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Abstract: Message recovery is an important property in Nyberg-Rueppel type digital signature algorithms. However,
the security of Nyberg-Rueppel type digital signature algorithms depends on the hard problems which might be vulnerable
to quantum attacks. Therefore, quantum resistant Nyberg-Rueppel type digital signature algorithms with message
recovery property are needed. Since NTRU-based cryptosystems are one of the best studied quantum-resistant schemes,
using traditional NTRU encryption scheme has several advantages on the message recovery property. In this paper,
we define Nyberg-Rueppel type of NTRU digital signature algorithm. It is carried out by combining NTRU-based
encryption and signature algorithms. In the proposed scheme, efficient message recovery property is achieved with the
help of NTRU. Then, we compare the computational cost of our Nyberg-Rueppel type signature scheme with the others
in terms of the arithmetic complexity. According to the asymptotic complexity results, the proposed scheme has better
arithmetic complexity than Nyberg-Rueppel type schemes. We also discuss the security properties of the proposed
scheme by modifying attacks on Nyberg-Rueppel type algorithms and lattice-based algorithms.
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1. Introduction
New public-key cryptosystems alternative to traditional ones such as RSA and ECC have recently received
widespread attention due to the unpredictable but possibly threat of constructing a quantum computer. Besides,
Shor [39] proved that the cryptosystems, depending on the computationally hard integer factorization, discrete
logarithm problem (DLP) over different groups, are not secure in quantum era. Then, it is obvious that
asymmetric cryptographic systems based on these problems cannot be used in the long term [6]. As a
consequence, it is necessary to propose alternative problems and related algorithms that are considered secure in
quantum computers. In 2017, Post-Quantum Cryptography project, a call for quantum secure cryptosystems,
was started by NIST [33]. There are several cryptosystem families in quantum safe world. Of these, lattice-
based ones are the most attractive due to the security and performance properties. There are many lattice-
based cryptosystems in the literature [3, 14, 16]. The NTRU public-key encryption algorithm (NTRUEncrypt)
[16], is the most up-and-coming algorithm among quantum secure encryption systems (so-called post-quantum
cryptography). The NTRU encryption algorithm was standardized by IEEE [22] and ASC X9 [2] in 2008 and
2010, respectively. The NTRU is not only quantum-resistant, it is also an efficient public-key cryptosystem.
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NTRU has better time complexity when we consider traditional public-key cryptosystems. The security of this
scheme relies on the intractability of related problems for convolutional lattices over a ring [42]. There are some
variants of NTRU in the literature; some of them are based on square matrices of polynomials [8], quaternion
algebra [29], ring of Eisenstein integers [31], ideal lattices [24] and group-ring structure [43]. Survey papers on
NTRU-based cryptosystems were in the literature [41, 42]. Besides, there exist several lattice-based signature
schemes that depend on the security of the NTRU lattice [16], such as BLISS [12] and pqNTRUSign [20]. The
NTRU signature scheme (NSS) [17] was proposed in 2001. NSS has similar structure to the NTRUEncrypt.
Both of them rely on the same hard problem which is so-called finding the closest vector problem. In 2001,
Gentry and Szydlo [13] revealed that the original NSS scheme would not be resistant to the transcript attack.
In 2003, a novel ”semibased” NTRU digital signature algorithm, NTRUSign, was proposed in [16]. Then, it
was shown that how to prevent transcript attacks using distributions in [11, 32]. Thereafter, how to implement
distributions to NTRU-based signature schemes was introduced in [20, 37]. In 2019, some improvements were
made to transcript attack-resistant signature schemes in [10]. A signature scheme of ElGamal type, having
message recovery and key exchange properties in one protocol, was introduced in [34]. This was followed by
several other proposals [1, 30, 35, 44]. However, in [30], it was shown that there is a security weakness such as
not resistant to forgery attacks in some cases.

