
Turk J Math
(2022) 46: 87 – 98
© TÜBİTAK
doi:10.3906/mat-2106-120

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Hyers-Ulam stability of a certain Fredholm integral equation

Alberto SIMÕES1,2,∗, Ponmana SELVAN3
1CMA-UBI – Center of Mathematics and Applications, Department of Mathematics,

University of Beira Interior, Covilhã, Portugal
2CIDMA – Center for Research and Development in Mathematics and Applications, Department of Mathematics,

University of Aveiro, Aveiro, Portugal
3Department of Mathematics, Sri Sai Ram Institute of Technology, Tamil Nadu, Chennai, India

Received: 30.06.2021 • Accepted/Published Online: 02.11.2021 • Final Version: 19.01.2022

Abstract: In this paper, by using fixed point theorem we establish the Hyers-Ulam stability and Hyers-Ulam-Rassias
stability of certain homogeneous Fredholm Integral equation of the second kind

φ(x) = λ

∫ 1

0

(1 + x+ t)φ(t) dt

and the nonhomogeneous equation

φ(x) = x+ λ

∫ 1

0

(1 + x+ t)φ(t) dt

for all x ∈ [0, 1] and 0 < λ < 2
5

.

Key words: Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Fredholm integral equation of second kind, fixed point
theorem

1. Introduction
The Ulam stability problem for various functional equation was initiated by S.M. Ulam [31] in 1940. Then, in
the next year, D.H. Hyers [16] solved the Ulam problem for Cauchy additive functional equation on Banach
spaces. After that Aoki [3], Bourgin [6] and Rassias [25] have generalized the Hyers result. These days the Hyers-
Ulam stability for different functional equations was proved by many mathematicians (see [4, 5, 11, 26]). A
generalization Ulam problem was recently proposed by replacing functional equations with differential equations.
In 1998, Alsina et al., [1] proved the Hyers-Ulam stability of differential equation of first order of the form
y′(t) = y(t) . This result was generalized by Takahasi [30] for Banach space valued differential equation
y′(t) = λy(t) . Then several researchers have studied the Hyers-Ulam stability of differential equations in
various directions, for example (see [7, 10, 17–24, 29, 32]).

Nowadays, the Hyers-Ulam stability of integral equations has been given attention. In 2015, L. Hua et
al., [15] studied the Hyers-Ulam stability of some kinds of Fredholm integral equations. Also, in 2015, Z. Gu
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and J. Huang [14] investigated the Hyers-Ulam stability of the Fredholm integral equation

φ(x) = f(x) + λ

∫ b

a

K(x, s)φ(s) ds

by fixed point theorem. Recently, only few authors are investigating the Hyers-Ulam stability of the various
integral equations (see [2, 8, 9, 12, 13, 27, 28]). Motivated by the above ideas, our foremost aim is to study
the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the certain Fredholm integral equations of second
kind

φ(x) = λ

∫ 1

0

(1 + x+ t)φ(t) dt (1.1)

and

φ(x) = x+ λ

∫ 1

0

(1 + x+ t)φ(t) dt (1.2)

for all x ∈ [0, 1] and 0 < λ < 2
5 in the sense of Z. Gu and J. Huang [14].

2. Preliminaries
The following theorems and definitions are very useful to prove our main results.

Theorem 2.1 (fixed point theorem) Let (X, ρ) be a complete metric space. Assume that T : X → X is a
strictly contractive operator with ρ(Tx, Ty) ≤ θ ρ(x, y) where 0 < θ < 1 . Then

(i) there exists an unique fixed point x∗ of T ;

(ii) the sequence {Tn x}n∈N converges to the fixed point x∗ of T .

Theorem 2.2 (Hölder’s inequality) Let p > 1 , 1
p + 1

q = 1 , x ∈ Lp(E) and y ∈ Lq(E) . Then xy ∈ L(E) and

∫
E

|x(t)y(t)| dt ≤
(∫

E

|xp(t)| dt
) 1

p
(∫

E

|yq(t)| dt
) 1

q

.

Now, we give the definition of Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the Fredholm integral
equations (1.1) and (1.2).

