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Abstract: Let A be a positive bounded linear operator on a complex Hilbert space H and BA(H) be the subspace of
all operators which admit A -adjoints operators. In this paper, we establish some inequalities involving the commutator
and the anticommutator of operators in semi-Hilbert spaces, i.e. spaces generated by positive semidefinite sesquilinear
forms. Mainly, among other inequalities, we prove that for T, S ∈ BA(H) we have

ωA(TS ± ST ) ≤ 2
√
2min

{
fA(T, S), fA(S, T )

}
,

where

fA(X,Y ) = ∥Y ∥A

√√√√√
ω2
A(X)−

∣∣∣∣ ∥∥∥X+X♯A

2

∥∥∥2

A
−

∥∥∥X−X♯A

2i

∥∥∥2

A

∣∣∣∣
2

.

This covers and improves the well-known inequalities of Fong and Holbrook. Here ωA(·) and ∥ · ∥A are the A -numerical
radius and the A -operator seminorm of semi-Hilbert space operators, respectively and X♯A denotes a distinguished
A -adjoint operator of X .

Key words: Positive operator, semiinner product, numerical radius, commutator, anticommutator

1. Introduction
Let

(
H, 〈·, ·〉

)
be a complex Hilbert space endowed with the norm ‖ · ‖ . Let B(H) stand for the C∗ -algebra

of all bounded linear operators on H and I denote the identity operator on H . For every operator T ∈ B(H)

its range is denoted by R(T ) , its null space by N (T ) , and its adjoint by T ∗ . An operator T ∈ B(H) is called
positive if 〈Tx, x〉 ≥ 0 for all x ∈ H , and we then write T ≥ 0 . The square root of every positive operator T

is denoted by T 1/2 . If T ≥ 0 , then the absolute value of T is given by |T | := (T ∗T )1/2 . If S is a given linear
subspace of H , then S stands for its closure in the norm topology of H . Moreover, the orthogonal projection
onto a closed linear subspace S of H is denoted by PS . Throughout this article, we suppose that A ∈ B(H) is
a positive operator, which induces the following semiinner product

〈·, ·〉A : H×H −→ C, (x, y) 7−→ 〈x, y〉A := 〈Ax, y〉 = 〈A1/2x,A1/2y〉.
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2010 AMS Mathematics Subject Classification: 46C05, 47A05, 47B65

This work is licensed under a Creative Commons Attribution 4.0 International License.
311

https://orcid.org/0000-0002-9326-4173


FEKI/Turk J Math

The seminorm induced by 〈·, ·〉A is given by ‖x‖A =
√

〈x, x〉A for every x ∈ H . Clearly ‖x‖A = 0 if and only
if x ∈ N (A) which implies that ‖ · ‖A is a norm on H if and only if A is an injective operator. Further, it
can be seen that the semi-Hilbert space (H, ‖ · ‖A) is complete if and only if R(A) is closed in H . In recent
years, many authors investigated several properties of bounded linear operators acting on (H, ‖ · ‖A) (see, e.g.,
[2–7, 9, 12] and their references). In this article we continue the line of research begun in [18–20]. Notice that
the inspiration for our investigation comes from the works of Kittaneh et al. [1, 22].

The semiinner product 〈·, ·〉A induces an inner product on the quotient space H/N (A) which is not
complete unless R(A) is closed subspace in H . However, a canonical construction due to L. de Branges and J.
Rovnyak in [13] (see also [15]) shows that the completion of H/N (A) is isometrically isomorphic to the Hilbert
space R(A1/2) with the inner product

〈A1/2x,A1/2y〉R(A1/2) := 〈PR(A)
x, PR(A)

y〉, ∀x, y ∈ H.

For the sequel, the Hilbert space
(
R(A1/2), 〈·, ·〉R(A1/2)

)
will be denoted by R(A1/2) . For more details

concerning the Hilbert space R(A1/2) , we refer the reader to [4] and the references therein.
For T ∈ B(H) , an operator S ∈ B(H) is called an A -adjoint operator of T if for every x, y ∈ H , we

have 〈Tx, y〉A = 〈x, Sy〉A , that is, S is solution of the operator equation AX = T ∗A . This kind of equations
can be studied by using the next theorem due to Douglas (for its proof see [14]).

