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Abstract: In this paper, it is shown that a closed surface in 3-dimensional harmonic conformally flat space is minimal
if the sign of the mean curvature does not change. Also, it is determined that the critical point of mean curvature
functional of the surface is homeomorphic to the sphere.
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1. Introduction
The research in the theory of surfaces in the Euclidean space focuses on the basic properties and the mean tools.
The elementary theory of surfaces are presented, for example see [1]. Historically, as an interesting material,
surfaces are the local solutions of one of the oldest problems in geometry, called the isoperimetric problem.
Because they are compatible as mathematical models in outline in which the physical system seeks a situation
of least energy, the surfaces are of great interest for both mathematicians and physicists. Also, we refer to [3]
for the constant mean curvature surfaces with boundary, [5, 6] for minimal surfaces.

In recent years, several papers have presented the results which studied on surfaces with constant either
extrinsic curvature or intrinsic curvature. For example the studies on surfaces with constant Gaussian curvature
and with constant extrinsic curvature have been worked by the authors in studies in [2, 4], respectively.

Indeed, expanding studies on the surfaces renewed interest to deal with the closed surfaces with the
induced metric which are immersed in the 3-dimensional conformally flat space in which the ambient manifold
is equipped with two Riemannian metrics g̃ = eσg0 , where g0 denotes the Euclidean one. Also, if in this space
the conformal map satisfies ∆g̃σ = traceg̃∇̃2σ = 0 then it is called harmonic conformally flat manifold. Both
the intrinsic and extrinsic geometry of a surface from variational point of view is the aim of this paper, where
they inherit the metric of ambient 3-dimensional harmonic conformally flat space. Indeed, we make use of some
topological characterizations such as the Gauss-Bonnet theory and the Euler number to achieve the new results
concerning surfaces in sense of the variation in our fundamental object of studying. Briefly, we come to the
corresponding variation to the curvature K and the mean curvature H of surfaces, where surfaces are tangent
to the conformal vector field, then up to now the following results obtain:

• If the sign of mean curvature H of a closed surface with the induced metric does not change in the
3-dimensional harmonic conformally flat space, then the surface is minimal.
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• Under an isometric immersion a closed complete oriented surface with the induced metric in the 3-
dimensional harmonic conformally flat space is homomorphic to a sphere, if the immersion is as a critical
point of the mean curvature functional.

• The Euler-Lagrange equation associated to the critical points of the Willmore functional holds

∆gH +H
(
‖ω♯‖2g̃ − λ1λ2 + 2H2 −K

)
= 0,

where, λi is an eigenvalue of the Weingarten operator and the vector field ω♯ is correlated to 1-form
ω = dσ , metrically.

The paper is organized as follows. First of all, by means of the preparation for our investigation in this object,
we need to have an overview of the geometry of the ambient 3-dimensional harmonic conformally flat space
(M̃3, g̃) and determine some results concerning isometrically immersed closed surfaces with the induced metric
there. Then, the principal results achive in the rest of the section 3 for the closed surfaces in the 3-dimensional
harmonic conformally flat space, where surfaces with the induced metric are tangent to the conformal vector
field. Indeed, by applying the Gauss-Bonnet theory and integrating of the mean curvature in sense of variation
most of the results are obtained.

2. Preliminaries

Let M̃n be a smooth Riemannian manifold which is equipped with the two conformal Riemannian metrics g0

and g̃ in which g̃ = exp(σ)g0 for a smooth map σ ∈ C∞(M̃n) . Then, by the Koszul formula for X and Y

tangent to M̃n the Levi-Civita connections ∇̃ and ∇0 associated to g̃ and g0 are related.

∇̃XY = ∇0
XY +

1

2
{ω(X)Y + ω(Y )X − g̃(X,Y )ω♯}, (2.1)

where ω♯ is conformal vector field corresponding to 1-form ω = dσ metrically, which in a coordinate (xi) is

written ω♯ = gradg̃σ = g̃ij ∂σ
∂xi

∂
∂xj at any point x ∈ M̃n . Next, we consider a (0, 2) tensor field

B(X,Y ) = (∇0
Xω)(Y )− 1

2
ω(X)ω(Y ), (2.2)

in such a way that, the curvature tensor fields R̃ and R0 corresponding to g̃ and g0 are connected.

