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Abstract: American options represent an important financial instrument but are notoriously difficult to price, especially
when the volatility is not constant. We explore the conditions required to apply Malliavin calculus to price American
options when the volatility follows a general stochastic differential process, and develop the expressions to compute the
continuation value at any time before the expiration date, given the current asset price and volatility. The developed
methodology can then be applied to price American options.
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1. Introduction
Since its invention in 1978, Malliavin calculus [21] has been used in various mathematical fields. In theoretical
research, it has been investigated for instance in Lie algebra [19], probability [8, 9], stochastic analysis [20].
Recently Laukkarinen [18] combined Malliavin calculus with fractional derivatives. Malliavin calculus has also
been successfully applied to solve practical problems, for example in mechanics [14], and has received a special
interest in finance due to its ability to address some stochastic differential equations two decades ago [11, 12].

For instance, Benhamou [5] studies the estimation of conditional expectations using Malliavin calculus
and illustrate the computational efficiency of this method. Bally et al. [4], Bouchard et al. [6], Caramellino and
Zanette [7] considered the problem of pricing and hedging American options, combining Malliavin Calculus
and Monte Carlo, and Abbas-Turki and Lapeyre [1] proposed nonparametric variance and bias reduction
methods. Kharrat [17] developed an expression of the continuation value for American options generated
by the Heston model. Mallivin calculus has also been successfully applied the other option problems. Mancino
and Sanfelici [22] proposed for instance a methodology to compute the Malliavin weight for the Delta hedging
under a local volatility model, and Saporito [24] constructed an approximation for the price of path-dependent
derivatives under the multiscale stochastic volatility models. Yamada [28] provided an approximation scheme
for multidimensional Stratonovich stochastic differential equations using Malliavin calculus, and applied it to
the SABR model. Yamada and Yamamoto [29] then constructed a second-order discretization scheme that
they applied to price European option under the SABR model, while Alòs and Shiraya [3] studied volatility
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swaps and European options. Alòs and Lorite [2] have recently reviewed the application of Malliavin calculus
in finance, but ignored American option pricing. American options are notoriously more difficult to price than
European options as the latter can only be exercised at the expiration date T while the former can be exercised
at any time t before and including the expiration date. Bally et al. [4] developed a representation formula for
the continuation value of American option using Malliavin calculus, assuming constant volatility. The constant
volatility hypothesis is however unrealistic [16], and the volatility dynamics is fundamental in the development of
trading strategies for hedging and arbitrage. A lot of efforts have therefore been devoted to option pricing under
stochastic volatility over the last decade (see for instance Fouque et al. [10] and Pascucci [23], subsection 10.5.3,
and references within) to capture the reality of the financial markets. Assumptions on the stochastic volatility
process remains however restrictive, and the main contribution of this paper is to extend previous results to
more general stochastic volatility processes.

In a financial context, let Xt represent the asset price at time t ∈ [0, T ] . Vt is the volatility at time t

supposed to be stochastic and Pt represents the derivative value, r is the constant drift, WS and WV are two
correlated standard Wiener processes, where WS

t =
√
1− ρ2B1

t + ρB2
t and WV

t = B2
t , with B1 and B2 being

two independent Brownian motions, and ρ ∈ [−1, 1] is the correlation coefficient. The parameters θV , kV and
η represent the long-run average variance, the rate of mean reversion, and volatility of volatility, respectively,
and α is a positive real number. In this paper, we aim to elaborate and compute theoretically the value of the
conditional expectation

E [Pt(Xt, Vt) | (Xl, Vl)] (1.1)

for any 0 ≤ l < t , using Malliavin calculus, where Vt is generated by a general stochastic differential process
(GSDP)

dVt = kV (θV − Vt)dt+ ηV α
t dWV

t , (1.2)

and X is generated by the geometric Brownian process

dXt = rXtdt+Xt

√
VtdW

S
t , (1.3)

or, by integration

Xt = Xlexp

(∫ t

l

rds+

∫ t

l

√
VsdW

S
s − 1

2

∫ t

l

Vsds

)
. (1.4)

(1.1) can be used for instance to price and hedge options and convertible bonds, and in actuarial
calculations. This is in particular the case when pricing American options, (1.1) give the continuation value at
time t if the option is not exercised. Here, the continuation value at time t is defined as the expected optimal
profit that can be obtained by the option holder, accounting for the uncertain environment. The continuation
value is used to price the option contract. The process (1.2) can be seen as a generalization of popular processes,
as in particular, if α = 0 , we have the Stein and Stein model [26]; if WS

t and WV
t are independent, and if

α = 0.5 , we get the Heston model [15] and the SABR model [13] if we additionally impose r = 0 in (1.3) and
kV = 0 in (1.2). Similarly, we can consider a stochastic interest rate and a constant volatility as in the Vasicek
Model [27] when α = 0.5 .