Theorem A If T, S ∈ B(H) , then the following statements are equivalent:

(i) R(S) ⊆ R(T ) .

(ii) TD = S for some D ∈ B(H) .

(iii) There exists λ > 0 such that ‖S∗x‖ ≤ λ‖T ∗x‖ for all x ∈ H .

If one of these conditions holds, then there exists a unique solution of the operator equation TX = S , denoted
by Q , such that R(Q) ⊆ R(T ∗) . Such Q is called the reduced solution of TX = S .

If we denote by BA(H) and BA1/2(H) the sets of all operators that admit A -adjoints and A1/2 -adjoints,
respectively, then an application of Theorem A gives

BA(H) =
{
T ∈ B(H) ; R(T ∗A) ⊆ R(A)

}
,

and

BA1/2(H) =
{
T ∈ B(H) ; ∃ c > 0 ; ‖Tx‖A ≤ c‖x‖A, ∀x ∈ H

}
.

Operators in BA1/2(H) are called A -bounded. Notice that BA(H) and BA1/2(H) are two subalgebras of B(H)

which are, in general, neither closed nor dense in B(H) (see [2]). Moreover, the following inclusions BA(H) ⊆
BA1/2(H) ⊆ B(H) hold and are in general proper (see [16]). The seminorm of an operator T ∈ BA1/2(H) is
given by

‖T‖A := sup
x∈R(A),

x ̸=0

‖Tx‖A
‖x‖A

= sup
{
‖Tx‖A ; x ∈ H, ‖x‖A = 1

}
< +∞,
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(see [16] and the references therein). It may happen that ‖T‖A = +∞ for some T ∈ B(H) (see [16, Example
2]). It is not difficult to verify that, for T ∈ BA1/2(H) , we have ‖Tx‖A ≤ ‖T‖A‖x‖A for all x ∈ H . This
immediately yields that ‖TS‖A ≤ ‖T‖A‖S‖A for every T, S ∈ BA1/2(H) .

Recently, several extensions for the concept of the numerical radius of Hilbert space operators have been
investigated. One of these extensions is the notion A -numerical radius of an operator T ∈ B(H) which was
firstly introduced by Saddi in the study in [26] as

ωA(T ) = sup
{∣∣〈Tx, x〉A∣∣ ; x ∈ H, ‖x‖A = 1

}
.

If A = I , we get the classical numerical radius which received considerable attention in the literature (e.g., see
[1, 11], and their references). It should be mentioned here that it may happen that ωA(T ) = +∞ for some
T ∈ B(H) (see [18]). However, ωA(·) defines a seminorm on BA1/2(H) which is equivalent to the A -operator
seminorm ‖ · ‖A . More precisely, for every T ∈ BA1/2(H) , we have

1

2
‖T‖A ≤ ωA(T ) ≤ ‖T‖A. (1.1)

For an account of the results related to the A -numerical radius of A -bounded operators, the reader is referred
to [5–10, 16, 17]. The A -Crawford number of an operator T is defined by

cA(T ) = inf
{
|〈Tx, x〉A| ; x ∈ H, ‖x‖A = 1

}
.

An operator T ∈ B(H) is called A -selfadjoint if AT is selfadjoint. Further, an operator T ∈ B(H) is said
A -positive if AT is positive and we note T ≥A 0 . Trivially, an A -positive operator is always A -selfadjoint
since H is a complex Hilbert space. Moreover, it was shown in [16] that if T is A -self-adjoint, then

‖T‖A = ωA(T ). (1.2)

If T ∈ BA(H) , then the reduced solution to the operator equation AX = T ∗A is denoted by T ♯A . Notice
that T ♯A = A†T ∗A , where A† is the Moore–Penrose inverse of A , which is the unique linear mapping from
R(A)⊕R(A)⊥ into H satisfying the following Moore–Penrose equations:

AXA = A, XAX = X, XA = PR(A)
and AX = PR(A)

|R(A)⊕R(A)⊥ .

We mention here that if T ∈ BA(H) , then T ♯A ∈ BA(H) , (T ♯A)♯A = PR(A)
TPR(A)

and
(
(T ♯A)♯A

)♯A
= T ♯A .