R̃(X,Y )Z =R0(X,Y )Z +
1

2

{
B(X,Z)Y −B(Y, Z)X

+ g(X,Z)∇̃Y ω
♯ − g(Y, Z)∇̃Xω♯

}
+

1

4

(
g(Y, Z)ω(X)− g(X,Z)ω(Y )

)
ω♯, (2.3)

where X , Y and Z are tangent to M̃n .
A Riemannian manifold (M̃n, g̃) is called locally conformally flat if for any x ∈ M̃n , there existes a neighborhood

U of x and a smooth function σ ∈ C∞(M̃n) , so that g̃ = eσg0 and the metric g0 is flat.
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Under the conformal change g̃ = eσg0 , and take (2.1) with a strightforward computation the Laplace-Beltrami
operator transforms like

∆g̃ = e−σ∆g0 + (n− 2)e−σgij0
∂σ

∂xj

∂

∂xi
. (2.4)

We concentrate on the conformally flat spaces M̃3 where ∆g̃σ = traceg̃∇̃ω♯ = 0 , and these spaces are called
harmonic conformally flat spaces. In approach of harmonic conformally flat space the equation (2.4) holds,
∆g0σ = −‖gradg0σ‖

2
g0 .

Example 2.1 In the conformally flat manifold R3
+ = {(x, y, z) ∈ R3; z > 0} with the conformally flat metric

g̃ = eσg0 , where g0 is flat, we consider a smooth map σ : R̃3
+ −→ R where σ(x, y, z) = lnz . Then

∆g0 lnz = − 1
z2 = −‖gradg0(lnz)‖2g0 . So, it yields that (R3, g̃ = elnzg0) , for z > 0 is a harmonic conformally flat

space. Moreovere, in this case the curvature tensore K̃ = − 1
z2 .

Proposition 2.2 Let (M, g) be an isometrically immersed surface with the induced metric g in the 3-

dimensional conformally flat space (M̃3, g̃) . Let {e1, e2} be a locall orthonormal frame field on M , where
M is tangent to the ω♯ . Then,

• ω(e1)
2 = ω(e2)

2 and ω♯ = ‖ω♯‖g̃
√
2
2 (e1 + e2) .

• K̃ =
(
1
4‖ω

♯‖2g̃ − 1
2divω

♯
)
.

where, divω♯ = traceg∇ω♯ is considered on M .

Proof From (2.3), the sectional curvature of plane, which is spanned by {e1, e2} , holds

g̃(R̃(e1, e2)e2, e1) =
1

2

(
‖ω♯‖2g̃ − divω♯ − ω(e2)

2
)
, (2.5)

analogously,

g̃(R̃(e2, e1)e1, e2) =
1

2

(
‖ω♯‖2g̃ − divω♯ − ω(e1)

2
)
, (2.6)

Then, immediately these equations follow ω(e1)
2 = ω(e2)

2 . From here we can have θ = π
4 , where θ is angle

between ω♯ and the vector field ei . Then

ω♯ = g̃(ω♯, e1)e1 + g̃(ω♯, e2)e2 =

√
2

2
‖ω♯‖g̃(e1 + e2). (2.7)

Next, summing the equations (2.5) and (2.6) yield

K̃ =
1

2

(1
2
‖ω♯‖2g̃ − divω♯

)
. (2.8)