(1.2) is also a direct extension of the process considered by Kharrat [17], where α is fixed to 0.5 .
Kharrat derived an expression of the conditional expectation (1.1) using Malliavin calculus, and performed
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some numerical experiments to illustrate the practical interest of the approach. We extend these results to the
case where α is not restricted to the value 0.5. The outline of this paper is as follows. In the second section,
we introduce some preliminary concepts and the key tools required to obtain our results. The conditional
expectation expression is derived in the third section in the unidimensional case. We conclude in the fourth
section and discuss avenues for future research.

2. Preliminaries
We first introduce some notations and definitions that will be used to obtain our results. The presentation
closely follows Pascucci [23], Chapter 16, to which we refer the reader for more details. The maturity, or
expiration date, of the financial instrument to price is denoted by T , normalized to 1 for simplicity. We also
divide the horizon in 2n dyadic intervals,

Ikn =]tk−1
n , tkn], tkn =

k

2n
,

for k = 1, . . . , 2n , n ∈ N , and t0n = 0 . We also denote by xn = (x1
n, . . . , x

2n

n ) a point in R2n , and for every
t ∈ ]0, T ] , let kn(t) be the only element k ∈ {1, . . . , 2n} such that t ∈ Ikn . We first introduce the notion of
simple functionals.

Definition 2.1 Given n ∈ N , the family of simple n-th order functionals is defined by

Sn :=
{
φ(∆n) |φ ∈ C∞

pol(R2n ;R)
}

where C∞
pol is the family of infinitely differentiable functions which, together with their derivatives of any

order, have at most a polynomial growth, and ∆n :=
(
∆1

n, . . . ,∆
2n

n

)
is the vector of Brownian increments

∆k
n = Wtkn

−Wtk−1
n

, k = 1, . . . , 2n .

We are now in position to formally define the Malliavin derivative.

Definition 2.2 For every X = φ(∆n) ∈ S , the stochastic (or Malliavin) derivative of X at time t is defined
by the kn(t)-th partial derivative of φ(∆n) :

DtX :=
∂φ

∂x
kn(t)
n

(∆n),

and we denote by DX the associated stochastic process on [0, T ] .

We can also construct the space of Malliavin differentiable variables and the family of the n -th order
simple processes in the following definitions.

Definition 2.3 The space D1,2 of the Malliavin-differentiable random variables is the closure of S with respect
to the norm ∥.∥1,2 , defined as

∥X∥1,2 =
√
E[X2] +

√∫ T

0

(DsX)2ds
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In other words, X ∈ D1,2 if and only if, there exists a sequence (Xn) , n ∈ N , in S such that Xn converges in
distribution to a square integrable random variable X as n → ∞ , the limit limn→∞ DXn exists and is square
integrable.

Definition 2.4 The family Pn , n ∈ N , of the n-th order simple processes consists of the processes U of the
form

Ut =

2n∑
k=1

φk(∆n)1Ik
n
(t) = φkn(t)(∆n), (2.1)

where φk ∈ C∞
pol(R2n ;R) for k = 1, . . . , 2n .

It is easy to observe that Pn ⊆ Pn+1 , n ∈ N . We define P :=
⋃

n∈N Pn the family of simple functionals, and
note that DX ∈ P , for X ∈ S . In other words, D : S → P . We are now in position to introduce the adjoint
operator of the Malliavin derivative.

Definition 2.5 Given a simple process U ∈ P of the form (2.1), the Skorokhod-integral D ∗U of U is defined
as [25]

D ∗ U =

2n∑
k=1

(
φk(∆n)∆

k
n − ∂xk

n
φk(∆n)

1

2n

)
.

We also write D ∗ U =
∫ T

0
Ut ⋄ dWt .

The following two technical lemmas, proved in Pascucci [23, Chapter 16], will be central to our develop-
ments.

