2} \vee_{\Delta} B^{2} \rightarrow\left(B^{2}, N\right)
$$

where $N$ is discrete relation on $B^{2}$. We have to show that $R_{1}$ is discrete, i.e. for any points $s$ and $t$ of the wedge $B^{2} \bigvee_{\Delta} B^{2}$ if $s R_{1} t$, then $s=t$. If $s R_{1} t$, then, in particular, $\nabla(s)=(a, b)=\nabla(t)$ for some $a, b \in B$, and consequently, $s$ and $t$ have the form. $(a, b)_{1}$ and $(a, b)_{2}$. If $s=(a, b)_{1}$ (resp. $\left.(a, b)_{2}\right)$ and $t=(a, b)_{2}$ (resp. $\left.(a, b)_{1}\right)$, then $i_{k}((a, b))=(a, b)_{1}=s, i_{k}((a, b))=(a, b)_{2}=t$ for $k=1$ or 2 , which implies $s$ and $t$ must lie in the same component of the wedge $B^{2} \bigvee_{\Delta} B^{2}$ which means $s=t$ for all $s$ and $t$. Thus, $R_{1}$ is discrete and by 2.1, $(B, R)$ is $T_{0}^{\prime}$.
(2) $(a) \Rightarrow(b)$ : Suppose $(B, R)$ is $\bar{T}_{0}$ and for any $x, y \in B, x R y$ and $y R x$. We show that $x=y$. Assume $x \neq y$. Let $s=(x, y)_{1}$ and $t=(x, y)_{2}$. Note that

$$
\begin{aligned}
& \pi_{1} A(s) R \pi_{1} A(t)=x R x \\
& \pi_{2} A(s) R \pi_{2} A(t)=y R x \\
& \pi_{3} A(s) R \pi_{3} A(t)=x R y
\end{aligned}
$$

and

$$
\nabla(s)=(x, y)=\nabla(t)
$$

. Since $(B, R)$ is $\bar{T}_{0}$, by Definition 2.1, $s=t$. Thus, $x=y$, i.e. $R$ is antisymmetric.
$(b) \Rightarrow(c)$ : Suppose that $R$ is antisymmetric and $A$ is any subset of $B$ with at least two points. Let $c, d \in A$ with $c \neq d, D=\{c, d\}$, and $R_{D}$ be the initial relation on $D$ induced by the inclusion map $i: D \subset B$. If $R_{D}=D^{2}$, the indiscrete reflexive relation on $D^{2}$, then, in particular, $c R_{D} d=c R d$ and $d R_{D} c=d R c$. Since $R$ is antisymmetric, $c=d$, a contradiction. Hence, a reflexive space ( $B, R$ ) cannot contain an indiscrete subspace with at least two points. Thus, by Definition $2.1,(B, R)$ is $T_{0}$.
$(c) \Rightarrow(a)$ : Suppose $(B, R)$ is $T_{0}$. Let $R^{3}$ is the product relation on $B^{3}$ and $R_{1}$ be the initial structure on the wedge $B^{2} \bigvee_{\Delta} B^{2}$ induced by

$$
A: B^{2} \vee_{\Delta} B^{2} \rightarrow\left(B^{3}, R^{3}\right) \quad \text { and } \quad \nabla: B^{2} \vee_{\Delta} B^{2} \rightarrow\left(B^{2}, B^{2} \times B^{2}\right)
$$

We need to show that $R_{1}$ is discrete. If $s R_{1} t$ for any points $s$ and $t$ of the wedge $B^{2} \bigvee_{\Delta} B^{2}$, then $\pi_{1} A(s) R \pi_{1} A(t), \pi_{2} A(s) R \pi_{2} A(t), \pi_{3} A(s) R \pi_{3} A(t)$, and $\nabla(s)=\nabla(t)$. Since $\nabla(s)=\nabla(t), s$ and $t$ have the form: $(x, y)_{1}$ and $(x, y)_{2}$ for some $x$ and $y$ in $B$.