Hence, we reach the result. 2
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Now, we restrict our attention to a Riemannian closed surface (M, g) in the 3-dimensional conformally flat

space (M̃, g̃) , where M with induced metric g is tangent to the ω♯ . We consider the Levi-Civta connections

of conformal metrics g̃ and g by ∇̃ and ∇ . Let ei , N , and H be the principal direction associated to the
eigenvalues λi for i = 1, 2 , the local unit normal vector field, and the mean curvature on M , respectively. We
denote the sectional curvature spanned by {e1, e2} on M̃ by K̃ and the Gaussian curvature on M by K . Also,
Γ(TM) means the set of all the vector fields on M . Furthermore, the Codazzi equation

g̃
(
(∇̃XA)Y − (∇̃Y A)X,Z

)
=

1

2

(
ω(AY )g̃(X,Z)− ω(AX)g̃(Y, Z)

)
, (2.9)

holds for any X,Y, Z ∈ Γ(TM) , and A is the Weingarten operator on M .
By regarding the idea in the Verpoort’s thesis [7], we used it in our investigating to proof the following
propositions.

Proposition 2.3 Let M be an isometrically immersed closed surface with the induced metric g in the 3-
dimensional conformally flat space (M̃3, g̃) . Then for X ∈ Γ(TM)∫

M

λ2g̃(∇e1X, e1) + λ1g̃(∇e2X, e2)−
1

2
ω(AX)dΩ = 0. (2.10)

Proof Let ei for i = 1, 2 be the eigenvectors of the Weingarten operator A corresponding to the eigenvalues
λi . By taking (2.9), we calculate

λ2g̃(∇e1X, e1) + λ1g̃(∇e2X, e2) = 2HdivX − λ2g̃(∇e2X, e2) + λ1g̃(∇e1X, e1)

= 2HdivX − g̃(∇e2X,Ae2) + g̃(∇e1X,Ae1)

= 2HdivX − g̃(∇e2AX − (∇e2A)X, e2)

+g̃(∇e1AX − (∇e1A)X, e1)

= 2HdivX − divAX

+ g̃((∇e2A)X, e2) + g̃((∇e1A)X, e1)

= 2HdivX − divAX

+ g̃((∇XA)e1, e1) +
1

2

(
g̃(ω(AX)e1, e1)− g̃(ω(Ae1)X, e1)

)
+ g̃((∇XA)e2, e2) +

1

2

(
g̃(ω(AX)e2, e2)− g̃(ω(Ae2)X, e2)

)
= 2HdivX − divAX +

1

2
ω(AX)

+ g̃((∇XA)e2, e2) + g̃((∇XA)e1, e1)

= 2HdivX − divAX + (Xλ1) + (Xλ2) +
1

2
ω(AX)

= 2HdivX − divAX + 2g̃(∇H,X) +
1

2
ω(AX)

= div(2HX)− divAX +
1

2
ω(AX),
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for all X ∈ Γ(TM) . Since, the surface is closed by applying the divergence theorem we conclude the proof. 2

Proposition 2.4 Let (M, g) be an isometrically immersed closed surface with the induced metric g in the

3-dimensional conformally flat space (M̃3, g̃) . Then∫
M

λ2fHessh(e1, e1) + λ1fHessh(e2, e2)−
1

2
fω(A∇h)dΩ

=

∫
M

λ2hHessf (e1, e1) + λ1hHessf (e2, e2)−
1

2
hω(A∇f)dΩ, (2.11)

where f, h ∈ C∞(M) .

Proof We are in the hypotheses of the last proposition. Let X = (f∇h − h∇f) ∈ Γ(TM) , where
f, h ∈ C∞(M) , then the divergence theorem states

∫
M

f∆hdΩ =
∫
M

h∆fdΩ . Next, Proposition 2.3 follows

0 =

∫
M

{
λ2g̃(∇̃e1(f∇h− h∇f), e1) + λ1g̃(∇̃e2(f∇h− h∇f), e2)

−1

2
ω(A(f∇h− h∇f))

}
dΩ, (2.12)

then ∫
M

{
fλ2g̃

(
∇̃e1∇h, e1

)
+ fλ1g̃

(
∇̃e2∇h, e2

)
− 1

2
fω(A∇h)