Moreover, if T, S ∈ BA(H) , then TS ∈ BA(H) and (TS)♯A = S♯AT ♯A . Notice that for T ∈ BA(H) , we have
T ♯AT ≥A 0 and TT ♯A ≥A 0 . Moreover, by using (1.2), we see that

‖T ♯AT‖A = ‖TT ♯A‖A = ‖T‖2A = ‖T ♯A‖2A. (1.3)

For other results covering T ♯A , we invite the reader to consult [2, 3, 24].
Recently, several improvements of the inequalities in (1.1) have been given (see [8, 18]). For instance, it

has been shown in [19], that if T ∈ BA(H) , then

1

4
‖T ♯AT + TT ♯A‖A ≤ ω2

A(T ) ≤
1

2
‖T ♯AT + TT ♯A‖A. (1.4)
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Recently, the present proved in [19] that for every T, S ∈ BA(H) , we have

ωA(TS ± ST ) ≤ 2
√
2min

{
‖T‖AωA(S), ‖S‖AωA(T )

}
. (1.5)

Of course, if A = I , we get the well-known inequalities of Fong and Holbrook (see [21]). One main target of
this paper is to generalize (1.5). Also, a considerable refinement of (1.5) is established.

2. Results
In this section, we prove our results. In order to prove our first result in this section, we need the following
lemmas.

Lemma 2.1 ([19, Theorem 2.16.]) Let T1, T2, S1, S2 ∈ BA(H) . Then

ωA(T1S1 ± S2T2) ≤
√∥∥T1T

♯A
1 + T ♯A

2 T2

∥∥
A

√∥∥S♯A
1 S1 + S2S

♯A
2

∥∥
A
.

Lemma 2.2 ([20]) Let T, S ∈ BA1/2(H) and A =

(
A 0
0 A

)
. Then, the following assertions hold

(i) ωA

[(
T 0
0 S

)]
= max

{
ωA(T ), ωA(S)

}
.

(ii) ωA

[(
0 T
T 0

)]
= ωA(T ) .

(iii)
∥∥∥∥(T 0

0 S

)∥∥∥∥
A
=

∥∥∥∥(0 T
S 0

)∥∥∥∥
A
= max

{
‖T‖A, ‖S‖A

}
.

Our first result in this paper reads as follows.

Theorem 2.3 Let T1, T2, S ∈ BA(H) . Then

ωA(T1S ± ST2) ≤ 4ωA

[(
0 T1

T2 0

)]
ωA(S).

Proof By letting S1 = S2 = S in Lemma 2.1 we obtain

ωA(T1S ± ST2) ≤
√∥∥T1T

♯A
1 + T ♯A

2 T2

∥∥
A

√∥∥S♯AS + SS♯A
∥∥
A
.

Moreover, by using the first inequality in (1.4) we get

ωA(T1S ± ST2) ≤ 2
√∥∥T1T

♯A
1 + T ♯A

2 T2

∥∥
A
ωA(S). (2.1)

Let T =

(
0 T1

T2 0

)
. It can be observed that

T♯AT+ TT♯A =

(
T1T

♯A
1 + T ♯A

2 T2 0

0 T ♯A
1 T1 + T2T

♯A
2

)
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This implies, by Lemma 2.2(iii), that∥∥T♯AT+ TT♯A
∥∥
A = max

{∥∥T1T
♯A
1 + T ♯A

2 T2

∥∥
A
,
∥∥T ♯A

1 T1 + T2T
♯A
2

∥∥
A

}
.

Therefore, by taking into consideration (2.1) we see that

ωA(T1S ± ST2) ≤ 2
√∥∥T1T

♯A
1 + T ♯A

2 T2

∥∥
A
ωA(S)

≤ 2
√

‖T♯AT+ TT♯A‖A ωA(S)

≤ 4ωA(T)ωA(S),

where the last inequality follows from the first inequality in (1.4). Hence the proof is complete. 2

The following corollary is an immediate consequence of Theorem 2.3 and provides an upper bound for
the A -numerical radius of the commutator TS − ST when T and S are in BA(H) .