If $s=(x, y)_{1}\left(\operatorname{resp} .(x, y)_{2}\right)$ and $t=(x, y)_{2}\left(\left(\operatorname{resp} .(x, y)_{1}\right)\right)$, then

$$
\begin{gathered}
\pi_{1} A(s) R \pi_{1} A(t)=x R x \\
\pi_{2} A(s) R \pi_{2} A(t)=y R x \quad(\text { resp. } x R y) \\
\pi_{3} A(s) R \pi_{3} A(t)=x R y \quad(\text { resp. } \quad y R x)
\end{gathered}
$$

and

$$
\nabla(s)=(x, y)=\nabla(t)
$$

Since $x R y$ and $y R x, x=y$. Otherwise, $(\{x, y\},\{x, y\} \times\{x, y\})$ is the indiscrete subspace of $(B, R)$, which contradicts to $(B, R)$ is being $T_{0}$. Hence, $s=t$ and $R_{1}$ is discrete, i.e. $(B, R)$ is $\overline{T_{0}}$. This completes the proof of Part (2).
(3) (a): Suppose $\{p\}$ is closed and for each $a \in B a R p$ and $p R a$. Note that

$$
\begin{aligned}
& \nabla_{p}^{\infty}(a, p, p, \ldots)=a=\nabla_{p}^{\infty}(p, a, p, \ldots) \\
& \pi_{1} A_{p}^{\infty}(a, p, p, \ldots) R(p, a, p, \ldots)=a R p \\
& \pi_{2} A_{p}^{\infty}(a, p, p, \ldots) R(p, a, p, \ldots)=p R a
\end{aligned}
$$

and

$$
\pi_{i} A_{p}^{\infty}(a, p, p, \ldots) R(p, a, p, \ldots)=p R p
$$

for all $i \geq 3$, where $\pi_{i}: B^{\infty} \rightarrow B$ are the projection maps, for all $i \in I$. Since $\{p\}$ is closed, by Definition 2.1, $(a, p, p, \ldots)=(p, a, p, \ldots)$ which implies $a=p$.

Conversely, suppose for each $a \in B$, if $a R p$ and $p R a$, then $a=p$. Let $s$ and $t$ be any points in $\vee_{p}^{\infty} B$ with $\pi_{i} A_{p}^{\infty}(s) R \pi_{i} A_{p}^{\infty}(t)$ for all $i$, and $\nabla_{p}^{\infty}(s)=\nabla_{p}^{\infty}(t)$. It follows $s=a_{k}$ and $t=a_{n}$ for some $k$ and $n$. Note that

$$
\pi_{k} A_{p}^{\infty}(s) R \pi_{k} A_{p}^{\infty}(t)=a R p
$$

$$
\pi_{n} A_{p}^{\infty}(s) R \pi_{n} A_{p}^{\infty}(t)=p R a
$$

and

$$
\pi_{i} A_{p}^{\infty}(s) R \pi_{i} A_{p}^{\infty}(t)=p R p
$$

for all $i \neq k$. By the assumption, $a=p$, and consequently, $s=a_{k}=a_{n}=t$. Thus, by Definition 2.1, $\{p\}$ is closed.
(b): Combine Part (2) and Part 3(a).
(4) $(a) \Rightarrow(b)$ : Suppose $A$ is closed and for each $x \in B \exists c, d \in A$ such that $x R c$ and $d R x$. Note that $Q(x) R_{1}(Q(c)=*)$ and $(*=Q(d)) R_{1} Q(x)$, where $R_{1}$ is the final structure on $B / A$ that is induced by $Q: B \rightarrow B / A$. Since $\{*\}$ is closed, by $(3)(\mathrm{a}), Q(x)=*$ which means $x \in A$.
$(b) \Rightarrow(c)$ : Assume (b) holds. If for each $x \in B$ there exists $c \in A$ such that $x R c$ (resp. $c R x$ ), then, by assumption, $x \in A$ and so, $A$ is downward-closed (resp. upward-closed) [9, 15].
$(c) \Rightarrow(a)$ : Suppose $A$ is upward-closed or downward-closed. Assume $y R_{1} *$ and $* R_{1} y$ for some $y \in B / A$. It follows that there exist $x \in B$ and $c, d \in A$ such that $x R c$ and $c R x$ with $Q(x)=y$ and $Q(c)=*=Q(d)$.