}
dΩ,

=

∫
M

{
hλ2g̃(∇̃e1∇f, e1) + hλ1g̃(∇̃e2∇f, e2)−

1

2
hω(A∇f))

}
dΩ, (2.13)

since g̃(∇̃ei∇f, ei) = Hessf (ei, ei) and analogously for h , then the proof is completed. 2

A variation of an isometric immersion φ : M → M̃ is considered a differentiable map φ : M × (−ϵ, ϵ) →

M̃ : (p, t) 7→ φt(p) = φ(p, t) , where φt : M → M̃ is an immersion such that for t = 0 , φ0 = φ . Furthermore,

the variational vector field ξ , associated to {φt} attaches ξp = ∂φ(p,t)
∂t |t=0 for p ∈ M . The variation {φt} is

said to be a tangent variation where the vector field ξ is tangent to the surface in any points. It is convenient
to set convention the variation is normal where the variational vector field ξ = fN , where N is a local unit
normal vector field on M and f ∈ C∞(M) is an arbitrary smooth function.

In the rest of this section, we come up to establish the variation of the eigenvalues of the Weingarten
operator inspired by the variation of the Weingarten operator that was given:

Theorem 2.5 ([7] Variation of the Weingarten operator) Let (M, g) be a semi-Riemannian hypersurface of a

semi-Riemannian manifold M̃ under a variation of M , with variational vector field ξ = fN + ξt , then for
every X ∈ χ(M) holds :

(δA)(X) = f
(
R̃(N,X)N +A2(X)

)
+ Hsf(X) + (£ξtA)(X), (2.14)

where Hsf(X) is an operator associated to tensor Hessf (X,Y ) = g̃(Hsf(X), Y ) = g̃(∇̃X∇f, Y ) and (£ξtA)(X)

is the Lei derivative of the Weingarten operator along ξt .
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Let φt : M → M̃3 be an immersed normal variation of a closed surface M with the induced metric g in
the 3-dimensional conformally flat space (M̃3, g̃) where ξ = fN . Let ei be the principal direction on M ,
corresponding to the eigenvalue λi of the Weingarten operator A . Now, taking variation of both sides of the
equation A(φt)ei(φt) = λi(φt)ei(φt) leads to

(δA)(ei) +A(δei) = (δλi)ei + λi(δei).

We have g(δei, ei) = 0 which yields g̃(δei, ei) = 0 then δei = g̃(δei, ej)ej for i, j = 1, 2 and j 6= i , it follows

(δA)(ei) + λj(δei) = (δλi)ei + λi(δei), i 6= j

then δλi = g̃((δA)ei, ei) . From here, by applying (2.14) we get

δλi = f
(
g̃(R̃(N, ei)N, ei) + λ2

i

)
+ Hessf (ei, ei). (2.15)

3. Variational aspects of surfaces in the 3-dimensional harmonic conformally flat space
From now we concentrate on the main results.

Theorem 3.1 Let φt : M → M̃3 be an immersed normal variation of a closed surface M with the induced
metric g in the 3-dimensional harmonic conformally flat space (M̃, g̃) . Then, the variation of the Guassian
curvature on M holds

δK =
f

2

(
(λ1 − λ2)g̃(∇̃e1ω

♯, e1) + (λ2 − λ1)g̃(∇̃e2ω
♯, e2)

)
+λ1Hessf (e2, e2) + λ2Hessf (e1, e1)−

1

2
div(δω♯)

+f
(
2H(λ1λ2)−Hω(

∇f

f
) +

1

8
H‖ω♯‖2g̃ − ω(

A∇f

f
)
)
. (3.1)

Proof Let φ : M → M̃3 be an isometric immersion of a closed surface (M, g) into the 3-dimensional harmonic

conformally flat space (M̃, g̃) . Let ei and N be a principal direction corresponding to the eigenvalues λi for
i = 1, 2 and local unit normal vector field on M , respectively. We consider the Guass equation that denotes
K = K̃ + λ1λ2 . Then

∂

∂t

∣∣
t=0

K = δK = δK̃ + δ(λ1λ2). (3.2)