Lemma 2.6 Let X ∈ D1,2 and let U be a second-order Skorokhod-integrable process. Then,

∫ T

0

XUt ⋄ dWt = X

∫ T

0

Ut ⋄ dWt −
∫ T

0

(DtX)Utdt (2.2)

and, when Ut is adapted, the above equation can be expressed as

∫ T

0

XUt ⋄ dWt = X

∫ T

0

UtdWt −
∫ T

0

(DtX)Utdt. (2.3)

Lemma 2.7 (Stochastic integration by parts) Let F ∈ C1
b , the space of functions in C1 bounded together

with their derivatives, and let X ∈ D1,2 . Hence, the following integration by parts

E[F ′(X)Y ] = E

[
F (X)

∫ T

0

utY∫ T

0
usDsXds

⋄ dWt

]
(2.4)

holds for every random variable Y and for every stochastic process u for which (2.4) is well defined.

For notation clarity, we extend the notion of Malliavin derivative to a multidimensional process, by
introducing the definition of partial derivative.
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Definition 2.8 (Partial Malliavin derivative) Let W = (W 1, . . . ,W d) be a d−dimensional Brownian
motion. For s ≤ t , the partial Malliavin derivative at time s with respect to the i − th component of W ,
denoted by Di

s , is

Di
sW

j
t =

{
1 if i = j,

0 otherwise.

By convention, we will denote by DV and DS the Malliavin derivative with respect to WV and WS ,
respectively, where WV and WS are defined in the same way as in (1.3) and (1.2).

3. Computation of the continuation value

Consider again the GSDP generated by (1.2). For 0 ≤ l ≤ t , the stochastic volatility process is

Vl = V0 +

∫ l

0

kV (θV − Vr)dr +

∫ l

0

ηV α
r dWV

r . (3.1)

We do not have an explicit expression of DV V . We can however express it in terms of a newly introduced
process, as shown in the following proposition.

Proposition 3.1 For 0 ≤ s ≤ l ≤ t , DV
s Vl = YlZsηV

α
s , where Y is the solution of the stochastic differential

equation

Yl = 1− kV

∫ l

0

Yrdr + αη

∫ l

0

V α−1
r YrdW

V
r , (3.2)

and Z , is the solution of the stochastic differential equation

Zl = 1 +

∫ l

0

(
(αηV α−1

r )2 + kV
)
Zrdr −

∫ l

0

αηV α−1
r ZrdW

V
r . (3.3)

Moreover, for all t ≥ 0 , YtZt = 1 .

Proof From (3.2), (3.3) and the Itô formula, we have

d(YlZl) = YldZl + ZldYl + d⟨Y, Z⟩l

= YlZl

[ (
(αηV α−1

r )2 + kV
)
dl − αηV α−1

l dWV
l

+ kV dl + αηV α−1
l dWV

l − (αηV α−1
r )2dl

]
= 0

Thus, YlZl is constant and since Y0Z0 = 1 , from the unicity of the representation for an Itô process, YlZl = 1

for any l ≥ 0 .
From (3.2), given s , we have

Yl = Ys − kV

∫ l

s

Yrdr + αη

∫ l

s

V α−1
r YrdW

V
r ,

and, since YsZs = 1 ,
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YlZsηV
α
s = YsZsηV

α
s − kV

∫ l

s

YrZsηV
α
s dr + αη

∫ l

s

V α−1
r YrZsηV

α
s dWV

r

= ηV α
s − kV

∫ l

s

YrZsηV
α
s dr + αη

∫ l

s

V α−1
r YrZsηV

α
s dWV

r . (3.4)

Moreover, applying Definition 2.2 to (3.1),

DV
s Vl = ηV α

s − kV

∫ l

s

DV
s Vrdr + αη

∫ l

s

V α−1
r DV

s VrdW
V
r ,

and with (3.4),
DV

s Vl = YlZsηV
α
s .

2

We now consider the expression of E[Ψ′(Vl)P (Xt, Vt)] for any 0 ≤ l ≤ t and for any function Ψ ∈
C+∞

b (R) , where C+∞
b (R) is the space of bounded and infinitely differentiable functions. To alleviate the

notation, we define the derivative of a stochastic process as follows.

Definition 3.2 Let Xt(µ) , t ∈ T , be a continuous stochastic process, parameterized by µ , and assume that for
any t ∈ T , Xt(µ) is continuously differentiable with respect to µ . The derivative process ∂µX is the stochastic
process defined as

∂µX = {∂µXt, t ∈ T }.

We first prove the following lemma.