If $x R c$, then $x \in A$ since $A$ is downward-closed. Thus, $y=Q(x)=*$.
If $d R x$, then $x \in A$ since $A$ is upward-closed. Thus, $y=Q(x)=*$ and by Part (3)(a), $\{*\}$ is closed. Hence, by Definition 2.1, $A$ is closed.
(5) We get the proof from Part (1) and Definition 3.3.
(6) By Part (2), (a) and (b) are equivalent.
$(b) \Rightarrow(c)$ : Suppose $(B, R)$ is $T_{0}$ sober. In particular, by Parts (2) and (3), $\{x\}$ is closed for each $x \in B$. If $\emptyset \neq A \subset B$ is proper irreducible closed, then $A=\boldsymbol{c l}\{a\}$ for some $a \in B$ since $(B, R)$ is quasi-sober. Since $\{a\}$ is closed, we have $\{a\}=\operatorname{cl}\{a\}=A$.
$(c) \Rightarrow(b)$ : Suppose that $\{x\}$ is closed for each $x \in B$ and every nonempty proper irreducible closed subset of $B$ is a one-point set. By Parts (2) and (3), $(B, R)$ is $T_{0}$.

If $\emptyset \neq A \subset B$ is proper irreducible closed subset of $B$, then by assumption, $A=\{a\}$ for some $a \in B$. But since $\{a\}$ is closed, $\boldsymbol{c l}(\{a\})=\{a\}=A$. Hence, by Definition 3.3, $(B, R)$ is quasi-sober and consequently, $(B, R)$ is $T_{0}$ sober.

Let $\mathbf{T}_{\mathbf{0}}^{\prime} \mathcal{E}$ (resp. $\mathbf{T}_{\mathbf{0}} \mathcal{E}, \overline{\mathbf{T}}_{\mathbf{0}} \mathcal{E}, \mathbf{T}_{\mathbf{1}} \mathcal{E}$ ) be the full subcategory of $\mathcal{E}$ consisting of all $T_{0}^{\prime}$ (resp. $T_{0}, \bar{T}_{0}, T_{1}$ ) objects of $\mathcal{E}$. Let $\mathbf{T}_{\mathbf{0}}^{\prime} \mathbf{S o b} \mathcal{E}$ (resp. $\mathbf{T}_{\mathbf{0}} \mathbf{S o b} \mathcal{E}, \overline{\mathbf{T}}_{\mathbf{0}} \mathbf{S o b} \mathcal{E}$ ) be the full subcategory of $\mathcal{E}$ consisting of all $T_{0}^{\prime}$ sober (resp. $T_{0}$ sober, $\bar{T}_{0}$ sober) objects of $\mathcal{E}$.
By Theorem 3.6, we get:

Theorem 3.9 (1) The categories $\mathbf{T}_{\mathbf{0}}^{\prime} \mathbf{P B o r n}, \overline{\mathbf{T}}_{\mathbf{0}} \mathbf{P B o r n}$, and $\mathbf{T}_{\mathbf{1}} \mathbf{P B}$ Born are pairwise isomorphic.
(2) The categories $\mathbf{T}_{\mathbf{0}}^{\prime}$ SobPBorn, $\overline{\mathbf{T}}_{\mathbf{0}}$ SobPBorn and QSobPBorn are pairwise isomorphic, where QSobPBorn is the full subcategory of PBorn consisting of all quasi-sober prebornological spaces.
(3) The categories $\mathbf{T}_{\mathbf{0}} \mathbf{P B o r n}$ and $\mathbf{T}_{\mathbf{0}} \mathbf{S o b P B o r n}$ are isomorphic.

By Theorem 3.7, we get:

Theorem 3.10 (1) The categories $\mathbf{T}_{\mathbf{0}}^{\prime} \mathbf{C P}, \overline{\mathbf{T}}_{\mathbf{0}} \mathbf{C P}$, and $\mathbf{T}_{\mathbf{1}} \mathbf{C P}$ are pairwise isomorphic.
(2) The categories $\mathbf{T}_{\mathbf{0}}^{\prime} \mathbf{S o b C P}, \overline{\mathbf{T}}_{\mathbf{0}} \mathbf{S o b C P}$, and $\mathbf{Q S o b C P}$ are pairwise isomorphic, where $\mathbf{Q S o b C P}$ is the full subcategory of CP consisting of all quasi-sober pair spaces.
(3) The categories $\mathbf{T}_{\mathbf{0}} \mathbf{C P}$ and $\mathbf{T}_{\mathbf{0}} \mathbf{S o b} \mathbf{C P}$ are isomorphic.