We consider equations (2.2) and (2.8) implying

δK̃ = −1

2
δ
(
B(e1, e1) +B(e2, e2)

)
. (3.3)

such that

∂

∂t

∣∣
t=0

B(ei, ei) = δB(ei, ei) = δ
(
g̃(∇̃eiω

♯, ei)−
1

4
‖ω♯‖2g̃

)
.
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The next step, variation of the first and second terms of the last equation is calculated as

δg̃(∇̃eiω
♯, ei) = (δg̃)(∇̃eiω

♯, ei) + fg̃(∇̃N ∇̃e1ω
♯, ei) + fg̃(∇̃eiω

♯, ∇̃Nei),

= −2λ1fg̃(∇̃eiω
♯, ei) + fg̃(R̃(N, ei)ω

♯, ei) + fg̃(∇̃eiδω
♯, ei)

+fg̃(∇̃[N,ei], ei) + fHessσ(ei, ∇̃Nei), (3.4)

where (δg̃)(X,Y ) = −2fg̃(AX,Y ) for X,Y ∈ χ(M) see([7]). Also,

δ‖ω♯‖2g̃ = (δg̃)(ω♯, ω♯) +
1

2
g̃(δω♯, ω♯),

= −2fg̃(Aω♯, ω♯) +
1

2
fg̃(∇̃Nω♯, ω♯),

= −2fω(Aω♯) +
f

2
B(N,ω♯) = −3

2
fω(Aω♯), (3.5)

where (2.2) yields B(N,ω♯) = −ω(∇̃ω♯N) = ω(Aω♯) . Equations (3.3) together with (3.4) and (3.5), lead to

δK̃ =
1

2
f
(
λ1g̃(∇̃e1ω

♯, e1) + λ2g̃(∇̃e2ω
♯, e2)

)
−5

8
fH‖ω♯‖2g̃ −

1

2
div(δω♯)− fω(

A∇f

f
), (3.6)

because of

ω(Aω♯) = g̃(ω♯, g̃(ω♯, e1)Ae1 + g̃(ω♯, Ae2)e2)

= λ1ω(e1)
2 + λ2ω(e2)

2 = H‖ω♯‖2g̃. (3.7)

Further, equation (2.15) notes that

δ(λ1λ2) = 2fH(λ1λ2) + λ1Hessf (e2, e2) + λ2Hessf (e1, e1)

+fλ2

(
− 1

2
(g̃(∇̃e1ω

♯, e1) +B(N,N)) +
1

4
ω(e1)

2
)

+fλ1

(
− 1

2
(g̃(∇̃e2ω

♯, e2) +B(N,N)) +
1

4
ω(e2)

2
)
,

= λ1Hessf (e2, e2) + λ2Hessf (e1, e1)

−f

2

(
λ2g̃(∇̃e1ω

♯, e1) + λ1g̃(∇̃e2ω
♯, e2)

)
+f

(
2H(λ1λ2)−Hω(

∇f

f
) +

3

4
H‖ω♯‖2g̃

)
. (3.8)

Hence from equations (3.2) , (3.6) and (3.8) , we end the proof of this theorem. 2

We can take into account that under a variation of a surface M , the Area(φt(M)) =
∫
dΩt . Indeed, the volume

element of the variation dΩt = utdΩ , where ut is the area of the parallelogram spanned by d(φt(X)) and
d(φt(Y )) for X,Y ∈ Γ(TM) . Hereof, the variational vector field is decomposed to ξ = ξt + fN , it is known
that δdΩt = (divξt − 2fH)dΩ , where H denotes the mean curvature of M .
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Theorem 3.2 Let M be an isometrically immersed closed surface with the induced metric g in the 3-
dimensional harmonic conformally flat space (M̃, g̃) . Then M is a minimal surface if sign of the mean
curvature does not change.