1.1. Our contribution
Quantum resistant cryptosystems have received attention due to the security reasons. Thus, traditional public
key cryptosystems will be replaced with postquantum cryptographic schemes. Lattice-based cryptosystems are
one of the best alternatives among them. Since NTRU-based cryptosystems have been widely studied, hybrid
versions of NTRU-based cryptosystems will be attractive. Therefore, we focus on the traditional NTRU scheme
to modify Nyberg-Rueppel digital signature algorithm. In this paper, we describe a new signature scheme (NR-
NTRU-DSA) by using Nyberg-Rueppel digital signature algorithm (NR-DSA) and NTRU. The proposed scheme
has message recovery property. Moreover, the proposed scheme uses NTRU encryption and it is resistant to
some well-known forgery attacks and other related lattice attacks. The proposed scheme has better arithmetic
complexity than the others having similar properties such as message recovery.

1.2. Organization

The rest is organized as follows: In Section 2, we recall basic definitions to construct the proposed signature
scheme. In Section 3, the proposed NR-NTRU-DSA is discussed in detail. Correctness and security analysis
are provided. This paper is concluded in Section 4.

2. Mathematical background

In this section we give the mathematical infrastructures for the proposed scheme (Algorithm 1), which uses
NTRU-based primitives. NTRU is running over convolutional polynomial rings [16]. We first choose a fix prime
integer N and determine modulo odd prime p satisfying gcd(p,N) = 1 and modulo q satisfying q � p and
gcd(p, q) = 1 . Then, we have the convolutional polynomial rings R , Rp and Rq defined by

R =
Z[x]

xN − 1
, Rp =

(Z/pZ)[x]
xN − 1

and Rq =
(Z/qZ)[x]
xN − 1

,
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respectively. Due to the division algorithm for polynomials, any element a(x) ∈ R,Rp or Rq is uniquely
represented as

a(x) = a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1 (2.1)

where a0, a1, . . . aN−1 ∈ Z,Z/pZ or Z/qZ , respectively. Note that there is an isomorphism between polynomial
ring and vector space. Then, addition of polynomials is the standard addition of vectors in coefficients. In order
for working in the polynomial ring XN − 1 , one can define convolution product of the polynomials denoted by
⊛ for multiplication in R,Rp and Rq [19]. For any positive integers d1 and d2 , we define

T (d1, d2) =

 a(x) has d1 coefficients equal to 1,
a(x) ∈ R : a(x) has d2 coefficients equal to − 1,

a(x) has all other coefficients equal to 0.

 .

Polynomials in T (d1, d2) are called ternary (or trinary - {−1, 0, 1}) polynomials. They are extended versions
of binary polynomials, which have only 0 ’s and 1 ’s as coefficients. Then T (d + 1, d) be the set of ternary
polynomials having 2d+ 1 coefficients. The sup-norm of the polynomial (2.1) is denoted by

‖a‖∞ = max{|a0|, |a1|, |a2|, · · · , |aN−1|}.

Moreover, norm is an important issue R(k) = { a ∈ R : ‖a‖∞ ≤ k } , where k is the sup-norm ball of radius.
For instance, R(3/2) is the set of the ternary polynomials. Let

Lh = { (f, g) ∈ R2 : g ≡ h⊛ f (mod q) }

be the convolution modular lattice associated to h . The vectors in Lh are in the bounded norm as:

Lh(k1, k2) = Lh ∩
(
R(k1)×R(k2)

)
= { (f, g) ∈ R2 : g ≡ h⊛ f (mod q), ‖f‖∞ ≤ k1, ‖g‖∞ ≤ k2 } .

The lifted coefficients satisfy −q/2 ≤ ai ≤ q/2 for even q and b−q/2c ≤ ai ≤ bq/2c for odd q . Note that bxc
is the floor function giving the greatest integer smaller than x (or equal). Bs and Bt are norm constraints
parameters that allow to make the balance between security and performance. Typical values of Bs and Bt

satisfying Bs = pBt and
‖a⊛ b‖∞ ≤ Bt for all a, b ∈ R(p/2).

Reducing Bs and Bt may cause to get a smaller q , but this is a possible problem to verify the signature.
To overcome this situation, the signer can add one more control mechanism during the signature generation.
In order to make it simple, one can choose B = dp2N/4e with B = Bt = Bs [20]. For more details about
mathematical background, the interested readers are referred to the studies in [19, 20].