Theorem 3.11 (1) The categories $\mathbf{R R e l}$ and $\mathbf{T}_{\mathbf{0}}^{\prime} \mathbf{R R e l}$ are isomorphic.
(2) The categories $\mathbf{T}_{\mathbf{0}} \mathbf{R R e l}$ and $\overline{\mathbf{T}}_{\mathbf{0}} \mathbf{R R e l}$ are isomorphic.
(3) The categories $\mathbf{T}_{\mathbf{0}}^{\prime}$ SobRRel and QSobRRel are isomorphic, where QSobRRel is the full subcategory of RRel consisting of all quasi-sober reflexive spaces.
(4) The categories $\mathbf{T}_{\mathbf{0}}$ SobRRel and $\overline{\mathbf{T}}_{\mathbf{0}} \mathbf{S o b R R e l}$ are isomorphic.

Proof It follows from Theorem 3.8.
We now state some well-known results [15] in Top.

Theorem 3.12 (1) Every $T_{2}$ topological space is sober.
(2) Sobriety is between $T_{0}$ and $T_{2}$.
(3) Being $T_{1}$ and being sober are incomparable properties.
(4) Being $T_{0}$ and being quasi-sober are incomparable properties.
(5) Every irreducible and $T_{2}$ is a one-point space.
(6) $X$ is $T_{1}$ iff $\{x\}$ is closed for each $x \in X$.
(7) Let $X$ be a topological space, $S(X)$ be the set of all irreducible closed subsets of $X$, and the map $f: X \rightarrow S(X)$ be defined as $f(x)=\operatorname{cl}\{x\}$.
(i) $X$ is sober iff $f$ is bijective.
(ii) $X$ is $T_{0}$ iff $f$ is injective.
(iii) $X$ is quasi-sober iff $f$ is surjective.

Theorem 3.13 Let $(X, d)$ be an extended pseudo-quasi-semi metric space.
(1) $(X, d)$ is quasi-sober iff $(X, d)$ is $T_{0}^{\prime}$ sober,
(2) $(X, d)$ is $\overline{T_{0}}$ sober iff $\{x\}$ is closed for each $x \in X$ and the nonempty proper irreducible closed subsets of $X$ are exactly the one-point subsets,
(3) $(X, d)$ is $T_{0}$ sober iff $(X, d)$ is a quasi-sober and an extended quasi-semi metric space.

Proof (1) By Theorem 3.5 of $[14],(X, d)$ is $T_{0}^{\prime}$ and by Definition 3.3, the result follows.
(2) Suppose that $(X, d)$ is $\overline{T_{0}}$ sober. By Theorem 3.5 of [14] and Theorem 3.2 of [7], $\{x\}$ is closed for each $x \in X$. If $A$ is any nonempty proper irreducible closed subset of $X$, then by Definition $3.3, A=\operatorname{cl}\{a\}$ for some $a \in X$ and Theorem 3.5 of [14], $\operatorname{cl}\{a\}=\{a\}$. Hence, $A=\{a\}$.

Suppose that $\{x\}$ is closed for each $x \in X$ and every nonempty proper irreducible closed subset of $X$ is a one-point set. By Theorem 3.5 of [14] and Theorem 3.2 of $[7],(X, d)$ is $\overline{T_{0}}$. If $A$ is any nonempty proper irreducible closed subset of $X$, then by the assumption, $A=\{a\}=\operatorname{cl}\{a\}$ for some $a \in X$. Hence, by Definition $3.3,(X, d)$ is quasi-sober and $\overline{T_{0}}$ sober.
(3) By Theorem 3.3 of [14], an extended pseudo-quasi-semi metric space $(X, d)$ is $T_{0}$ iff $d$ is pseudo. The result follows from this fact and Definition 3.3.