Proof Let φt : M → (M̃3, g̃) be a normal variation, where ξ = fN , of a immersed closed surface (M, g) in

the 3-dimensional harmonic conformally flat space (M̃, g̃) . Then directly by applying the Gauss-Bonnet theory
together with Theorem 3.1 and Proposition 2.3 we obtain

0 = δ

∫
M

KdΩ =

∫
M

δKdΩ+

∫
M

K(δdΩ)

=

∫
M

{f
2

(
(λ1 − λ2)g̃(∇̃e1ω

♯, e1) + (λ2 − λ1)g̃(∇̃e2ω
♯, e2)

)
+λ1Hessf (e2, e2) + λ2Hessf (e1, e1)−

1

2
div(δω♯)

+f
(
2H(λ1λ2)−Hω(

∇f

f
)− 2HK

+
1

8
H‖ω♯‖2g̃ − ω(

A∇f

f
)
)}

dΩ

=

∫
M

f
{
λ1g̃(∇̃e1ω

♯, e1) + λ2g̃(∇̃e2ω
♯, e2)

−3

8
H‖ω♯‖2g̃ − ω(

A∇f

2f
)−Hω(

∇f

f
)
}
dΩ, (3.9)

on the other hand we have

λ2g̃(∇e2ω
♯, e2) + λ1g̃(∇e1ω

♯, e1) = −
(
λ2g̃(∇̃e1ω

♯, e1) + λ1g̃(∇̃e2ω
♯, e2)

)
,

+2Hdivω♯ (3.10)

so we replace (3.10) in (3.9) which together with the Proposition 2.4 follow∫
M

{
−
(
σλ2g̃(∇̃e1∇f, e1) + σλ1g̃(∇̃e2∇f, e2)

)
+

σ

2
ω(A∇f)

+f
(
2Hdivω♯ − 7

8
H‖ω♯‖2g̃ − ω(

A∇f

2f
)−Hω(

∇f

f
)
)}

dΩ = 0. (3.11)

Hereof, ∇̃NN = −∇f
f [7] and notice the assumption that

0 = Divω♯ = divω♯ + g̃(∇̃Nω♯, N)

= divω♯ + g̃(ω♯,
∇f

f
), (3.12)

it follows divω♯ = −ω(∇f
f ) . From here, (3.11) yields∫

M

{
− f

(7
8
H‖ω♯‖2g̃ + ω(

A∇f

2f
) + 3Hω(

∇f

f
)
)

−σ
(
λ2g̃(∇̃e1∇f, e1) + λ1g̃(∇̃e2∇f, e2)

)
+

σ

2
ω(A∇f)

}
dΩ = 0. (3.13)
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After all, under the normal variation ξ = N , where f ≡ 1 the equation (3.13) follows

∫
M

H‖ω♯‖2g̃dΩ = 0,

hence as respect to the assumption that the sign of mean curvature does not change, also ω♯ 6= 0 , it obtains
that H = 0 . 2

By regarding the mean curvature and considering the critical points of its integrating we get the following
results.

Theorem 3.3 Let φ : M → M̃3 be an isometric immersion of a closed complete oriented surface M with
the induced metric g in 3−dimensional harmonic conformally flat space (M̃, g̃) . Let for δ

∫
HdΩ = 0 , the

immersion φ be a critical point of the mean curvature functional, then M is homeomorphic to a sphere and
the associated Euler-Lagrange equation holds

‖ω♯‖2g̃ − λ1λ2 −K = 0. (3.14)

Proof Let φt : M → M̃3 denotes a normal variation of a closed complete oriented surface (M, g) in the

3-dimensional harmonic conformally flat space (M̃3, g̃) with the variational vector field ξ = fN . Let ei for
i = 1, 2 and N be the principal directions corresponding to the eigenvalues λi and local unit normal vector field
on M , respectively. Then, from (2.15) and Proposition 2.3 by integrating of the mean curvature H = λ1+λ2

2

on M we get

δ

∫
M

HdΩ =

∫
M

δHdΩ+

∫
M

H(δdΩ)