3. Nyberg-Rueppel type of NTRU digital signature algorithm

In this section, we describe the details for the proposed signature scheme (Algorithm 1) called NR-NTRU-DSA.
This is a combination of NTRU encryption [16] and Nyberg-Rueppel DSA [34], the first ElGamal type signature
scheme. We show that the proposed algorithm is resistant to attacks on Nyberg-Rueppel type algorithms
and lattice-based algorithms, especially the transcript attack [19]. Then, we make a comparison including
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the computational cost of our scheme with the others in terms of the arithmetic complexity. In order to do
these, we briefly describe necessary NTRU parameters (for more details [19]). First of all, A gets the public
parameters (N, p, q, d,B) with an integer d satisfying q > (2p2 + 4p)d+ p due to the efficiency reasons which
are stated in Remark 3.5. She randomly selects g(x) ∈ R(p/2) and f(x) ∈ pR(3/2) , where f(x) = pF (x) with
F (x) ∈ T (d+ 1, d) ⊂ R(3/2) . She has to check whether the inverses of F and g under modulo p and modulo
q exist; if they are not, she selects a new pair. She then computes the inverse f−1

q (x) ∈ Rq , g−1
p (x) ∈ Rp

satisfying
f−1
q (x)⊛ f(x) ≡ 1 (mod q), g−1

p (x)⊛ g(x) ≡ 1 (mod p).

Remark 3.1 If the factorization of (xN − 1)/(x − 1) does not include polynomials with small degrees after
reducing modulo p and q , then the probability of invertible elements is relatively high [19].

Remark 3.2 If we choose F (x) ∈ T (d + 1, d) , ”Almost Inverse Algorithm” helps to efficiently compute the
inverse of the polynomial F (x) in the ring Rp or Rq provided that gcd(F (x), xN − 1) = 1 [40].

She next calculates the public key h(x) as

h(x) = f−1
q (x)⊛ g(x) in Rq.

B randomly selects v(x) ∈ R and u(x) ∈ pT (d + 1, d) ⊂ R , where u(x) = 1 + pU(x) with U(x) ∈ T (d, d) ,
then computes the inverse u−1

q (x) ∈ Rq satisfying

u−1
q (x)⊛ u(x) ≡ 1 (mod q).

He computes the public key l(x) as

l(x) = u−1
q (x)⊛ v(x) in Rq.

Assume that A would like to send a signed and encrypted message m(x) ∈ Rp to B and then they proceed in
Algorithm 1.

Remark 3.3 In Algorithm 1, we fix the hash function H as follows:

H : R(p/2)× {0, 1}⋆ −→ R(p/2)×R(p/2)

(h, µ) 7−→ H(h, µ) = (sp, tp).

Remark 3.4 (Verification of Algorithm 1) The first step of verification part of Algorithm 1 is true so that

h⊛ s = h⊛ (s0 + a⊛ f) (output (7) of signature)

= h⊛ s0 + h⊛ a⊛ f (distributive property )

≡ t0 + a⊛ g (mod q) (output (5) of signature and public key of A)

≡ t (mod q). (output (7) of signature)
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Algorithm 1: NR-NTRU-DSA
Public Parameters.
• N : a prime integer dimension of the ring.
• p : a relatively small odd prime.
• q : an integer satisfying q � p , gcd(p, q) = 1 and gcd(p,N) = 1 .
• d : an integer satisfying q > (2p2 + 4p)d+ p .
• B : norm constraint with B = dp2N/4e .
Private Keys.
• f ∈ pR(3/2) and g ∈ R(p/2) are the private keys of A , where f = pF with
F ∈ T (d+ 1, d) ⊂ R(3/2) .
• f−1

q , g−1
p are the private keys of A satisfying f−1

q ⊛ f ≡ 1 (mod q) , g−1
p ⊛ g ≡ 1 (mod p) .