Corollary 2.4 Let T, S ∈ BA(H) . Then

ωA(TS ± ST ) ≤ 4ωA(T )ωA(S). (2.2)

Moreover, if TS = ST , then

ωA(TS) ≤ 2ωA(T )ωA(S). (2.3)

Proof By letting T1 = T2 = T in Theorem 2.3 and then using Lemma 2.2(i) we reach (2.2). Further, (2.3)
follows immediately from (2.2). 2

Now, we aim to prove a generalization of (1.5). In order to achieve this goal, we need to establish the
following result.

Proposition 2.5 Let T, S ∈ BA(H) . Then,

‖TT ♯A + S♯AS‖A ≤ max
{
‖T‖2A, ‖S‖2A

}
+ ‖ST‖A. (2.4)

To prove (2.4), we shall require the following lemma.

Lemma B ([4, 24]) Let T ∈ B(H) . Then T ∈ BA1/2(H) if and only if there exists a unique T̃ ∈ B(R(A1/2))

such that ZAT = T̃ZA . Here, ZA : H → R(A1/2) is defined by ZAx = Ax . Moreover, we have

(i) ‖T‖A = ‖T̃‖B(R(A1/2)) .

(ii) T̃ ♯A = (T̃ )∗.

Now, we are ready to prove Proposition 2.5.
Proof of Proposition 2.5 Since, T, S ∈ BA1/2(H) , then by Lemma B there exists two unique operators

T̃ , S̃ ∈ B(R(A1/2)) such that ZAT = T̃ZA and ZAS = S̃ZA . Moreover, clearly T + S and TS are in
BA1/2(H) . An application of [15, Lemma 2.1.] gives

T̃ S = T̃ S̃ and T̃ + S = T̃ + S̃. (2.5)
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Now, by using Lemma B together with (2.5), it can be seen that

‖S♯AS + TT ♯A‖A = ‖ ˜S♯AS + TT ♯A‖B(R(A1/2))

= ‖(S̃)∗S̃ + T̃ (T̃ )∗‖B(R(A1/2)). (2.6)

Moreover, by using basic properties of the spectral radius of Hilbert space operators, we see that

‖(S̃)∗S̃ + T̃ (T̃ )∗‖B(R(A1/2)) = r
(
(S̃)∗S̃ + T̃ (T̃ )∗

)
= r

[(
(S̃)∗S̃ + T̃ (T̃ )∗ 0

0 0

)]

= r

[(
|S̃| |(T̃ )∗|
0 0

)(
|S̃| 0

|(T̃ )∗| 0

)]

= r

[(
|S̃| 0

|(T̃ )∗| 0

)(
|S̃| |(T̃ )∗|
0 0

)]

Hence, we get

‖(S̃)∗S̃ + T̃ (T̃ )∗‖B(R(A1/2)) = r

[(
(S̃)∗S̃ |S̃| |(T̃ )∗|

|(T̃ )∗| |S̃| T̃ (T̃ )∗

)]

Thus, by using [23, Theorem 1.1.] we obtain

‖(S̃)∗S̃ + T̃ (T̃ )∗‖B(R(A1/2)) ≤ r

[(
‖(S̃)∗S̃‖B(R(A1/2)) ‖ |S̃| |(T̃ )∗| ‖B(R(A1/2))

‖ |(T̃ )∗| |S̃| ‖B(R(A1/2)) ‖T̃ (T̃ )∗‖B(R(A1/2))

)]

=

∥∥∥∥∥
(

‖S̃‖2B(R(A1/2))
‖S̃T̃‖B(R(A1/2))

‖S̃T̃‖B(R(A1/2)) ‖T̃‖2B(R(A1/2))

)∥∥∥∥∥ ,
where the last equality follows since

‖ |S̃| |(T̃ )∗| ‖B(R(A1/2)) = ‖ |(T̃ )∗| |S̃| ‖B(R(A1/2)) = ‖S̃T̃‖B(R(A1/2)).