Definition 2.3 We say that the Fredholm integral equations (1.1) has the Hyers-Ulam stability, if there exists
a real constant S which satisfies the following conditions: For every ϵ > 0 , and for each solution φ : [0, 1] → R
satisfying the inequation ∣∣∣∣φ(x)− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ ϵ,

then there is some ψ : [0, 1] → R satisfying the integral equation (1.1) such that

|φ(x)− ψ(x)| ≤ S ϵ, ∀x ∈ [0, 1].
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Definition 2.4 We say that the Fredholm integral equations (1.2) have the Hyers-Ulam stability, if there exists
a real constant S which satisfies the following conditions: For every ϵ > 0 , and for each solution φ : [0, 1] → R
satisfying the inequality ∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ ϵ,

then there exists a solution ψ : [0, 1] → R satisfies the integral equation (1.2) such that

|φ(x)− ψ(x)| ≤ S ϵ, ∀x ∈ [0, 1].

Definition 2.5 The Fredholm integral equations (1.1) are said to have the Hyers-Ulam-Rassias stability, if
there exists a real constant S which fulfills the following: For every θ ∈ C(R+,R+) , and for each solution
φ : [0, 1] → R satisfying the inequality

∣∣∣∣φ(x)− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ θ(x),

then there is a solution ψ : [0, 1] → R satisfying the integral equation (1.1) such that

|φ(x)− ψ(x)| ≤ S θ(x), ∀x ∈ [0, 1].

Definition 2.6 We say that the Fredholm integral equations (1.2) have the Hyers-Ulam-Rassias stability, if
there exists a real constant S which fulfills the following properties: For every θ ∈ C(R+,R+) , and for each
solution φ : [0, 1] → R satisfying the inequation

∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ θ(x),

then there exists some ψ : [0, 1] → R satisfying the integral equation (1.2) such that

|φ(x)− ψ(x)| ≤ S θ(x), ∀x ∈ [0, 1].

3. Main results
In this section, we are going to prove the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability of the
homogeneous and nonhomogeneous Fredholm integral equations of second kind (1.1) and (1.2) with λ < 2

5 .
First, we investigate the two stabilities of the homogeneous Fredholm integral equation of second kind (1.1).

Theorem 3.1 Consider H a fixed real number such that H ≥ 5
2 and λH < 1 . Let φ : [0, 1] → R a continuous

function and the kernel K : [0, 1]× [0, 1] → R defined by K(x, t) = 1 + x+ t . If φ is such that

∣∣∣∣φ(x)− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ ϵ, (3.1)

where ϵ ≥ 0 then there exists a solution ψ : [0, 1] → R of the Fredholm integral equation (1.1) and a real constant
S such that |φ(x)− ψ(x)| ≤ S ϵ for all x ∈ [0, 1].
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Proof Firstly, we define an operator T by,

(Tφ)(x) = λ

∫ 1

0

(1 + x+ t)φ(t) dt, φ ∈ L2([0, 1]). (3.2)

We have for each x ∈ [0, 1] ,

∣∣∣∣∫ 1

0

(1 + x+ t) dt

∣∣∣∣ ≤ H and
∣∣∣∣∣
(∫ 1

0

∫ 1

0

(1 + x+ t)2 dtdx

) 1
2

∣∣∣∣∣ ≤ H,

for any H ≥ 5
2 .

Now, we define a metric ρ as follows,

ρ(φ1, φ2) =


(∫ 1

0

∣∣∣∣φ1(x)− φ2(x)

λH

∣∣∣∣2 dx
) 1

2

: φ1, φ2 ∈ L2([0, 1]), λH < 1

 .

By using the Hölder’s inequality, we obtain that∫ 1

0

∣∣∣∣∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣2 dx ≤
∫ 1

0

(∫ 1

0

(1 + x+ t)2 dt

∫ 1

0

φ2(t) dt

)
dx

≤
∫ 1

0

φ2(t) dt

∫ 1

0

∫ 1

0

(1 + x+ t)2 dtdx <∞.

This implies that Tφ ∈ L2([0, 1]) and T is a self–mapping of L2([0, 1]) . Thus, the solution of the equation
(3.2) is the fixed point of T . So,

ρ(Tφ1, Tφ2) =

(∫ 1

0

∣∣∣∣ (Tφ1)(x)− (Tφ2)(x)

λH

∣∣∣∣2 dx
) 1

2

=
1

H

(∫ 1

0

∣∣∣∣∫ 1

0

(1 + x+ t) (φ1(t)− φ2(t)) dt

∣∣∣∣2 dx
) 1

2

≤ 1

H

(∫ 1

0

∫ 1

0

(1 + x+ t)
2
dtdx

) 1
2
(∫ 1

0

|φ1(t)− φ2(t)|2 dt
) 1

2

≤
(∫ 1

0

|φ1(t)− φ2(t)|2 dt
) 1

2

= λH

(∫ 1

0

∣∣∣∣φ1(t)− φ2(t)

λH

∣∣∣∣2 dt
) 1

2

= λHρ(φ1, φ2).