We can infer the following results:
(1) By Theorems 3.9-3.11, the categories $\mathbf{T}_{\mathbf{0}}^{\prime} \mathbf{P B o r n}, \overline{\mathbf{T}}_{\mathbf{0}} \mathbf{P B o r n}, \mathbf{T}_{\mathbf{1}} \mathbf{P B o r n}, \mathbf{T}_{\mathbf{0}}^{\prime} \mathbf{C P}, \overline{\mathbf{T}}_{\mathbf{0}} \mathbf{C P}, \mathbf{T}_{\mathbf{1}} \mathbf{C P}$, $\mathbf{T}_{\mathbf{0}}^{\prime}$ RRel, $\mathbf{T}_{\mathbf{0}}^{\prime}$ SobPBorn, $\overline{\mathbf{T}}_{\mathbf{0}}$ SobPBorn, and QSobPBorn have all limits and colimits.
(2) By Theorems 3.3 and 3.25 of [14], if the extended pseudo-quasi-semi metric space $(X, d)$ is $T_{1}$, then each subset of $X$ is closed and if $(X, d)$ is a nonempty irreducible $T_{1}$, then $(X, d)$ must be a one-point space. Every irreducible and $K T_{2}$ may not be a one-point space. For example, let $X=\{a, b\}$ and $d$ be defined as $d(a, a)=0=d(b, b), d(a, b)=2=d(b, a)$. By Theorem 3.13 of $[14],(X, d)$ is $K T_{2}$ and by Theorem 3.19 of [14], $(X, d)$ is irreducible but $(X, d)$ is not a one-point space. This shows Theorem 3.12(5) does not hold in the category pqsMet of all extended pseudo-quasi-semi metric spaces and nonexpansive maps. Let $X=\{a, b\}$ and $d$ be defined as $d(a, a)=0=d(b, b), d(a, b)=\infty$ and $d(b, a)=1$. By Theorem 3.4 of [7], both $\{a\}$ and $\{b\}$ are closed but by Theorem 3.3 of [14], $(X, d)$ is not $T_{1}$. This shows Theorem 3.12(6) does not hold in pqsMet. If $(R, d)$ is the indiscrete extended pseudo-quasi-semi metric space, i.e. $d(a, b)=0$ for all $a, b \in R$, where $R$ is the set of reel numbers, then by Theorem 3.13 of [14] and Theorem 3.13, $(R, d)$ is both $T_{0}$ sober and $K T_{2}$ but by Theorem 3.4 of $[14],(R, d)$ is neither $\bar{T}_{0}$ sober nor $\bar{T}_{0}$. This shows Theorem 3.12(2) is not valid in pqsMet.
(3) By Theorem 3.6, a $T_{0}$ sober prebornological space is a quasi-sober, $T_{0}^{\prime}$ sober, and $\bar{T}_{0}$ sober. The prebornological space $(R, P(R))$ is quasi-sober, $T_{0}^{\prime}$ sober, and $\bar{T}_{0}$ sober but it is not $T_{0}$ sober, where $R$ is the set of reel numbers. Moreover, By Theorem 3.6, all of quasi-sober prebornological spaces, $T_{0}^{\prime}$ sober prebornological spaces, and $\bar{T}_{0}$ sober prebornological spaces are equivalent. By Theorem 3.6, every $T_{0}$ is $\bar{T}_{0}$ sober but the reverse implication may not be true. This shows Theorem 3.12(2) does not hold in PBorn.
(4) By Theorem 3.9 of [2] and Definition 3.1, $\boldsymbol{c l}=\iota$, the trivial closure operator [9] of PBorn.
(5) By Theorem 3.7, each of a quasi-sober pair space, $T_{0}^{\prime}$ sober pair space, $T_{0}$ sober pair space, and $\bar{T}_{0}$ sober pair space is $T_{1}$. The pair space $(R, N)$ is $T_{1}$ but it none of quasi-sober, $T_{0}^{\prime}$ sober, $T_{0}$ sober, and $\bar{T}_{0}$ sober, where $N$ is the set of natural numbers. Moreover, by Theorem 3.7, $T_{0}$ implies $T_{0}^{\prime}$ and $\bar{T}_{0}$ and the pair space $(R, N)$ is $T_{0}^{\prime}$ and $\bar{T}_{0}$ but it is not $T_{0}$.
(6) By Theorem 3.8 of [2] and Definition 3.1, $\boldsymbol{c l}=\delta$, the discrete closure operator [9] of $\mathbf{C P}$.
(7) By Theorems 3.3 and 3.4 of [14], the indiscrete extended pseudo-quasi-semi metric space $(R, d)$ is both $T_{0}$ sober and quasi-sober, $(R, d)$ is neither $T_{1}$ nor $\bar{T}_{0}$. By Theorem 3.7, the pair space $(R, N)$ is both $\bar{T}_{0}$ and $T_{1}$ but it is neither $T_{0}$ sober nor quasi-sober. By Theorem 3.6, being $T_{1}$ (resp. $\bar{T}_{0}$ ) and being $\bar{T}_{0}$ sober (resp. quasi-sober) are the same. This shows Theorem 3.12(3) and (4) do not hold in PBorn.
(8) By Theorem 3.6, a nonempty prebornological space $(X, \mathcal{F})$ is $\bar{T}_{0}$ but $f: X \rightarrow S(X)$ is not injective, where $S(X)$ is the set of all irreducible closed subsets of $X$. This shows Theorem 3.12(7) does not hold in an arbitrary topological category.
(9) By Theorem 3.8, $\bar{T}_{0}$ sober $=T_{0}$ sober (resp. $\bar{T}_{0}=T_{0}$ ) implies $T_{0}^{\prime}$ sober (resp. $T_{0}^{\prime}$ ). Let $B$ be an infinite set. Then by Theorem 3.8, the indiscrete reflexive space $\left(B, B^{2}\right)$ is $T_{0}^{\prime}$ sober and quasi sober but it is neither $T_{0}$ sober nor $T_{0}$. Moreover, a reflexive space $(B, R)$ is $T_{0}$ iff $\{x\}$ is closed for each $x \in B$.
(10) In arbitrary topological category, by Theorem 3.5 , every $\overline{T_{0}}$ sober object is $T_{0}^{\prime}$ sober. By Theorem 3.13 and Parts (2) and (3), there is no implication between $T_{0}$ sober and $\bar{T}_{0}$ sober.