Lemma 3.3 Let Λ be a continuous random variable with density h(·) .

a) For every f and g ∈ C1 , such that limx→±∞ f(x) = limx→±∞ g(x) = 0 , we have

E[f ′(Λ)g(Λ)] = −E[f(Λ)g′(Λ)]−
∫ +∞

−∞
f(y)g(y)h′(y)dy

b) Let X be a stochastic process, function of Λ and twice continuously differentiable with respect to Λ , such
that ∂ΛX ̸= 0 almost surely,

E[f ′(X)g(X)] = −E
[
f(X)

(
g′(X)− g(X)

∂2
ΛX

(∂ΛX)2

)]
−
∫ +∞

−∞
f(y)g(y)

h′(y)

(∂ΛX)(y)
dy

Proof Integrating by parts, we have

E[f ′(Λ)g(Λ)] =

∫ +∞

−∞
f ′(y)g(y)h(y)dy

= [f(y)g(y)h(y)]
+∞
−∞ −

∫ +∞

−∞
f(y)(g(y)h(y))′dy

= −
∫ +∞

−∞
f(y)g′(y)h(y)dy −

∫ +∞

−∞
f(y)g(y)h′(y)dy.
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Thus, we get

E[f ′(Λ)g(Λ)] = −E[f(Λ)g′(Λ)]−
∫ +∞

−∞
f(y)g(y)h′(y)dy,

proving a).
Since X = X(Λ) , we have

df(X)

dΛ
=

df(X)

dX

dX

dΛ
and dg(X)

dΛ
=

dg(X)

dX

dX

dΛ
.

or, using a more compact notation,

∂Λf(X) = f ′(X)∂ΛX and ∂Λg(X) = g′(X)∂ΛX.

Therefore,

E[f ′(X)g(X)] = E
[
∂Λf(X)

g(X)

∂ΛX

]
.

and using a), we can write

E [f ′(X)g(X)] = −E
[
f(X)∂Λ

(
g(X)

∂ΛX

)]
−
∫ +∞

−∞
f(y)

g(y)

(∂ΛX)(y)
h′(y)dy

= −E
[
f(X)

(
g′(X)− g(X)

∂2
ΛX

∂ΛX)

)]

−
∫ +∞

−∞
f(y)g(y)

h′(y)

(∂ΛX)(y)
dy,

where we have used the equality

∂Λ

(
g(X)

∂ΛX

)
= g′(X)− g(X)∂2

ΛX

(∂ΛX)2
.

2

A standard, while restrictive, assumption required to apply the Malliavin calculus is the independence
of the increments [9], as the distribution of the increments then depends on the time intervals uniquely. This
assumption will be crucial in our developments too, when using stochastic integration by parts.

Assumption 1 (Independence of increments) Let Vt be a stochastic process. We say that Vt

has independent increments if there exists a random function M(·) independent of Vl , such that Vt =

VlM(t−l) for any l ∈ (0, t].

Assumption 1 implies that Vt = V0Mt and Mt = M(t−l)Ml . In line with Definition 2.1, M(t−l) is a
function of Brownian increments ∆(t−l) := Wt −Wl , and, for any t ∈ [0, T ] , we consider the partial derivative

of the volatility process with respect to ∆ , ∂∆Vt = V0
dMt

d∆ .

Example 3.4 The SABR model [13] satisfies Assumption 1, as for 0 ≤ l ≤ t , the stochastic process can be
written as

Vt = Vle
η(Wt−Wl) = Vle

η∆(t−l) = V0e
η∆t .
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We will furthermore limit ourself to the exponential family to parametrize the stochastic process capturing
the asset price or its volatility. Multiple stochastic processes used in a financial context comply with this
assumption, for instance if Λ follows a normal distribution or a gamma distribution. For a random variable of
the exponential family of density h(x) , its derivative can be written as h′(·) = r(·)h(·) , a property that we will
exploit to obtain the expressions of the conditional expectations.

Assumption 2 X is a stochastic process that is function of Λ , a continuous random variable from the
exponential family, with density h(·) .

Corollary 3.5 Let X be a stochastic process satisfying Assumptions 1 and 2. Under the same conditions of
Lemma 3.3, we have

E[f ′(X)g(X)] = −E
[
f(X)

(
g′(X)− g(X)

∂2
ΛX

(∂ΛX)2

)]
− E

[
f(X)g(X)

r(Λ)

∂ΛX

]
.

We are now in position to prove the following technical result.

Proposition 3.6 If Vt is a stochastic process satisfying Assumptions 1 and 2, and for any k > 0 , ∂∆Mk ̸= 0

almost everywhere, given 0 ≤ l ≤ t , we have

E[Φ′(Vl)g(Vt)] = E
[
Φ(Vl)g(Vt)

Vl

(
1−M(t−l)

∂2
∆M(t−l)

(∂∆M(t−l))2
+Ml

∂2
∆Ml

(∂∆Ml)2

)]

+ E

[
Φ(Vl)g(Vt)

Vl

(
M(t−l)

r
(
∆(t−l)

)
(∂∆M(t−l))

−Ml
r(∆l)

∂∆Ml

)]
.

