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Abstract: We study hyperelastic curves known as a generalization of elastic curves in 3−dimensional lightlike cone
which is a degenerate hypersurface in Minkowski 4−space as critical points of the cone curvature energy functional
constructed with the r−th power of the cone curvature depending on the given boundary conditions for the natural
number r ≥ 2 . We derive the Euler-Lagrange equations for the critical points of this functional that is namely the
hyperelastic curves and solve completely the Euler-Lagrange equations by quadratures. Then, we construct Killing
vector fields along the hyperelastic curves. Lastly, we give explicitly the hyperelastic curves by integral according to the
selected cylindrical coordinate systems in 3−dimensional lightlike cone using these Killing vector fields.
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1. Introduction
If a material turns back into its original form after the force that is applied on the material is removed, that
specific material is called an elastic material. If a material has elasticity (so it is an elastic material) it absolutely
has an equilibrium position and when it is in the state of equilibrium, it has minimum energy. Due to this
situation, studying on elastic materials is an attraction. Elastic curve (elastica) is one of the most popular
topics on the calculus of variations in a space, surface or manifold and it is defined as the curve that provides
a suitable variation condition for interpolation problems. According to the idealization of D. Bernoulli, the

elastic curves minimize the total square curvature
ℓ∫
0

κ2ds between same length curves and first-order boundary

data. Geodesics on a plane or a sphere and eight curve in Euclidean space are clear examples of elastic curves
(see, [5, 6, 13, 22]). Like many problems investigated by mathematicians of today, studying elastic curves
originated in a physical situation. Euler and Bernoulli’s elastic curve idea has turned this physical problem
into a mathematical one. Study of the bending energy of a physical elastic rod was modified by investigating
the total square curvature of a regular curve. Total square curvature functional has appeared as a beneficial
quantity that will be useful in geodesic research and closed thin elastic rod is generally used as a model for DNA
molecule [8, 23]. So far, many researchers have written articles on elastic curves in Euclidean and non-Euclidean
spaces. Singer has obtained the Euler-Lagrange equations of elastic curves in 3−dimensional Euclidean space
and solved differential equations by using Jacobi elliptic functions. Moreover, he generalized the variational
problem of elastic curves in Riemann manifold with constant sectional curvature [22]. Langer and Singer have
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studied closed elastic curves on manifolds with constant sectional curvature. In addition, Brunnet and Crouch
have given equations for the main invariants of spherical elastic curves. They solved differential equations by
using the Jacobi elliptic functions and presented a classification of the basic forms of elastic curves [5]. The
system of differential equations for elastic curves has been studied and developed by many geometricians in
non-Euclidean spaces.

Although Minkowski geometry and Euclidean geometry have some parallel features, different results can
be found for curves or surfaces in Minkowski geometry due to the metric structure. Moreover, Minkowski
geometry is more complex than Euclidean geometry because while Euclidean geometry includes only spherical
geometry, Minkowski geometry includes both spherical and hyperbolic geometry. In addition, there are three
curves called spacelike, timelike and lightlike (null) and two surfaces called degenerate and nondegenerate
in Minkowski space [18, 19]. n−dimensional lightlike cone is a degenerate hypersurface that includes all
lightlike (null) vectors in Minkowski (n + 1)−space and the lightlike cone only has spacelike curves [14, 19].
In Minkowski 3−space, elastic curves on hyperquadratics (de Sitter 2−space and pseudo-hyperbolic 2−space)
and 2−dimensional lightlike cone have been studied previously [20, 24, 27]. A complete description of timelike
relativistic elastica, nongeodesic spacetime curves that solve the Euler-Lagrange equations for a Lagrangian
that depends on the square of the acceleration of the curve as well as its Lorentzian length have been given [7].
Elastic curves and the generalization of elastic curves have been studied both in Euclidean and non-Euclidean
spaces [8–11, 21, 25]. One of these generalizations is hyperelastic curves (or r−elastic curves). Hyperelastic