• u ∈ pR(3/2) and v ∈ T (d, d) are the private keys of B , where u = 1 + pU with U ∈ T (d, d) .
• u−1

q is a private key of B satisfying u−1
q ⊛ u ≡ 1 (mod q) .

Public Keys.
• h ≡ f−1

q ⊛ g (mod q) is a public key of A .
• l ≡ u−1

q ⊛ v (mod q) is a public key of B .
Signature.

Input : m ∈ Rp

Output: (c, (s, t)) ∈ R× Lh(
q
2 −B, q

2 −B)
(1) A randomly chooses an ephemeral key r ∈ T (d, d).
(2) A computes c ≡ pr ⊛ l +m (mod q) using B ’s public key l .
(3) A calculates the Hash value H(h, c) = (sp, tp) .
(4) A chooses a random ephemeral key k ∈ R

(⌊
q
2p + 1

2

⌋)
.

(5) A computes s0 = sp + pk and then t0 ≡ h⊛ s0 (mod q) with t0 ∈ R(q/2) .
(6) A computes a ≡ g−1

p ⊛ (tp − t0) (mod p) with a ∈ R(p/2) .
(7) A computes (s, t) = (s0 + a⊛ f, t0 + a⊛ g) .
(8) If ‖a⊛ f‖∞ > B , ‖a⊛ g‖∞ > B , ‖s‖∞ > q

2 −B and ‖t‖∞ > q
2 −B then go to Step 4 end

if
(9) A sends the signature (c, (s, t)) ∈ R× Lh(

q
2 −B, q

2 −B) to B .
Verification.

Input : (c, (s, t)) ∈ R× Lh(
q
2 −B, q

2 −B)
Output: m ∈ Rp

(1) B verifies that t ≡ h⊛ s (mod q) , otherwise rejects.
(2) B verifies that ‖s‖∞ ≤ q

2 −B and ‖t‖∞ ≤ q
2 −B , otherwise rejects.

(3) B calculates the Hash value H(h, c) = (sp, tp) .
(4) B verifies that (s, t) ≡ (sp, tp) (mod p) , otherwise rejects.
(5) B computes z ≡ u⊛ c (mod q) and then centerlifts z to ZN with coefficients |zi| ≤ 1

2q .
Moreover, z ≡ m (mod p) .

The pair (s, t) is also congruent to (sp, tp) (mod p) so that

s = s0 + a⊛ f (output (7) of signature)

= sp + pk + p(a⊛ F ) (output (5) of signature and f = pF )

≡ sp (mod p) (modulo p reduction)
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and

t = t0 + a⊛ g (output (7) of signature)

≡ t0 +�
�g−1
p ⊛ (tp − t0)⊛ �g (mod p) (output (6) of signature)

= ��t0 + tp −��t0 (mod p)

= tp (mod p).

In the last step, the verification of m is true so that

z ≡ u⊛ c (mod q)

≡ u⊛ (pr ⊛ l +m) (mod q)

≡ u⊛ (pr ⊛ u−1
q ⊛ v +m) (mod q)

≡ p(����u⊛ u−1
q ⊛ v ⊛ r) + u⊛m (mod q)

≡ p(v ⊛ r) + (1 + pU)⊛m (mod q)

≡ p(v ⊛ r) +m+ (pU ⊛m) (mod q)

≡ p(v ⊛ r) + p(U ⊛m) +m (mod q),

then

z ≡ ����p(v ⊛ r) +�����p(U ⊛m) +m (mod p)

≡ m (mod p).

Remark 3.5 NR-NTRU-DSA paramaters (N, p, q, d) are satisfied

q > (2p2 + 4p)d+ p, (3.1)

because of the following reasons: We consider z(x) from B ’s side. Thus,

z(x) ≡ u(x)⊛ c(x) (mod q)

≡ u(x)⊛
(
pr(x)⊛ l(x) +m(x)

)
(mod q)

≡ u(x)⊛
(
pr(x)⊛ u−1

q (x)⊛ v(x) +m(x)
)

(mod q)

≡ p
(
�������
u(x)⊛ u−1

q (x)⊛ v(x)⊛ r(x)
)
+ u(x)⊛m(x) (mod q)

≡ p
(
v(x)⊛ r(x)

)
+ u(x)⊛m(x) (mod q).