Therefore, we infer that

‖(S̃)∗S̃ + T̃ (T̃ )∗‖B(R(A1/2)) ≤

∥∥∥∥∥
(
‖S̃‖2B(R(A1/2))

0

0 ‖T̃‖2B(R(A1/2))

)∥∥∥∥∥+
∥∥∥∥∥
(

0 ‖S̃T̃‖B(R(A1/2))

‖S̃T̃‖B(R(A1/2)) 0

)∥∥∥∥∥
= max

{
‖S̃‖2B(R(A1/2)), ‖T̃‖

2
B(R(A1/2))

}
+ ‖S̃T̃‖B(R(A1/2)),

where the last equality follows from Lemma 2.2(iii) by letting A = I . Thus, by taking into account (2.6) and
then applying Lemma B(i) we get

‖TT ♯A + S♯AS‖A ≤ max
{
‖T‖2A, ‖S‖2A

}
+ ‖ST‖A.

This achieves the proof. □
Now, we are in a position to prove the following theorem which generalizes (1.5).
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Theorem 2.6 Let T, S,X, Y ∈ BA(H) and A =

(
A 0
0 A

)
. Then

ωA(TX ± Y S) ≤ 2
√
max {‖T‖2A, ‖S‖2A}+ ‖ST‖A

√
ω2
A

[(
0 X
Y 0

)]
− 1

2
cA(Y X)

≤ 2
√
2max {‖T‖A, ‖S‖A}ωA

[(
0 X
Y 0

)]
. (2.7)

Proof Notice first that, it was shown in [19, Theorem 2.8.] that

ωA

[(
0 X
Y 0

)]
≥ 1

2

√∥∥X♯AX + Y Y ♯A
∥∥
A
+ 2cA(Y X). (2.8)

Now, by applying Lemma 2.1 together with (2.4) we obtain

ωA(TX ± Y S) ≤
√∥∥TT ♯A + S♯AS

∥∥
A

√∥∥X♯AX + Y Y ♯A
∥∥
A

≤
√

max {‖T‖2A, ‖S‖2A}+ ‖ST‖A
√∥∥X♯AX + Y Y ♯A

∥∥
A

≤ 2
√
max {‖T‖2A, ‖S‖2A}+ ‖ST‖A

√
ω2
A

[(
0 X
Y 0

)]
− 1

2
cA(Y X),

where the last inequality follows from (2.8). On the other hand, we see that

‖ST‖A ≤ ‖T‖A‖S‖A ≤ 1

2

(
‖T‖2A + ‖S‖2A

)
≤ max

{
‖T‖2A, ‖S‖2A

}
.

This immediately proves (2.7). 2

Remark 2.7 By replacing S by T and X,Y by S in (2.7) and then using Lemma 2.2(ii) we get

ωA(TS ± ST ) ≤ 2
√
2‖T‖AωA(S).

Thus, by changing the roles bet ween T and S in the last inequality we reach (1.5).

For the rest of this paper, for any arbitrary operator T ∈ BA(H) , we write

<A(T ) :=
T + T ♯A

2
and =A(T ) :=

T − T ♯A

2i
.

Our next aim is to improve the inequality (1.5). To do this, we need the following lemma.

Lemma 2.8 Let T ∈ BA(H) be such that ωA(T ) ≤ 1 . Then, for every x ∈ H with ‖x‖A = 1 we have

‖Tx‖2A + ‖T ♯Ax‖2A ≤ 4

(
1−

∣∣ ‖<A(T )‖2A − ‖=A(T )‖2A
∣∣

2

)
. (2.9)

In order to prove Lemma 2.8, we first prove the following result.
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Lemma C Let T, S ∈ BA(H) . Then,

‖T ♯AT + TT ♯A‖A ≤ 4max
{
‖<A(T )‖2A, ‖=A(T )‖2A

}
− 2

∣∣ ‖<A(T )‖2A − ‖=A(T )‖2A
∣∣ .