curves have been defined as critical points of the functional
ℓ∫
0

(κr + λ)ds for the natural number r ≥ 2 [1–3]. If

λ = 0 , then critical points of this functional are called free hyperelastic curves (or free r−elastic curves). Free
hyperelastic curves are used in the reduction method in construction of Chen-Willmore submanifolds [1–4]. In
Minkowski 4−space, elastic curves in 3−dimensional lightlike cone have been studied by the second author [28],
but hyperelastic curves have not been studied. Therefore, it has become attraction to work on the hyperelastic
curves in 3−dimensional lightlike cone which is a special hypersurface. With this motive, hyperelastic curves
in 3−dimensional lightlike cone are characterized. To this end, we derive the Euler-Lagrange equations for the
hyperelastic curves and solve completely the Euler-Lagrange equations by quadratures. Finally, we give explicitly
the hyperelastic curves by integral according to the selected cylindrical coordinate systems in 3−dimensional
lightlike cone with the help of Killing vector fields constructed along the hyperelastic curves.

2. Hyperelastic curves in 3−dimensional lightlike cone

In this section, we derive a system of differential equations that characterize hyperelastic curves in 3−dimensional
lightlike cone given by

Q3 = {p ∈ R4
1 \ {0} :< p, p >= 0}

in Minkowski 4−space R4
1 and solve this system of differential equations. Therefore, we describe hyperelastic

curves in 3−dimensional lightlike cone Q3 . When studying on curves in Euclidean and Minkowski spaces,
Frenet frame is usually used. However, Frenet frame is not suitable when studying on curves in Q3 . In this
situation, a different frame known as cone Frenet frame (or asymptotic orthonormal frame) defined by Liu is
used. We assume that

γ : I ⊂ R −→ Q3 ⊂ R4
1,

s −→ γ(s)
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is a spacelike curve parametrized by the arc length parameter s in Q3 . Then, the curve γ has a spacelike unit
tangent vector

T (s) = γ′(s) =
dγ(s)

ds
.

Then we can select null normal vector field

N(s) = −γ
′′
(s)− 1

2
< γ

′′
(s), γ

′′
(s) > γ(s)

satisfying the following conditions

⟨γ(s), γ(s)⟩ = ⟨N(s), N(s)⟩ = ⟨γ(s), T (s)⟩ = ⟨γ(s), B(s)⟩ = 0
⟨T (s), N(s)⟩ = ⟨N(s), B(s)⟩ = ⟨T (s), B(s)⟩ = 0
⟨γ(s), N(s)⟩ = ⟨T (s), T (s)⟩ = ⟨B(s), B(s)⟩ = 1.

Therefore, the frame field {γ, T,N,B} is called cone Frenet frame (or an asymptotic orthonormal frame) along
the curve γ in Q3 and it has derivative equations given by

γ′(s) = T (s)

T
′
(s) = κ(s)γ(s)−N(s)

N ′(s) = −κ(s)T (s)− τ(s)B(s)
B′(s) = τ(s)γ(s),

(2.1)

where

κ(s) = −1

2
⟨γ′′(s), γ′′(s)⟩

and
τ(s) =

√
⟨γ′′′(s), γ′′′(s)⟩ − ⟨γ′′(s), γ′′(s)⟩2,

are the (first) cone curvature and the cone torsion (or second cone curvature) of the curve γ , respectively
[14–17].

Since the hyperelastic curve problem is a variational problem, it is natural to ask how the variation is
defined. We suppose that γ : I → Q3 is a spacelike curve parametrized by an arbitrary parameter t in Q3 .
V = V (t) , T and v denote tangent vector, unit tangent vector to the curve γ and the speed of γ , respectively.
Here the speed of γ is given by

v(t) = ∥V (t)∥ =
∣∣∣< γ

′
(t), γ

′
(t) >

∣∣∣ 1
2

.

A variation of the curve γ is defined by

γ : (−ε, ε)× I −→ Q3 ⊂ R4
1

(w, t) −→ γ(w, t) = γw(t)

such that γ(0, t) = γ(t) and the variation vector field associated with variation is

W = W (t) = (∂γ/∂w)(0, t)
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along γ . Hence we can write V = V (w, t) = (∂γ/∂t)(w, t) , W = W (w, t), T = T (w, t) and v = v(w, t) .
Considering the arc length parameter as s , we can write γ(s) , κ(w, s), etc., where s ∈ [0, ℓ] and ℓ are the arc
lengths of γ .