Since λH < 1 , T is a strictly contractive operator. Then by Theorem 2.1 the equation (3.2) has a unique
solution φ∗ ∈ L2([0, 1]) , where φ∗ = lim

r→∞
φr for

φr(x) = λ

∫ 1

0

(1 + x+ t)φr−1(t) dt
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and φ0 ∈ L2([0, 1]) is an arbitrary function.
Let ψ ∈ L2([0, 1]) be a solution of inequality (3.1) and

ψ(x)− λ

∫ 1

0

(1 + x+ t)ψ(t) dt =: h(x). (3.3)

Obviously, we have |h(x)| ≤ ϵ for all x ∈ [0, 1] . Then we can conclude that the solution of equation

ψ(x) = h(x) + λ

∫ 1

0

(1 + x+ t)ψ(t) dt

is ψ∗ ∈ L2([0, 1]) , where ψ∗ = lim
r→∞

ψr for

ψr(x) = h(x) + λ

∫ 1

0

(1 + x+ t)ψr−1(t) dt

and ψ0 ∈ L2([0, 1]) is an arbitrary function.
For φ0(x) = ψ0(x) = 0 , we get,

|φ1(x)− ψ1(x)| = |h(x)| ≤ ϵ,

|φ2(x)− ψ2(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t)(ψ1(t)− φ1(t))dt

∣∣∣∣ ≤ ϵ

(
1 + λ

∫ 1

0

|1 + x+ t| dt
)

|φ3(x)− ψ3(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t2)(ψ2(t2)− φ2(t2))dt2

∣∣∣∣
≤ ϵ+ ϵ λ

∫ 1

0

|1 + x+ t2|
(
1 + λ

∫ 1

0

|1 + t2 + t1|dt1
)
dt2

≤ ϵ

(
1 + λ

∫ 1

0

|1 + x+ t2|dt2 + λ2
∫ 1

0

|1 + x+ t2|
∫ 1

0

|1 + t2 + t1|dt1dt2
)

· · · · · · · · ·

|φr(x)− ψr(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t) (ψr−1(x)− φr−1(x)) dt

∣∣∣∣
≤ ϵ

(
1 + λ

∫ 1

0

|1 + x+ tr−1|dtr−1

+ λ2
∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|dtr−2dtr−1 + · · ·

· · ·+ λr−1

∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|
∫ 1

0

|1 + tr−2 + tr−3| · · ·

· · ·
∫ 1

0

|1 + t2 + t1|dt1 · · · dtr−3dtr−2dtr−1

)
≤ ϵ

(
1 + λH + (λH)2 + ...+ (λH)r−1

)
= ϵ

(
1− (λH)r

1− λH

)
,
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as r → ∞ , we obtain

|φ∗(x)− ψ∗(x)| ≤ 1

1− λH
ϵ.

Let us choose S =
1

1− λH
, hence |φ∗(x) − ψ∗(x)| ≤ Sϵ, and 0 < λH < 1 , where S is the Hyers-Ulam

stability constant for (1.1). Hence, by the virtue of Definition 2.3 the Fredholm integral equation (1.1) has the
Hyers-Ulam stability. 2

The following theorem shows the Hyers-Ulam-Rassias stability of the homogeneous Fredholm integral
equation of second kind (1.1).

Theorem 3.2 Consider H a fixed real number such that H ≥ 5
2 and λH < 1 . Let φ : [0, 1] → R a continuous

function and the kernel K : [0, 1]× [0, 1] → R defined by K(x, t) = 1 + x+ t such that

∫ 1

0

|1 + x+ t|θ(t)dt ≤ θ(x)

∫ 1

0

|1 + x+ t|dt,

for all x ∈ [0, 1] , where θ ∈ C(R+,R+) . If φ is such that

∣∣∣∣φ(x)− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ θ(x), (3.4)

then there exists a solution ψ : [0, 1] → R of the Fredholm integral equation (1.1) and a real constant S such
that |φ(x)− ψ(x)| ≤ S θ(x) for all x ∈ [0, 1].