If we think about the polynomial

p
(
v(x)⊛ r(x)

)
+ u(x)⊛m(x), (3.2)

it is necessary to put an upper bound for the possible coefficients. Due to the polynomial v(x), r(x) ∈ T (d, d) , the
coefficients of v(x)⊛r(x) are bounded by 2d . In a similar manner, let U(x) ∈ T (d, d) and then u(x) = 1+pU(x) .
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The coefficients of m(x) are in [− 1
2p,

1
2p] , thus the upper bound for the coefficients of u(x)⊛m(x) is given by

(2pd+ 1) 12p . Then, the magnitude of the largest coefficient of (3.2) is bounded by

p(2d) + (2pd+ 1)
1

2
p =

(
p2 + 2p

)
d+

1

2
p.

Thus, the assumption given in (3.1) tells us that the magnitude of the each coefficient of (3.2) is not larger than
1
2q .

Remark 3.6 It should be noted that we have proposed the rejection criterion in Step 8 of Algorithm 1. If a
created signature does not meet the required norm criteria, the signature scheme returns to Step 4 and generates
a new key. Then, we have a new signature. This phase is repeated until a signature that meets the norm
constraints is generated. Moreover, the probability of generating a valid signature resulting from the rejection
criteria contained in NR-NTRU-DSA is given in [20].

Remark 3.7 During the review process, it is suggested to use NTRU-HRSS [7] instead of NTRUEncrypt [16].
However, since there is no signature scheme which can efficiently work in this NR-type structure, i.e. message
recovery property, we could not use NTRU-HRSS. We believe that constructing NTRU-based scheme for message
recovery property is a nice problem to study.

3.1. Computational cost

In Table , the comparison is provided in terms of the cost of signature generation (Sign), signature verification
(Verify), throughput and message recovery property. Throughput is a measure of how many actions are
completed within a given time frame. A signature scheme with message recovery is one where some or all
of the message is embedded in the signature. The efficiency of the proposed scheme is discussed in Theorem
3.8.

Theorem 3.8 The proposed scheme (Algorithm 1) has better signature generation and verification performance
compared with similar schemes in terms of arithmetic complexity.

Proof In GH-NR-DSA [5] and GH-DSA [15], double exponentiation in Fq where the order Q|q2+q+1 in Fq3

is the main operation. In XTR-NR-DSA [34], double exponentiation is performed in Fq with q = p2 , where
Q|p2 − p + 1 in Fp6 . GH-NR-DSA requires fewer operations than GH-DSA [15] and ECDSA [23] in terms of
the computational cost and the message recovery. On the other hand, for twisted Edwards curves NR-DSA
using the accelerated ECDSA verification algorithm is more efficient than GH-NR-DSA. The proposed scheme
requires convolutional products. Then, to have a fair comparison, we compute the required number of arithmetic
operations by considering the field sizes.

In Table , DS and CP stand for double-scalar and convolution product (in general polynomial multipli-
cation), respectively. Q is the period of the corresponding irreducible polynomial. M and S stand for the cost
of field multiplication and squaring in 2048-bit for 80-bit security level, respectively. Recall that the cost of
polynomial multiplication is O(N logN) for the polynomials having N +1 elements. In NTRU case, for 80-bit
security level, N = 509 is given in [7]. Then, for the proposed scheme, the number of the modular multiplication
to sign the message is 5 · 509 log 509M in the field of 11-bit size. Recall that the integer multiplication can
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Table . Comparison of the related DSAs.