Now, we give a lemma that will be used to obtain Euler-Lagrange equations for hyperelastic curves with
the equations defined above.

Lemma 2.1 Let γ be a spacelike curve in Q3and γ(w, t) be a variation with a variation vector field W =

W (w, t) . Then, we have the following formulas:
i) < W (w, t), γ(w, t) >= 0,

ii) [V,W ] = 0,

iii) g = − < ∇TW,T > such that W (v) = −gυ,

iv) [W,T ] = gT,

v) W (κ) = 4gκ− < ∇2
TW,κγ −N >,

vi) W
(
τ2
)
= 6gτ2 − 8gκ2+ < ∇TW, 2κκ

′
γ − 8κ2T − 6κ

′
N − 4κτB >

+ < ∇2
TW, 6κ

′
T > + < ∇3

TW, 2κ
′
γ + 2τB > .

Proof i) Since γ(w, t) is the curve in Q3 , we have

< γ(w, t), γ(w, t) >= 0.

If we take the partial derivative of both sides with respect to w , we obtain

< W (w, t), γ(w, t) >= 0.

ii) For a variation γ(w, t) , we use the equation

[
∂

∂w
,
∂

∂t
] =

∂

∂w
(
∂

∂t
)− ∂

∂t
(
∂

∂w
) = 0

and the tangent map dγ , we find
[V (w, t),W (w, t)] = 0

iii) Substituting V (w, t) = v(w, t)T (w, t) into

[W,V ] = W (V )− V (W ) = 0,

we get
W (vT )− vT (W ) = W (v)T + vW (T )− v∇TW = 0. (2.2)

Both sides of (2.2) are scalar multiplied by T and by using < T, T >= 1 , we calculate

W (v) < T, T > +v < W (T ) , T > −v < ∇TW,T >= 0.

Since < W (T ) , T >= 0 , we get
W (v) = −gv,

where g = − < ∇TW,T > .
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iv) From (2.2) , we have
0 = W (v)T + vW (T )− v∇TW

= W (v)T + v[W,T ].

So, we obtain
[W,T ] = gT. (2.3)

v) Let γ be a spacelike curve parametrized by the arc length parameter s without breaking generality.
Take into consideration definition of the cone curvature and by using the equations (2.1) and (2.3) , we obtain

W (κ) = − 1
2W (< ∇TT,∇TT >)

= 4gκ− < ∇T∇TW,κ(s)γ(s)−N > .

vi) Considering the definitions of the cone torsion and the cone curvature, and by using equations iv)

and v) , we have

W
(
τ2
)

= W
(
⟨TTT, TTT ⟩)− 4W (κ2

)
= 2 < W (TTT ), TTT ⟩ − 32gκ2 + 8κ < ∇T∇TW,κ(s)γ(s)−N > .

Since
⟨W (TTT ), TTT ⟩ = 6gτ2 + 24gκ2+ < ∇TW, 2κ

′
κγ − 8κ2T − 6κ

′
N − 4κτB >

+ < ∇T∇TW,−8κ2γ + 6κ
′
T + 8κN >

+ < ∇T∇T∇TW, 2κ
′
γ + 2τB >,

we see that
W (τ2) = 6gτ2 − 8gκ2+ < ∇TW, 2κκ

′
γ − 8κ2T − 6κ

′
N − 4κτB >

+ < ∇T∇TW, 6κ
′
T > + < ∇T∇T∇TW, 2κ

′
γ + 2τB > .

2

2.1. Euler-Lagrange equations for hyperelastic curves
In this subsection we derive the Euler-Lagrange equations characterizing the critical points of the cone curvature
energy functional under some boundary conditions.

Let γ : [0, ℓ] → Q3 be a spacelike curve parametrized by arc length s , 0 < s < ℓ , with the cone curvature
function κ(s) in Q3 . A hyperelastic curve γ is an extremal of the cone curvature energy functional defined by

F(γw) =

∫ ℓ

0

(κr + λ)ds

which stands in the family of all curves having the same initial point and initial direction as γ , where r ≥ 2 is
a natural number and ℓ is the arclength of γw(t) = γ(w, t) .