Proof For 0 ≤ l ≤ t , from Assumption 1 and the law of total expectation, we get

E[Φ′(Vl)g(Vt)] = E
[
EVl

[Φ′(Vl)g(mVl)] |M(t−l) = m
]
. (3.5)

Using Corollary 3.5, the inner expectation can be written as

EVl
[Φ′(Vl)g(mVl)] =− EVl

[
Φ(Vl) (mg′(mVl))− g(mVl)

∂2
∆Vl

(∂∆Vl)2

]
− EVl

[
Φ(Vl)g(mVl)

r(∆l)

∂∆Vl

]
.

As Vt = M(t−l)Vl and Vl = V0Ml , (3.5) becomes

E[Φ′(Vl)g(Vt)] = −E[Φ(Vl)M(t−l)g
′(Vt)] + E

[
Φ(Vl)g(Vt)

∂2
∆Vl

(∂∆Vl)2

]
− E

[
Φ(Vl)g(Vt)

r(∆l)

(∂∆Vl)

]
.

(3.6)

From the independence between Vl and M(t−l) , the first term of (3.6) becomes

E[Φ(Vl)M(t−l)g
′(Vt)] = E

[
Φ(z)EM

[
M(t−l)g

′ (zM(t−l)

)] ∣∣Vl = z
]
. (3.7)
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Moreover, from Corollary 3.5,

EM [M(t−l)g
′ (zM(t−l)

)
] =− EM

[
g
(
zM(t−l)

)
z

(
1−M(t−l)

∂2
∆M(t−l)(

∂∆M(t−l)

)2
)]

− EM

[
M(t−l)

z
g
(
zM(t−l)

) r(∆(t−l))

∂∆M(t−l)

]
.

(3.8)

Combining (3.7) and (3.8). we have

E[Φ(Vl)M(t−l)g
′(Vt)] =− E

[
Φ(Vl)g(Vt)

Vl

(
1−M(t−l)

∂2
∆M(t−l)(

∂∆M(t−l)

)2
)]

− E
[
M(t−l)Φ(Vl)g(Vt)

Vl

r(∆(t−l))

∂∆M(t−l)

]
.

(3.6) can thus be rewritten as

E[Φ′(Vl)g(Vt)] = E
[
Φ(Vl)g(Vt)

Vl

(
1−M(t−l)

∂2
∆M(t−l)

(∂∆M(t−l))2

)]

+ E
[
M(t−l)Φ(Vl)g(Vt)

Vl

r(∆(t−l))

∂∆M(t−l)

]
+ E

[
Φ(Vl)g(Vt)

∂2
∆Vl

(∂∆Vl)2

]

− E
[
Φ(Vl)g(Vt)

r(∆l)

∂∆Vl

]
.

We then obtained the announced result by noting that Vl = V0Ml . 2

We can directly extend the previous proposition to asset price under varying volatility, as expressed by
the following corollary, implied by Proposition 3.6.

Corollary 3.7 Let X and V be the asset price and its volatility. Under Assumptions 1 and 2, and assuming
that for any k > 0 , ∂∆Mk ̸= 0 almost everywhere, we have, for any 0 ≤ l ≤ t and any Ψ ∈ C+∞

b (R) ,

E[Ψ′(Vl)P (Xt, Vt)] = E
[
Ψ(Vl)P (Xt, Vt)

Vl

(
1−M(t−l)

∂2
∆M(t−l)

(∂∆M(t−l))2
+Ml

∂2
∆Ml

(∂∆Ml)2

)]

+ E
[
Ψ(Vl)P (Xt, Vt)

Vl

(
M(t−l)

r(∆(t−l))

∂∆M(t−l)
−Ml

r(∆l)

∂∆Ml

)]
.

Equipped with the previous results, we are now in position to derive the expression of the conditional expectation
E[P (Xt, Vt) |Vl = β] using Malliavin calculus.

Theorem 3.8 Let X and V be the asset price and its volatility. Under Assumptions 1 and 2, for any β > 0

and any 0 ≤ l ≤ t , we have

E[P (Xt, Vt) |Vl = β] =
E [H(Vl − β)ΥVl

(P (Xt, Vt))]

E [H(Vl − β)ΥVl
(1)]

,
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where

ΥVl
(f(Xt, Vt)) =

f(Xt, Vt)

Vl

(
1−M(t−l)

∂2
∆M(t−l)

(∂∆M(t−l))2
+Ml

∂2
∆Ml

(∂∆Ml)2

)

+
f(Xt, Vt)

Vl

(
M(t−l)

r(∆(t−l))

∂∆M(t−l)
−Ml

r(∆l)

∂∆Ml

) (3.9)

is the Malliavin weight, H is the Heaviside function i.e. ∀x ∈ R , H(x) = 1x≥0 , with the convention that
E[P (Xt, Vt)] = 0 when E [H(Vl − β)ΥVl

(1)] = 0 .