Proof Notice first that it was shown in [25, Lemma 2.18] that

‖X♯AX + Y ♯AY ‖A ≤ max
{
‖X + Y ‖2A, ‖X − Y ‖2A

}
−
∣∣ ‖X + Y ‖2A − ‖X − Y ‖2A

∣∣
2

, (2.10)

for every X,Y ∈ BA(H) . By replacing X and Y by (T ♯A)♯A and T ♯A in (2.10) respectively we get

‖(T ♯AT + TT ♯A)♯A‖A ≤ max
{
‖(T ♯A + T )♯A‖2A, ‖(T ♯A − T )♯A‖2A

}
−
∣∣ ‖(T ♯A + T )♯A‖2A − ‖(T ♯A − T )♯A‖2A

∣∣
2

= max
{
‖T ♯A + T‖2A, ‖T ♯A − T‖2A

}
−
∣∣ ‖T ♯A + T‖2A − ‖T ♯A − T‖2A

∣∣
2

= 4max
{
‖<A(T )‖2A, ‖=A(T )‖2A

}
− 2

∣∣ ‖<A(T )‖2A − ‖=A(T )‖2A
∣∣ .

This shows the desired result since ‖S‖A = ‖S♯A‖A for all S ∈ BA(H) . 2

Now, we are ready to prove Lemma 2.8.
Proof of Lemma 2.8 Let x ∈ H be such that ‖x‖A = 1 . By using the Cauchy-Schwarz inequality we see
that

‖Tx‖2A + ‖T ♯Ax‖2A = 〈(T ♯AT + TT ♯A)x, x〉A

≤ ωA

(
T ♯AT + TT ♯A

)
.

Further, since T ♯AT + TT ♯A ≥A 0 , then (1.2) gives

‖Tx‖2A + ‖T ♯Ax‖2A ≤ ‖T ♯AT + TT ♯A‖A. (2.11)

On the other hand, since <A(T ) and =A(T ) are A -selfadjoint operators, then by (1.2) we have

ωA

(
<A(T )

)
= ‖<A(T )‖A and ωA

(
=A(T )

)
= ‖=A(T )‖A.

Therefore, by applying (2.11) together with Lemma C, one observes that

‖Tx‖2A + ‖T ♯Ax‖2A ≤ 4max
{
‖<A(T )‖2A, ‖=A(T )‖2A

}
− 2

∣∣ ‖<A(T )‖2A − ‖=A(T )‖2A
∣∣

= 4max
{
ω2
A

(
<A(T )

)
, ω2

A

(
=A(T )

)}
− 2

∣∣ ‖<A(T )‖2A − ‖=A(T )‖2A
∣∣ .

On the other hand, it is not difficult to verify that

ωA

(
<A(T )

)
≤ ωA(T ) and ωA

(
=A(T )

)
≤ ωA(T ).

This implies that

‖Tx‖2A + ‖T ♯Ax‖2A ≤ 4ω2
A(T )− 2

∣∣ ‖<A(T )‖2A − ‖=A(T )‖2A
∣∣

≤ 4

(
1−

∣∣ ‖<A(T )‖2A − ‖=A(T )‖2A
∣∣

2

)
,
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where the last inequality follows since ωA(T ) ≤ 1 . □
Now, we are in a position to prove the following theorem.

Theorem 2.9 Let T, S,X, Y ∈ BA(H) . Then

ωA(TXS ± SY T ) ≤ 2
√
2‖S‖A max {‖X‖A, ‖Y ‖A}

√
ω2
A(T )−

| ‖<A(T )‖2A − ‖=A(T )‖2A|
2

. (2.12)

Proof Assume first that ωA(T ) ≤ 1 , ‖X‖A ≤ 1 and ‖Y ‖A ≤ 1 . Let x ∈ H be such that ‖x‖A = 1 . By
applying the Cauchy-Schwarz inequality we see that

|〈(TX ± Y T )x, x〉A| ≤ |〈Xx, T ♯Ax〉A|+ |〈Tx, Y ♯Ax〉A|

≤ ‖Xx‖A‖T ♯Ax‖A + ‖Tx‖A‖Y ♯Ax‖A

≤ ‖X‖A‖T ♯Ax‖A + ‖Tx‖A‖Y ♯A‖A

≤ ‖T ♯Ax‖A + ‖Tx‖A

≤
√
2
(
‖T ♯Ax‖2A + ‖Tx‖2A

) 1
2 .

Therefore, by Lemma 2.8 we get

|〈(TX ± Y T )x, x〉A| ≤ 2
√
2

√
1−

| ‖<A(T )‖2A − ‖=A(T )‖2A|
2

.