Proof By a similar procedure to the previous we define a strictly contractive operator T as in (3.2) since
λH < 1 . By (3.3) we have |h(x)| ≤ θ(x) for all x ∈ [0, 1] . As in the previous proof, for φ0(x) = ψ0(x) = 0 , we
get,

|φ1(x)− ψ1(x)| = |h(x)| ≤ θ(x),

|φ2(x)− ψ2(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t)(ψ1(t)− φ1(t))dt

∣∣∣∣ ≤ θ(x)

(
1 + λ

∫ 1

0

|1 + x+ t| dt
)

|φ3(x)− ψ3(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t2)(ψ2(t2)− φ2(t2))dt2

∣∣∣∣
≤ θ(x) + θ(x) λ

∫ 1

0

|1 + x+ t2|
(
1 + λ

∫ 1

0

|1 + t2 + t1|dt1
)
dt2

≤ θ(x)

(
1 + λ

∫ 1

0

|1 + x+ t2|dt2 + λ2
∫ 1

0

|1 + x+ t2|
∫ 1

0

|1 + t2 + t1|dt1dt2
)

· · · · · · · · ·
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|φr(x)− ψr(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t) (ψr−1(x)− φr−1(x)) dt

∣∣∣∣
≤ θ(x)

(
1 + λ

∫ 1

0

|1 + x+ tr−1|dtr−1

+ λ2
∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|dtr−2dtr−1 + · · ·

· · ·+ λr−1

∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|
∫ 1

0

|1 + tr−2 + tr−3| · · ·

· · ·
∫ 1

0

|1 + t2 + t1|dt1 · · · dtr−3dtr−2dtr−1

)
≤ θ(x)

(
1 + λH + (λH)2 + ...+ (λH)r−1

)
= θ(x)

(
1− (λH)r

1− λH

)
,

as r → ∞ , we obtain

|φ∗(x)− ψ∗(x)| ≤ 1

1− λH
θ(x)

for all x ∈ [0, 1] . Let us choose S =
1

1− λH
, hence |φ∗(x)− ψ∗(x)| ≤ Sθ(x), and 0 < λH < 1 . Hence, by the

virtue of Definition 2.5 the Fredholm integral equation (1.1) has the Hyers-Ulam-Rassias stability. 2

Now, we are going to establish the Hyers-Ulam stability of the nonhomogeneous Fredholm integral
equation of second kind (1.2).

Theorem 3.3 Consider H a fixed real number such that H ≥ 5
2 and λH < 1 . Let φ : [0, 1] → R a continuous

function and the kernel K : [0, 1]× [0, 1] → R defined by K(x, t) = 1 + x+ t . If φ is such that

∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ ϵ, (3.5)

where ϵ ≥ 0 then there exists a solution ψ : [0, 1] → R of the nonhomogeneous Fredholm integral equation (1.2)
and a real constant S such that |φ(x)− ψ(x)| ≤ S ϵ for all x ∈ [0, 1].

Proof Let us define an operator T as

(Tφ)(x) = x+ λ

1∫
0

(1 + x+ t) φ(t) dt, φ ∈ L2([0, 1]). (3.6)

We have Tφ ∈ L2([0, 1]) and T a self–mapping of L2([0, 1]) . The solution of the equation (3.6) is the fixed
point of the strictly contractive operator T since λH < 1 . By Theorem 2.1 the equation (3.6) has a unique
solution φ∗ ∈ L2([0, 1]) , where φ∗ = lim

r→∞
φr for

φr(x) = x+ λ

∫ 1

0

(1 + x+ t)φr−1(t) dt
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and φ0 ∈ L2([0, 1]) is an arbitrary function.
Let ψ ∈ L2([0, 1]) be a solution of inequality (4) and

ψ(x)− x− λ

∫ 1

0

(1 + x+ t)ψ(t) dt =: h(x).