Proof Referring to the work of Fournié et al. [12], we have

E[P (Xt, Vt) |Vl = β] =
E [H(Vl − β)ΥVl

(P (Xt, Vt))]

E [H(Vl − β)ΥVl
(1)]

,

where the weights ΥVl
(P (Xt, Vt)) and ΥVl

(1) can be derived from Corollary 3.7 for Ψ(Vl) = H(Vl−β) = 1Vl≥β .
2

Using Propositions 3.1, Corollary 3.7, and Theorem 3.8, we can compute E[P (Xt, Vt) |Vl = β] where Vt

is generated by the GSDP (1.2). In what follows, we first develop a general technical result in Proposition 3.10,
which will set the stage to formulate the main theorem of this paper, developing the computation of the
continuation value E[Pt(Xt, Vt) | (Xl = γ, Vl = β)] . Recall that from (1.4), the asset price follows the process

Xt = XlAl,t,

where Al,t = exp
(∫ t

l
rds+

∫ t

l

√
VsdW

S
s − 1

2

∫ t

l
Vsds

)
, for any 0 ≤ l ≤ t . We then have the following result.

Proposition 3.9 Let Xt be defined as in (1.4) and GXt(β) := E[Pt(Xt, Vt)|Vl = β] . For any Ψ ∈ C+∞
b (R) ,

we have

E[Ψ′(Xl)GXlAl,t
(β)] =E

[
Ψ(Xl)GXlAl,t

(β)

Xl

(
1

l
√
1− ρ2

∫ l

0

dWS
s√
Vs

+ 1

)]
− E[Al,tΨ(Xl)G

′
XlAl,t

(β)].

Proof Using the stochastic integration by parts from Lemma 2.7, we have, for any process u ,

E[Ψ′(Xl)GXlAl,t
(β)] = E

[
Ψ(Xl)

∫ l

0

uτGXlAl,t
(β)∫ l

0
usDS

s Xlds
⋄ dWS

τ

]
.

In particular, choosing us =
1√
Vs

allows us to write

E[Ψ′(Xl)GXlAl,t
(β)] = E

[
Ψ(Xl)

∫ l

0

GXlAl,t
(β)

l
√

1− ρ2
√
VτXl

⋄ dWS
τ

]

= E

[
Ψ(Xl)

l
√
1− ρ2

(
GXlAl,t

(β)

Xl

∫ l

0

dWS
s√
Vs

−
∫ l

0

DS
s

(
GXlAl,t

(β)

Xl

)
ds√
Vs

)]
,
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where we used the equality DS
s (Xl) =

√
1− ρ2Xl

√
Vs . The second equality follows from Lemma 2.6. By using

the Malliavin derivative, the above equation becomes

E[Ψ′(Xl)GXlAl,t
(β)]

= E

[
Ψ(Xl)

l
√
1− ρ2

(
GXlAl,t

(β)

Xl

∫ l

0

dWS
s√
Vs

−
∫ l

0

(
G′

XlAl,t
(β)DS

s (XlAl,t)

Xl
−

GXlAl,t
(β)DS

s Xl

X2
l

)
ds√
Vs

)]

= E

[
Ψ(Xl)

l
√
1− ρ2

(
GXlAl,t

(β)

Xl

∫ l

0

dWS
s√
Vs

−
∫ l

0

(
G′

XlAl,t
(β)Al,t

√
Vs −

GXlAl,t
(β)

√
Vs

Xl

)
ds√
Vs

)]

= E

[
Ψ(Xl)GXlAl,t

(β)

Xl

(
1

l
√
1− ρ2

∫ l

0

dWS
s√
Vs

+ 1

)]
− E

[
Al,tΨ(Xl)G

′
XlAl,t

(β)
]

(3.10)

In the other hand, by using the independence between Xl and Al,t , we have

E
[
Al,tΨ(Xl)G

′
XlAl,t

(β)
]
= E

[
E
[
Al,tΨ(x)G′

xAl,t
(β)
] ∣∣∣Xl = x

]
= E

[
Ψ(x)E

[
Al,tG

′
xAl,t

(β)
] ∣∣∣Xl = x

]
. (3.11)