Assume that γ is a critical point of the functional F (γw) . Then for a variation γw associated with a
variation vector field W along γ , we compute

d
dwF(γw)|w=0 = d

dw

∫ ℓ

0
(κr + λ)ds|w=0

= d
dw

∫
I
(κr + λ)vdt|w=0

=
∫
I
[rκr−1W (κ) + (κr + λ)W (v)]dt|w=0

=
ℓ∫
0

(
rκr−1 (−4 < ∇TW,T > κ− < ∇T∇TW,κγ −N >)

+ (κr + λ) < ∇TW,T >) ds.
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By using a standard argument involving some integrations by parts, we get the first variation formula of the
cone curvature energy functional as follows

0 =

∫ ℓ

0

< E ,W > ds+ B(γ,W )|ℓ0 ,

where the boundary term is given by

B(γ,W ) =< W, ((1− 2r)κr + λ)T + r(r − 1)κr−2κ
′
N + rκr−1τB >

+ < ∇TW, rκr−1(κγ −N) >

and
E = (r(r − 1)κr−3(κκ

′′
+ (r − 2)(κ

′
)2) + (1− 2r)κr + λ)N

− rκr−2(2(r − 1)κ
′
τ + κτ

′
)B.

Then we obtain the Euler-Lagrange equations

(r(r − 1)κr−3(κκ
′′
+ (r − 2)(κ

′
)2) + (1− 2r)κr + λ) = 0, (2.4)

rκr−2(2(r − 1)κ
′
τ + κτ

′
) = 0. (2.5)

Therefore, we define hyperelastic curve in Q3 as follows:

Definition 2.2 A regular unit speed spacelike curve in Q3 is called a hyperelastic curve if it satisfies the
Euler-Lagrange equations (2.4) and (2.5) .

2.2. Killing vector fields along hyperelastic curves

The purpose of this subsection is to find out explicit solutions of a hyperelastic curve in Q3 . As it can be seen
in the equation (2.5), the cone torsion τ is a function of the cone curvature κ . Therefore, solutions will be
searched according to the cone curvature κ.

Firstly, let the cone curvature κ be a constant. From (2.5) we known the cone torsion τ is a constant too.
So, (2.1) becomes a system of linear ordinary differential equations with constant coefficients and this system
of equations can be solved directly.

Now, suppose that the cone curvature κ is not constant and κr−1 ̸= 0 . From (2.5) we get

(rκr−1)2τ = C1, (2.6)

where C1 is a constant. Furthermore we assume that κr−2κ
′ ̸= 0 . Both sides of the equation (2.4) are multiplied

by r(r − 1)κr−2κ
′ and if the resulting equation integrated, then(

r(r − 1)κr−2κ
′
)2

+ 2rκr−1(κr + λ)− 2r2κ2r−1 = C2 (2.7)

is obtained, where C2 is a constant. Hence, we can express the cone curvature κ(s) by quadratures

±
∫

r(r − 1)κr−2dκ√
C2 − 2rκr−1(κr + λ) + 2r2κ2r−1

=

∫
ds.

Thus, we have the following theorem.
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Theorem 2.3 The Euler-Lagrange equations (2.4) and (2.5) in Q3 can be completely solved by quadratures.

In order to solve the derivative equations of cone Frenet frame (2.1) for a hyperelastic curve in Q3 , we
define the concept of Killing vector field along the curve in Q3 . This concept was introduced by Langer and
Singer [13] for the purpose of integrating the structural equations of the elastic curves by quadratures in a
system of cylindrical coordinates.

Definition 2.4 Let γ be a regular curve in Q3 . If a vector field W along γ annihilates v , κ and τ , that is
W (v) = W (κ) = W (τ) = 0 , then it is called a Killing.

We suppose that W is Killing vector field along hyperelastic curve γ having the form

W = f1(s)γ(s) + f2(s)T (s) + f3(s)N(s) + f4(s)B(s).