Thus, by taking the supremum over all x ∈ H with ‖x‖A = 1 in the above inequality we get

ωA(TX ± Y T ) ≤ 2
√
2

√
1−

| ‖<A(T )‖2A − ‖=A(T )‖2A|
2

. (2.13)

Now, let T,X, Y ∈ BA(H) be any operators. If max {‖X‖A, ‖Y ‖A} = 0 or ωA(T ) = 0 , then obviously
the desired result holds. Assume that ωA(T ) 6= 0 and max {‖X‖A, ‖Y ‖A} 6= 0 . By replacing T , X and Y by

T
ωA(T ) , X

max{∥X∥A,∥Y ∥A} and Y
max{∥X∥A,∥Y ∥A} respectively in (2.13) we see that

ωA(TX ± Y T ) ≤ 2
√
2max {‖X‖A, ‖Y ‖A}ωA(T )

√√√√√
1−

∣∣∣∣ ∥∥∥<A

(
T

ωA(T )

)∥∥∥2
A
−
∥∥∥=A

(
T

ωA(T )

)∥∥∥2
A

∣∣∣∣
2

= 2
√
2max {‖X‖A, ‖Y ‖A}

√√√√
ω2
A(T )−

∣∣∣ ‖<A (T )‖2A − ‖=A (T )‖2A
∣∣∣

2
. (2.14)

By replacing X and Y by XS and SY respectively in the inequality (2.14), we obtain

ωA(TXS ± SY T ) ≤ 2
√
2max {‖XS‖A, ‖SY ‖A}

√
ω2
A(T )−

| ‖<A (T ) ‖2A − ‖=A (T ) ‖2A|
2

≤ 2
√
2‖S‖A max {‖X‖A, ‖Y ‖A}

√
ω2
A(T )−

| ‖<A (T ) ‖2A − ‖=A (T ) ‖2A|
2

.
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This proves the required result. 2

The following result is an immediate consequence of Theorem 2.9 and extends a recent result of Hirzallah
and Kittaneh (see [22]). Moreover, the obtained inequality considerably refine the inequality (1.5).

Theorem 2.10 Let T, S ∈ BA(H) . Then

ωA(TS ± ST ) ≤ 2
√
2min

{
fA(T, S), fA(S, T )

}
.

where

fA(X,Y ) = ‖Y ‖A

√√√√
ω2
A(X)−

∣∣∣ ‖<A (X)‖2A − ‖=A (X)‖2A
∣∣∣

2
.

Proof By letting X = Y = I in Theorem 2.9 we get

ωA(TS ± ST ) ≤ 2
√
2‖S‖A

√
ω2
A(T )−

| ‖<A(T )‖2A − ‖=A(T )‖2A|
2

. (2.15)

Now, by replacing T and S by S and T respectively in (2.15) we get the desired result. 2

As an application of Theorem 2.10, we derive the following two corollaries.

Corollary 2.11 Let T ∈ BA(H) . Then

ωA(T
2) ≤

√
2‖T‖A

√√√√
ω2
A(T )−

∣∣∣ ‖<A (T )‖2A − ‖=A (T )‖2A
∣∣∣

2
.

Proof Follow immediately by letting T = S in Theorem 2.10. 2

Corollary 2.12 Let T, S ∈ BA(H) be such that ωA(TS ± ST ) = 2
√
2‖S‖AωA(T ) and AS 6= 0 . Then

‖<A (T )‖A = ‖=A (T )‖A . (2.16)

Proof It follows from Theorem 2.10 that

ωA(TS ± ST ) ≤ 2
√
2‖S‖A

√
ω2
A(T )−

| ‖<A(T )‖2A − ‖=A(T )‖2A|
2

≤ 2
√
2‖S‖AωA(T ).

Therefore, since ωA(TS ± ST ) = 2
√
2‖S‖AωA(T ) , then

2
√
2‖S‖A

√
ω2
A(T )−

| ‖<A(T )‖2A − ‖=A(T )‖2A|
2

= 2
√
2‖S‖AωA(T ).

Since AS 6= 0 , then ‖S‖A 6= 0 . This immediately proves (2.16) as desired. 2
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