By using Lemma 2.7 and choosing us =
1√
Vs

, we have

E[Al,tG
′
XlAl,t

(β)] = E

[
GXlAl,t

∫ t

l

us′Al,t(β)∫ t

l
usDS

s (XlAl,t)ds
⋄ dWS

s

]

= E

[
GXlAl,t

(β)√
1− ρ2Xl(t− l)

∫ t

l

dWS
s√
Vs

]
,

allowing us to rewrite (3.11) as

E
[
Al,tΨ(Xl)G

′
XlAl,t

(β)
]
= E

[
Ψ(Xl)GXlAl,t

(β)√
1− ρ2(t− l)Xl

∫ t

l

dWS
s√
Vs

]
. (3.12)

Combining (3.12) and (3.10), we obtain

E
[
Ψ′(Xl)GXlAl,t

(β)
]
= E

[
Ψ(Xl)GXlAl,t

(β)

Xl

(
1

l
√

1− ρ2

∫ l

0

dWS
s√
Vs

+ 1

)]
− E

[
Ψ(Xl)GXlAl,t

(β)√
1− ρ2(t− l)Xl

∫ t

l

dWS
s√
Vs

]
,

as desired. 2

Corollary 3.10 Let Xt = Xlexp
(∫ t

l
rds+

∫ t

l

√
VsdW

S
s − 1

2

∫ t

l
Vsds

)
for any 0 ≤ l ≤ t , and for any

Ψ ∈ C+∞
b (R) . We have,

E[Ψ′(Xl)GXt
(β)] = E

[
Ψ(Xl)

GXt
(β)√

1− ρ2Xl

(
1

l

∫ l

0

dWS
s√
Vs

− 1

t− l

∫ t

l

dWS
s√
Vs

+ 1

)]
,

with GXt
(β) := E[Pt(Xt, Vt)|Vl = β] .
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Proof We have

E [Ψ′(Xl)GXt
(β)] = E

[
Ψ(Xl)GXt

(β)

Xl

(
1

l
√

1− ρ2

∫ l

0

dWS
s√
Vs

+ 1

)]
− E

[
Ul,tΨ(Xl)G

′
Xt

(β)
]
.

Hence, according to Proposition 3.9, we get

E [Ψ′(Xl)GXt
(β)] = E

[
Ψ(Xl)

GXt
(β)√

1− ρ2Xl

(
1

l

∫ l

0

dWS
s√
Vs

− 1

t− l

∫ t

l

dWS
s√
Vs

+ 1

)]
.

2

The following Theorem gives the analytic expression of E [Pt(Xt, Vt) | (Xl = γ, Vl = β)] .

Theorem 3.11 Let Xt = Xlexp
(∫ t

l
rds+

∫ t

l

√
VsdW

S
s − 1

2

∫ t

l
Vsds

)
, with 0 ≤ l ≤ t . We have

E [Pt(Xt, Vt) | (Xl = γ, Vl = β)] =
E [H(Xl − γ)ΥXl

(GXt
(β))]

E [H(Xl − γ)ΥXl
(1)]

,

where

ΥXl
(g(Xt)) =

g(Xt)√
1− ρ2Xl

(
1

l

∫ l

0

dWS
s√
Vs

− 1

t− l

∫ t

l

dWS
s√
Vs

+ 1

)

where H represents the Heaviside function.

Proof From Corollary 3.10, for any Ψ ∈ C∞
b (R) , we have

E [Ψ′(Xl)GXt(β)] = E [Ψ(Xl)ΥXl
(GXt(β))] ,

with
E[GXt(β)] = E [H(Xl − γ)ΥXl

(GXt(β))]

= E

[
H(Xl − γ)

GXt(β)√
1− ρ2Xl

(
1

l

∫ l

0

dWS
s√
Vs

− 1

t− l

∫ t

l

dWS
s√
Vs

+ 1

)]
,

As in Theorem 3.8, we refer to Fournié et al. [12] to write

E [Pt(Xt, Vt) | (Xl = γ, Vl = β)] =

E
[
H(Xl − γ)

GXt (β)√
1−ρ2Xl

(
1
l

∫ l

0
dWS

s√
Vs

− 1
t−l

∫ t

l
dWS

s√
Vs

+ 1
)]