=
1

2

∫
M

{
f
(
g̃(R̃(e1, N)N, e1) + g̃(R̃(e2, N)N, e2) + λ2

1 + λ2
2

)
+Hessf (e1, e1) + Hessf (e2, e2)− 2fH2

}
dΩ,

=

∫
M

f
{
− λ1λ2 +

1

2
R̃ic(N,N)

}
dΩ. (3.15)

From (2.3) , the second terms of (3.15), tensor R̃ic associated to M̃ satisfies

R̃ic(N,N) = −B(N,N)− 1

2

(
(g̃(∇̃e1ω

♯, e1) + g̃(∇̃e2ω
♯, e2)

)
+

‖ω♯‖2g̃
4

,

= −1

2
ω(

∇f

f
) +

3

4
‖ω♯‖2g̃, (3.16)

since, from (2.2) and (3.12) it follows that B(N,N) = ω(∇f
f )− ∥ω♯∥2

g̃

2 and
∑2

i=1 g̃(∇̃eiω
♯, ei) = divω♯ = −ω(∇f

f ) ,

respectively. From here and (2.8) we get

K =
1

2
ω(

∇f

f
) +

1

4
‖ω♯‖2g̃ + λ1λ2, (3.17)
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thus (3.15) together with (3.16) and (3.17) imply

δ

∫
M

HdΩ = −1

2

∫
M

f
(
λ1λ2 +K − ‖ω♯‖2g̃

)
dΩ. (3.18)

According to the assumption δ
∫
M

HdΩ = 0 , hence (3.18) follows that the critical points of the functional hold

λ1λ2 +K − ‖ω♯‖2g̃ = 0. (3.19)

Further, equation (3.17) yields λ1λ2 = K − 1
2ω(

∇f
f )− 1

4‖ω
♯‖2g̃ that together with (3.18) imply

δ

∫
M

HdΩ = −1

2

∫
M

f
(
2K − 1

2
ω(

∇f

f
)− 5

4
‖ω♯‖2g̃

)
dΩ, (3.20)

such that under the normal variation ξ = N , that is, f ≡ 1 by taking into account the assumption and making
use of the Gauss-Bonnet theory, equation (3.20) follows that the Euler number χ(M) holds

χ(M) =
5

16π

∫
‖ω♯‖2g̃dΩ > 0.

2

Finding the critical points of a functional is a major problem in the calculus of variation. In the rest of this
section for a given topological space we consider closed surfaces with induced metric in 3-dimensional harmonic
conformally flat spaces, in which δ

∫
H2dΩ = 0 , that is known as the Willmore surfaces.

Theorem 3.4 Let φ : M → M̃3 be an isometric immersion of a closed surface M with the induced metric g

in the 3-dimensional harmonic conformal flat space (M̃3, g̃) . Then M is a Willmore surface if and only if

∆gH +H
(
2H2 −K + ‖ω♯‖2g̃ − λ1λ2

)
= 0, (3.21)

Proof Analogously, we are in the hypotheses of the last theorem such that under a normal variation where
ξ = fN and equation (2.15) we obtain

δ

∫
M

H2dΩ =

∫
M

2H(δH)dΩ+

∫
M

H2(δdΩ),

=

∫
M

{
2H

(
fK̃ +

f

2
R̃ic(N,N) +

∆f

2

+f(2H2 −K)
)
− 2fH3

}
dΩ,

=

∫
M

fH
(
‖ω♯‖2g̃ − λ1λ2 −K

)
+H∆gf + 2fH3dΩ (3.22)

where R̃ic(N,N) satisfies (3.16) . Now, the divergence theorem can be applied such that equation (3.22) becomes

δ

∫
H2dΩ =

∫
f
(
‖ω♯‖2g̃H − λ1λ2H +∆gH +H(2H2 −K)

)
dΩ. (3.23)

Consequently, the critical points of the above function hold

∆gH +H
(
‖ω♯‖2g̃ − λ1λ2 + 2H2 −K

)
= 0. (3.24)

2
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