From Lemma 2.1 , the functions f1(s) , f2(s) , f3(s) and f4(s) must satisfy the following equations:

f3(s) = 0, f1(s) + f
′

2(s) = 0,

f
′′′

2 (s)− 2κ(s)f
′

2(s)− κ
′
(s)f2(s)− 2τ(s)f

′

4(s)− τ
′
(s)f4(s) = 0

and
f

′′′

4 (s)− 2κ(s)f
′

4(s)− κ
′
(s)f4(s) + 2τ(s)f

′

2(s) + τ
′
(s)f2(s) = 0.

Taking into consideration these equations and the Euler-Lagrange equations (2.4) and (2.5), we obtain Killing
vector fields

P1 = −r(r − 1)κr−2κ
′
γ + rκr−1T

and
P2 = rκr−1B

along hyperelastic curve γ . The equations W (v) = W (κ) = W (τ) = 0 constitute a linear system whose solution
space is 6−dimension. This dimension agrees with the dimension of the isometry group of Q3 . Thus a Killing
vector field along hyperelastic curve γ can extend to a Killing vector field in Q3 at least locally.

The hyperelastic curve is invariant along any Killing vector field W, that is B(γ,W ) is constant along
γ . Also,

< P1, P1 >=< P2, P2 >= r2κ2r−2

and
< P1, P2 >= 0.

So, the following theorem gives a characterization of hyperelastic curves in Q3 :

Theorem 2.5 If γ is a hyperelastic curve in Q3 , then γ satisfies the first integral equation

−(r(r − 1)κr−2κ
′
)2 − 2rκr−1(κ+ λ) + 2κ < Pi, Pi >= −C2

for i ∈ {1, 2} , where C2 is a constant.
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2.3. Cylindrical coordinates and representation by means of quadratures

We use the Killing fields P1 and P2 to construct a system of cylindrical coordinates in Q3 whether C2 is
different from zero and not. Then, we express the hyperelastic curves in Q3 by means of quadratures.

Case 1. C2 ̸= 0 . We consider a system of cylindrical coordinates in Q3 given by

X(ρ, θ, φ) = (sin ρ cos θ, sin ρ sin θ, sinhφ sin ρ, coshφ sin ρ)

for ρ ∈ (0, π
2 ) , θ ∈ (0, 2π) and φ ∈ R . Then metric is

ds2 = sin2 ρdθ2 + sin2 ρdφ2.

The vector fields Xθ(ρ, θ, φ) and Xφ(ρ, θ, φ) are Killing vector fields. By using a suitable Lorentzian transfor-
mation in Q3 , we may assume

P1 = aXθ + bXφ, P2 = bXθ − aXφ

for different constants a and b . We get

Xθ =
1

a2 + b2
(aP1 + bP2), Xφ =

1

a2 + b2
(bP1 − aP2).

Since
< P1, P1 >= r2κ2r−2 = (a2 + b2) sin2 ρ,

we find

sin ρ =
rκr−1

√
a2 + b2

. (2.8)

If we can express the curve in terms of the local coordinates as γ(s) = X(ρ(s), θ(s), φ(s)) , then

T (s) = γ′(s) = ρ
′
(s)Xρ + θ

′
(s)Xθ + φ

′
(s)Xφ.

The inner product of Pi and T for i ∈ {1, 2} and the unit property of T (s) , we have

θ
′
(s) =

a

rκr−1
, φ

′
(s) =

b

rκr−1
. (2.9)

Calculating the cone curvature of γ(s) = X(ρ(s), θ(s), φ(s)) gives

κ = {((θ′
)2 + (φ

′
)2)ρ

′′ − 2(θ
′
θ
′′
+ φ

′
φ

′′
)ρ

′} cos ρ sin ρ
−(ρ

′
)2((θ

′
)2 + (φ

′
)2) cos2 ρ− 1

2{(θ
′′
)2 + (φ

′′
)2 + (θ

′
)4 − (φ

′
)4} sin2 ρ

−(ρ
′
)2((θ

′
)2 + (φ

′
)2).