Sign Verify Throughput Message
recovery

GH-NR-DSA [5] 1 DS (sf+eh, s−(f+eh)) 1 DS (6 logQ M) m Yes
GH-DSA [15] 1 DS (sc(h−dl), s−c(h−dl)) 1 DS (16 logQ M + 16 logQ S) m1,m2 No
EC-DSA[23] 1 DS (u1 + u2d)P 1 DS (7 logQ M + 3.7 logQ S) m No
NR-DSA with JSF
algorithm [25]

1 DS (u1 + u2d)P 1 DS (7.1 logQ M) m Yes

NR-DSA with the
accelerated ECDSA
verification algorithm
[25]

1 DS (u1 + u2d)P 1 DS (4.7 logQ M) m Yes

XTR-NR-DSA [34] 1 DS (sf+eh) 1 DS (6 logQ M) m Yes
Ours 5 CP 2 CP m Yes

be performed with n2 multiplications (AND operations) in bits, where n is the bit size (at most 11-bit). The
cost of double-scalar depends on the period (Q). For 80-bit security level, the period should be at least 80-bit.
Then, the number of modular multiplication is 1280M + 16S in the field of 2048-bit size for [15]. By using
the same idea, the lowest cost for the previous studies is 480M in the field of 2048-bit size for [34]. Recall that
multiplication of two 2048-bit integers requires much more time than multiplication of two 11-bit integers since
the cost is computed with O(n2) . For instance, the cost for 1280M + 16S in the field of 2048-bit size for [15] is
1280 ·222+16 ·222 AND operations. Similarly, the cost for 5 ·509 log 509M in the field of 11-bit size is less than
221 . In conclusion, due to the low size (11-bit) of the ring, the proposed scheme has better signature generation
and verification performance comparing with the similar schemes in terms of the arithmetic complexity. 2

3.2. Security analysis

In Theorem 3.9, we give the security analysis of Algorithm 1 by dividing it into two parts: the encryption and
signature algorithms.

Theorem 3.9 The proposed scheme is resistant against modifying attacks on Nyberg Rueppel type algorithms
and lattice-based algorithms.

Proof The proof has two main sections: considering as an encryption algorithm and considering as a signature
algorithm.
Considering as an encryption algorithm. In the proposed NR-NTRU-DSA, instead of sending only a
summary of the message, the encrypted form of the message is sent, compared to the verification by classical
signature methods. Therefore, when an attacker catches the output of the algorithm

((
c, (s, t)

)
pair

)
, it has the

ciphertext (output of c). In this case, the attacker can perform some attacks by treating the proposed signature
algorithm as only the encryption algorithm. Key recovery, a problem on the NTRU encryption system, is
based on finding f and g polynomials that satisfy f ⊛ h ≡ g (mod q) while the public key h is known. The
security of the NTRU encryption system depends on the hardness of obtaining the shortest (close one) vector
in the corresponding lattice, which is a difficult problem in the lattice of appropriate sizes. Also, there are
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well-known attacks in the literature that can be used against NTRU-based encryption systems, such as brute
force, lattice-based and man-in-the-middle attacks.

• Brute force attack. An attacker to the NR-NTRU digital signature algorithm can perform one of the
most basic brute force attack. The attacker makes an effort to access the key by trying the possibilities
in the whole search space. In our scheme, an attacker can do this to detect the secret key by testing all
possible f ∈ pR(3/2) elements to see if the polynomial f ⊛ h (mod q) has small inputs or by testing all
possible g ∈ R(p/2) elements to see if the polynomial g ⊛ h−1 (mod q) has small inputs. In a similar
manner, the attacker can get the message m by testing all possible r ∈ T (d, d) elements and checking
whether the c − r ⊛ l (mod q) polynomial has small inputs. Thus, in practice, considering that p = 3 ,
the security is measured by the number of elements of the set T (d, d) .

• Lattice-based attacks. The security of the message is related with finding the closest vector whereas
the security of obtaining keys is on the shortest vector problem. NTRU can be attacked by algorithms
that find short vectors in a lattice, so the parameters should be large enough to make finding short
vectors impossible. In theory, there are so many algorithms such as sieving to reveal the smallest vector,
however this is not applicable for the large sizes in a reasonable time. Lenstra-Lenstra-Lovasz’s (LLL)
algorithm [28], also mathematically called the shortest vector finding problem, finds relatively small vectors
in polynomial time with various improvements made by Schnorr [38], but needs a long time. Morever,
it has also been noted that the encryption algorithms proposed in [9, 16] and the signature algorithms
proposed in [20] can be selected to be resistant to various lattice attacks. As a result, since the proposed
NR-NTRU-DSA is a combination of encryption and signature algorithms, it is also resistant to the lattice-
based forgery and key recovery attacks.