E
[
H(Xl − γ) 1√

1−ρ2Xl

(
1
l

∫ l

0
dWS

s√
Vs

− 1
t−l

∫ t

l
dWS

s√
Vs

+ 1
)] ,

where GXt
(β) is calculated using Theorem 3.8, and the Malliavin weights ΥXl

(GXt
(β)) and ΥXl

(1) can be
obtained from Corollary 3.10 for Ψ equal to the Heaviside function. Hence, the square integrable weight
ΥXl

(GXt(β)) is defined as follows:

ΥXl
(GXt(β)) =

GXt
(β)

Xl

√
1− ρ2

(
1

l

∫ l

0

dWS
s√
Vs

− 1

t− l

∫ t

l

dWS
s√
Vs

+ 1

)
.
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The same reasoning is adopted to calculate the square integrable weight ΥXl
(1) :

ΥXl
(1) =

1

Xl

√
1− ρ2

(
1

l

∫ l

0

dWS
s√
Vs

− 1

t− l

∫ t

l

dWS
s√
Vs

+ 1

)
.

2

Example 3.12 For the SABR model where r = 0 in (1.3) and kV = 0 in (1.2). we have

Vt = Vle
η(Wt−Wl) = Vle

η∆(t−l) = V0e
η∆t .

Using Theorem 3.8, for any β > 0 and any 0 ≤ l ≤ t , we have

E[P (Xt, Vt) |Vl = β] =
E [H(Vl − β)ΥVl

(P (Xt, Vt))]

E [H(Vl − β)ΥVl
(1)]

,

where

ΥVl
(P (Xt, Vt)) =

P (Xt, Vt)

Vl

(
1 +

r(∆(t−l))

η
− r(∆l)

η

)
,

and

ΥVl
(1) =

1

Vl

(
1 +

r(∆(t−l))

η
− r(∆l)

η

)
.

Thus,

E[P (Xt, Vt) |Vl = β] =
E
[
H(Vl − β)P (Xt,Vt)

Vl

(
1 +

r(∆(t−l))

η − r(∆l)
η

)]
E
[
H(Vl − β) 1

Vl

(
1 +

r(∆(t−l))

η − r(∆l)
η

)] .

Using Theorem 3.11, this leads to

E [Pt(Xt, Vt) | (Xl = γ, Vl = β)] =
E [H(Xl − γ)ΥXl

(GXt
(β))]

E [H(Xl − γ)ΥXl
(1)]

,

where

ΥXl
(GXt(β)) =

1√
1− ρ2Xl

E
[
H(Vl − β)P (Xt,Vt)

Vl

(
1 +

r(∆(t−l))

η − r(∆l)
η

)]
E
[
H(Vl − β) 1

Vl

(
1 +

r(∆(t−l))

η − r(∆l)
η

)]
×

(
1

l

∫ l

0

dWS
s√
Vs

− 1

t− l

∫ t

l

dWS
s√
Vs

+ 1

)
,

and

ΥXl
(1) =

1√
1− ρ2Xl

(
1

l

∫ l

0

dWS
s√
Vs

− 1

t− l

∫ t

l

dWS
s√
Vs

+ 1

)
.
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Example 3.13 (American option pricing) Let 0 = t0 < t1 < . . . < tn = T , be a discretization of the time
interval [0, T ] . The price of an American put option can be computed using the backward iterations

PT = max{K − ST , 0},
P (Stk , Vtk) = max

{
max{K − Stk , 0),

e−r T
n E
[
Ptk+1

(Xtk+1
, Vtk+1

) |Xtk = γ, Vtk = β
}}

, k = n− 1, . . . , 0.

The conditional expectation is then calculated using the Malliavin weights given in Theorem 3.11. Since no
closed expression of the weights is available, they have to be approximated, using for instance Monte Carlo
simulations.

4. Conclusion
We have explored the use of Malliavin calculus to develop expression of derivative continuation value, con-
ditionally to the current stock price and volatility, the latter being not constant. More specifically, we were
able to express such expectations in terms of Malliavin weights, allowing their use in financial derivatives as
American options. The particularities of Malliavin calculus nevertheless limit its applicability, as revealed by
the assumptions on the stochastic processes required by our developments. A future direction of research would
be to explore to what extent we can alleviate them in order to obtain more general results, and if we can use
our formulae as approximations when our assumptions do not hold. The efficiency of the method also has to be
evaluated and compared to the alternative approaches. We plan to complete numerical experiments in a close
future in the context of option pricing and Greeks computations, assessing the practical interest of Malliavin
calculus, and if it allows to mitigate the limitations of alternative methods as regression and machine learning
techniques. As the current work considers unidimensional processes uniquely, another extension would be to
consider multidimensional processes, and how to take the dependencies into account in our computations.
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