From (2.4), (2.7), (2.8), (2.9) and

θ
′′
(s) = −a(r−1)κ

′

rκr , φ
′′
(s) = −b(r−1)κ

′

rκr ,

ρ
′
(s) = r(r−1)κr−2κ

′

√
a2+b2−r2κ2r−2

,

ρ
′′
(s) = (a2+b2−r2κ2r−2)r(r−1)κr−3[(r−2)(κ

′
)2+κκ

′′
]+r3(r−1)2κ3r−5(κ

′
)2

(a2+b2−r2κ2r−2)3/2
,

(2.10)
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we obtain
C2 = b2 − a2 ̸= 0. (2.11)

By calculating the cone torsion of γ(s) = X(ρ(s), θ(s), φ(s)) , then we find

τ2 + 4κ2 = {−6ρ
′′′
(θ

′
θ
′′
+ φ

′
φ

′′
) + 6θ

′′′
(θ

′
ρ

′′
+ θ

′′
ρ

′
) + 6φ

′′′
(φ

′
ρ

′′
+ φ

′′
ρ

′
)

+18(ρ
′
)2ρ

′′
((θ

′
)2 + (φ

′
)2) + 6θ

′
θ
′′
(3(θ

′
)2ρ

′
+ (ρ

′
)3)

+6(ρ
′′
θ
′
+ θ

′′
ρ

′
)(3(ρ

′
)2θ

′
+ (θ

′
)3)− 6(ρ

′′
φ

′
+ φ

′′
ρ

′
)(3(ρ

′
)2φ

′ − (φ
′
)3)

−6φ
′
φ

′′
(3(φ

′
)2ρ

′ − (ρ
′
)3)} sin ρ cos ρ+ {−6ρ

′′′
ρ

′
((θ

′
)2 + (φ

′
)2)

+9(θ
′
ρ

′′
+ θ

′′
ρ

′
)2 + 9(φ

′
ρ

′′
+ φ

′′
ρ

′
)2 + 9(ρ

′
)2((θ

′
)4 − (φ

′
)4)

+6(ρ
′
)4((θ

′
)2 + (φ

′
)2)} cos2 ρ+ {(θ′′′

)2 + (φ
′′′
)2 − 2θ

′
θ
′′′
(3(ρ

′
)2 + (θ

′
)2)

−2φ
′
φ

′′′
(3(ρ

′
)2 − (φ

′
)2) + 9(θ

′
)2(θ

′′
)2 − 9(φ

′
)2(φ

′′
)2

+9(ρ
′
)4((θ

′
)2 + (φ

′
)2) + 18ρ

′
ρ

′′
(θ

′
θ
′′
+ φ

′
φ

′′
) + 6(ρ

′
)2((θ

′
)4 − (φ

′
)4)

+(θ
′
)6 + (φ

′
)6} sin2 ρ.

Here (2.4), (2.6), (2.7), (2.8), (2.9), (2.10), (2.11) and

θ
′′′
(s) = a

rκr+1 {2(r − 1)2(κ
′
)2 − (r − 1)((r − 2)(κ

′
)2 + κκ

′′

)},
φ

′′′
(s) = b

rκr+1 {2(r − 1)2(κ
′
)2 − (r − 1)((r − 2)(κ

′
)2 + κκ

′′

)},
ρ

′′′
(s) = r(r−1)κr−4[(r−2)κ

′
{(r−3)(κ

′
)2+3κκ

′′
}+κ2κ

′′′
]√

a2+b2−r2κ2r−2
+ 3r5(r−1)3κ5r−8(κ

′
)3

(a2+b2−r2κ2r−2)5/2

+ r3(r−1)2κ2r−3(κ
′
){(r−1)κr−3κ

′
+3(r−2)κr−3(κ

′
)2+κr−2κ

′′
}

(a2+b2−r2κ2r−2)3/2

are used,
C2

1 = a2b2 > 0 (2.12)

is obtained. Combining (2.11) and (2.12), we get

a2 =

√
C2

2 + 4C2
1 − C2

2
, b2 =

2C1√
C2

2 + 4C2
1 − C2

.

Therefore, the hyperelastic curve γ(s) = X(ρ(s), θ(s), φ(s)) can be represented in the cylindrical coordinates
around plane spanned by P1 and P2 as follows:

ρ
′
(s) = r(r−1)κr−2κ

′√√√√√
C2
2+4C2

1−C2

2 +
2C1√

C2
2+4C2

1−C2

−r2κ2r−2

, θ
′
(s) =

√√
C2

2+4C2
1−C2√

2rκr−1
,

φ
′
(s) =

√
2C1

rκr−1

√√
C2

2+4C2
1−C2

.