We have |h(x)| ≤ ϵ for all x ∈ [0, 1] . Then we can conclude that the solution of equation

ψ(x) = h(x) + x+ λ

∫ 1

0

(1 + x+ t)ψ(t) dt

is ψ∗ ∈ L2([0, 1]) , where ψ∗ = lim
r→∞

ψr for

ψr(x) = h(x) + x+ λ

∫ 1

0

(1 + x+ t)ψr−1(t) dt

and ψ0 ∈ L2([0, 1]) is an arbitrary function.
For φ0(x) = ψ0(x) = 0 , we get,

|φr(x)− ψr(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t) (ψr−1(x)− φr−1(x)) dt

∣∣∣∣
≤ ϵ

(
1 + λ

∫ 1

0

|1 + x+ tr−1|dtr−1

+ λ2
∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|dtr−2dtr−1 + · · ·

· · ·+ λr−1

∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|
∫ 1

0

|1 + tr−2 + tr−3| · · ·

· · ·
∫ 1

0

|1 + t2 + t1|dt1 · · · dtr−3dtr−2dtr−1

)
≤ ϵ

(
1 + λH + (λH)2 + ...+ (λH)r−1

)
= ϵ

(
1− (λH)r

1− λH

)
,

as r → ∞ , we obtain

|φ∗(x)− ψ∗(x)| ≤ 1

1− λH
ϵ.

Let us choose S =
1

1− λH
, hence |φ∗(x)−ψ∗(x)| ≤ Sϵ, and 0 < λH < 1 , where S is the Hyers-Ulam stability

constant for (1.2). Hence, by the virtue of Definition 2.4 the nonhomogeneous Fredholm integral equation (1.2)
has the Hyers-Ulam stability. 2

Finally, the following corollary proves the Hyers-Ulam-Rassias stability of the nonhomogeneous Fredholm
integral equation of second kind (1.2).
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Corollary 3.4 Consider H a fixed real number such that H ≥ 5
2 and λH < 1 . Let φ : [0, 1] → R a continuous

function and the kernel K : [0, 1]× [0, 1] → R defined by K(x, t) = 1 + x+ t such that∫ 1

0

|1 + x+ t|θ(t)dt ≤ θ(x)

∫ 1

0

|1 + x+ t|dt,

for all x ∈ [0, 1] , where θ ∈ C(R+,R+) . If φ is such that

∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ θ(x), (3.7)

then there exists a solution ψ : [0, 1] → R of the nonhomogeneous Fredholm integral equation (1.2) and a real
constant S such that |φ(x)− ψ(x)| ≤ S θ(x) for all x ∈ [0, 1].

4. Examples
In order to illustrate our results we will present some examples.

Let us consider the nonhomogeneous Fredholm integral equation of second kind (1.2) defined by

φ(x) = x+ λ

∫ 1

0

(1 + x+ t)φ(t) dt

for all x ∈ [0, 1] and λ = 1
5 . Let H = 13

5 and the perturbation of the solution φ(x) = 587
500x+ 28

100 .

We realize that all conditions of Theorem 3.3 are satisfied. In fact λH = 13
25 < 1 and φ is a continuous

function such that ∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ = ∣∣∣∣ 3

5000
x+

1

3000

∣∣∣∣ ≤ 7

7500
:= ϵ.

By the exact solution ψ(x) = 210
179x+ 50

179 , we realize that

|φ(x)− ψ(x)| =
∣∣∣∣ 73

89500
x+

3

4475

∣∣∣∣ ≤ 1

1− λH
ϵ =

7

3600
. (4.1)

To illustrate the inequality (4.1), we have the Figure 1.
Let us consider the same nonhomogeneous Fredholm integral equation of second kind (1.2) but now with

λ = 1
100 . Let H = 3 and the perturbation of the solution φ(x) = 10052

10000x+
851

100000 . We have λH = 3
100 < 1 and

φ a continuous function such that

∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ = ∣∣∣∣ 5334

60000000
x+

341

60000000

∣∣∣∣ ≤ 227

2400000
:= ϵ.

By the exact solution ψ(x) = 118200
117599x+ 1000

117599 , we realize that

|φ(x)− ψ(x)| =
∣∣∣∣ 26287

293997500
x+

76749

11759900000

∣∣∣∣ ≤ 1

1− λH
ϵ =

227

2328000
. (4.2)
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Figure 1.

If we consider H = 30 , we get a worse result but still acceptable. We get,

|φ(x)− ψ(x)| =
∣∣∣∣ 26287

293997500
x+

76749

11759900000

∣∣∣∣ ≤ 1

1− λH
ϵ =

227

1680000
. (4.3)

Therefore, we have that the nonhomogeneous Fredholm integral equation of second kind (1.2) has the
Hyers-Ulam stability.

To illustrate the inequalities (4.2) and (4.3), we have the Figure 2.

Figure 2.
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