• Man-in-the-middle attack. The security of NTRU-based encryption algorithms was studied in detail
in [45] and [21]. In this attack, the square root of the security levels of the brute force attack is taken
because the search set is halved by splitting the key [4, 16]. In this case, the security of the key and the
message can be computed as follows:

√
#T (d, d) =

1

d!

√
N !

(N − 2d)!
(3.3)

Considering as a signature algorithm.

• Forgery and key recovery attacks. A well-known attack on the signature algorithms in the literature
is the forgery attack. Studies have been carried out on whether the signature algorithms with a similar
structure of the proposed one are resistant to these lattice-based attacks. If an attacker wants to perform
a forgery attack on the signature scheme, as expressed in [20, 37], it must solve the problem of finding
the approximate closest vector in the corresponding lattice. Finding the approximate nearest vector in
the corresponding lattice arises as a problem: It cannot be obtained in polynomial time by choosing
inappropriate lattice dimensions. At the same time, as with NTRU-based encryption algorithms, a
key recovery is also an attack that can be performed for signature algorithms. In [20], the analysis
was performed against this attack based on the lattice basis, and the provided bit security levels were
calculated. In light of these reasons, the proposed signature algorithm will also be resistant to these
attacks.
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• Transcript attack. Each document to be signed and signature pair (c, (s, t)) can reveal important
information about the secret encryption key f in any signature scheme. When considering lattice-based
signature schemes, the difference between the document and the signature pair will be a random point in
the corresponding lattice fundamental domain. Therefore, a point is found in the lattice associated with
taking the difference of each document and signature pair, and with enough points, the corresponding
fundamental domain can be determined. This causes the corresponding lattice to be known, thus revealing
the secret keys. Since 2001, efforts have been made to improve signature algorithms against this attack.
In [13], it has been shown that the NSS algorithm [17] is not resistant to the transcript attack. In [16]
a ”semibased” NTRU digital signature algorithm which is so called NTRUSign was proposed. Then,
in [11, 32] it is shown how to avoid transcript attack using Gauss distribution and its derivatives. For
NTRU-based signature algorithms to gain resistance to the transcript attack, it was aimed to select the
polynomials using uniform distributions, thus providing resistance to this attack. In [20], it is proved that
the transcript of signatures, generated by using the signature algorithm, contains no additional information
for someone having the public authentication key. In [10], some improvements were made to transcript
attack-resistant signature schemes. NTRU-based signature algorithms have now been made resistant to
transcript attack [11, 12, 18, 20, 32, 37]. As a result, the proposed NR-NTRU-DSA will be resistant to
transcript attack, since it is designed by combining the following algorithms [20, 37].

• Congruence and homomorphism attack. NR signature scheme over finite fields of prime order is not
resistant to the forgery attacks: congruence equation (CE) and homomorphism attacks (HA) in [30]. The
NR-NTRU-DSA resists such attacks since this scheme is resistant to CE attack due to the redundancy and
using hashing for the encrypted message, and the HA is not applicable due to not having a homomorphism.

2

4. Conclusions and future works

In this paper, we proposed Nyberg-Rueppel type of NTRU DSA by adjusting the signature scheme suggested by
Nyberg and Rueppel to the NTRU-based signature algorithm. It was carried out by combining an NTRU-based
encryption and NTRU-based signature algorithm. Then, we compared the computational cost of our Nyberg-
Rueppel type signature scheme with the others in terms of the arithmetic complexity. We also examined the
security of the proposed scheme in detail considering attacks on Nyberg-Rueppel type algorithms and lattice-
based algorithms. As future work, with the recommendation of the reviewers, we will study on constructing a
new signature scheme based on NTRU. Then, we will focus on building a new signature scheme with message
recovery property.
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