Case 2. C2 = 0 . We choose a system of cylindrical coordinates in Q3 given by

X(ρ, θ, φ) = (ρφ, ρθ,
ρφ2

2
− ρ

2
(1− θ2),

ρφ2

2
+

ρ

2
(1 + θ2))

for ρ > 0 and θ, φ ∈ R . The metric is
ds2 = ρ2dθ2 + ρ2dφ2.
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Then the vector fields Xθ(ρ, θ, φ) = (0, ρ, ρθ, ρθ) and Xφ(ρ, θ, φ) = (ρ, 0, ρφ, ρφ) are Killing vector fields. By
using a suitable Lorentzian transformation in Q3 , we may assume

P1 = Xθ +Xφ, P2 = Xθ −Xφ.

Then we have

Xθ =
1

2
(P1 + P2), Xφ =

1

2
(P1 − P2).

Since < P1, P1 >= r2κ2r−2 = 2ρ2 , we obtain

ρ =
r√
2
κr−1. (2.13)

We can express the curve in terms of the local coordinates as γ(s) = X(ρ(s), θ(s), φ(s)) , then

T (s) = γ′(s) = ρ
′
(s)Xρ + θ

′
(s)Xθ + φ

′
(s)Xφ.

The inner product of Pi and T for i ∈ {1, 2} gives

θ
′
(s) + φ

′
(s) =

2

rκr−1

and
θ
′
(s)− φ

′
(s) = 0.

The unit property of T (s) yields

θ
′
(s)2 + φ

′
(s)2 =

2

r2κ2r−2
.

Then

θ
′
(s) = φ

′
(s) =

1

rκr−1
. (2.14)

Calculating the cone curvature of γ(s) = X(ρ(s), θ(s), φ(s)) gives

κ = ρρ
′′
((θ

′
)2 + (φ

′
)2)− 1

2ρ
2((θ

′′
)2 + (φ

′′
)2)− 2ρρ

′
(θ

′
θ
′′
+ φ

′
φ

′′
)

− 2(ρ
′
)2((θ

′
)2 + (φ

′
)2).

By using (2.4), (2.7), (2.13), (2.14) and

θ
′′
(s) = φ

′′
(s) = −(r−1)κ

′

rκr ,

ρ
′
(s) = r(r−1)κr−2κ

′

√
2

,

ρ
′′
(s) = r(r−1)κr−3[(r−2)(κ

′
)2+κκ

′′
]√

2
,

(2.15)

we get C2 = 0 . Furthermore, by calculating the cone torsion of γ(s) = X(ρ(s), θ(s), φ(s)) , we get

τ2 + 4κ2 = −6ρρ
′′′
(θ

′
θ
′′
+ φ

′
φ

′′
)− 6ρ

′
ρ

′′′
((θ

′
)2 + (φ

′
)2) + ρ2((θ

′′′
)2 + (φ

′′′
)2)

+6ρθ
′′′

(ρ
′′
θ
′
+ ρ

′
θ
′′
) + 6ρφ

′′′

(ρ
′′
φ

′
+ ρ

′
φ

′′
) + 9(ρ

′′
θ
′
+ ρ

′
θ
′′
)2

+9(ρ
′′
φ

′
+ ρ

′
φ

′′
)2.
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From (2.4), (2.6), (2.7), (2.13), (2.14), (2.15),

θ
′′′
(s) = φ

′′′
(s) = −(r−1)

rκr+1 (κκ
′′

− r(κ
′
)2),

and

ρ
′′′
(s) = r(r−1)√

2
κr−4[(r − 2)(r − 3)(κ

′
)3 + 2(r − 1)κκ

′
κ

′′
+ κ2κ

′′′
],

we obtain C1 = 0 , that is τ = 0 . Taking into consideration (2.13) and (2.14), the hyperelastic curve
γ(s) = X(ρ(s), θ(s), φ(s)) can be described in the cylindrical coordinates around plane spanned by P1 and
P2 .

Hence, we can give the following theorem:

Theorem 2.6 A hyperelastic curve in Q3 can be expressed by integral explicitly.
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