## References

[1] Baran M. Separation properties. Indian Journal Pure Applied Mathematics 1991; 23 (5): 333-341.
[2] Baran M. The notion of closedness in topological categories. Commentationes Mathematicae Universitatis Carolinae 1993; 34 (2): 383-395.
[3] Baran M, Altindis H. $T_{0}$-objects in topological categories, Kuwait Journal of Science 1995; (22): 123-127.
[4] Baran M. $T_{2}$-objects in categories of filter and local filter convergence spaces. Turkish Journal of Mathematics 1996; 159-168.
[5] Baran M. Compactness, perfectness, separation, minimality and closedness with respect to closure operators. Applied Categorical Structures 2002; (10): 403-415.
[6] Baran M, Kula S, Baran TM, Qasim M. Closure operators in semi uniform convergence spaces. Filomat 2016; (30): 131-140.
[7] Baran TM. Closedness, separation and connectedness in pseudo-quasi-semi metric spaces. Filomat 2020; (34): 14, 4757-4766. doi: 10.2298/FIL2014757B
[8] Giuli E, Dikranjan D. Closure operators I. Topology and its Applications 1987; (27): 129-143.
[9] Tholen W, Dikranjan D. Categorical structure of closure operators. Kluwer Academic Publishers, Dordrecht, 1995.
[10] Erciyes A, Baran TM, Qasim M. Closure operators constant filter convergence spaces. Konuralp Journal of Mathematics 2020; 185-191.
[11] Erciyes A, Baran TM. $T_{4}$, Urysohn lemma, and Tietze extension theorem for constant filter convergence spaces. Turkish Journal of Mathematics 2021; 843-855.
[12] Dieudonné JA, Grothendieck A. Eléments de géométrie algébrique, Springer, New York, 1971 (in French).
[13] Hong SS. Extensive subcategory of the category of $T_{0}$-spaces. Canadian Journal Mathematics 1975; (27): 318-331.
[14] Kula M, Baran TM. Separation axioms, Urysohn's lemma and Tietze extension theorem for extended pseudo-quasisemi metric spaces. Filomat 2022. to appear.
[15] Larrecq JG. Non-Hausdorff Topology and Domain Theory, Cambridge University Press, 2013.
[16] Mielke MV. Convenient categories for internal singular algebraic topology. Illinois Journal of Mathematics 1983.
[17] Marny Th. Rechts-Bikategoriestrukturen in topologischen Kategorien, Dissertation, Freie Universität Berlin, 1973 (in German).
[18] Preuss G. Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, 1988.
[19] Qasim M, Baran M, Abughalwa H. Closure operator in convergence approach spaces. Turkish Journal of Mathematics 2021; 139-152.
[20] Weck-Schwarz S. $T_{0}$-objects and separated objects in topological categories. Quaestiones Mathematicae 1991; (14): 315-325.


[^0]:    *Correspondence: baran@erciyes.edu.tr
    2010 AMS Mathematics Subject Classification: 18B99, 18D15, 54A05, 54A20, 54B30, 54D10.

