

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Hyers-Ulam stability of a certain Fredholm integral equation

Alberto SIMÕES^{1,2,*}, Ponmana SELVAN³

¹CMA-UBI – Center of Mathematics and Applications, Department of Mathematics, University of Beira Interior, Covilhã, Portugal
²CIDMA – Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Aveiro, Portugal
³Department of Mathematics, Sri Sai Ram Institute of Technology, Tamil Nadu, Chennai, India

Received: 30.06.2021	•	Accepted/Published Online: 02.11.2021	•	Final Version: 19.01.2022
----------------------	---	---------------------------------------	---	---------------------------

Abstract: In this paper, by using fixed point theorem we establish the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of certain homogeneous Fredholm Integral equation of the second kind

$$\varphi(x) = \lambda \int_0^1 (1+x+t) \varphi(t) dt$$

and the nonhomogeneous equation

$$\varphi(x) = x + \lambda \int_0^1 (1 + x + t) \varphi(t) dt$$

for all $x \in [0,1]$ and $0 < \lambda < \frac{2}{5}$.

Key words: Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Fredholm integral equation of second kind, fixed point theorem

1. Introduction

The Ulam stability problem for various functional equation was initiated by S.M. Ulam [31] in 1940. Then, in the next year, D.H. Hyers [16] solved the Ulam problem for Cauchy additive functional equation on Banach spaces. After that Aoki [3], Bourgin [6] and Rassias [25] have generalized the Hyers result. These days the Hyers-Ulam stability for different functional equations was proved by many mathematicians (see [4, 5, 11, 26]). A generalization Ulam problem was recently proposed by replacing functional equations with differential equations. In 1998, Alsina et al., [1] proved the Hyers-Ulam stability of differential equation of first order of the form y'(t) = y(t). This result was generalized by Takahasi [30] for Banach space valued differential equation $y'(t) = \lambda y(t)$. Then several researchers have studied the Hyers-Ulam stability of differential equations in various directions, for example (see [7, 10, 17–24, 29, 32]).

Nowadays, the Hyers-Ulam stability of integral equations has been given attention. In 2015, L. Hua et al., [15] studied the Hyers-Ulam stability of some kinds of Fredholm integral equations. Also, in 2015, Z. Gu

^{*}Correspondence: asimoes@ubi.pt

²⁰¹⁰ AMS Mathematics Subject Classification: 26D10, 31K20, 39A10, 34A40, 34K20

and J. Huang [14] investigated the Hyers-Ulam stability of the Fredholm integral equation

$$\varphi(x) = f(x) + \lambda \int_{a}^{b} K(x,s) \varphi(s) \, ds$$

by fixed point theorem. Recently, only few authors are investigating the Hyers-Ulam stability of the various integral equations (see [2, 8, 9, 12, 13, 27, 28]). Motivated by the above ideas, our foremost aim is to study the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the certain Fredholm integral equations of second kind

$$\varphi(x) = \lambda \int_0^1 (1+x+t) \,\varphi(t) \,dt \tag{1.1}$$

and

$$\varphi(x) = x + \lambda \int_0^1 (1 + x + t) \varphi(t) dt$$
(1.2)

for all $x \in [0,1]$ and $0 < \lambda < \frac{2}{5}$ in the sense of Z. Gu and J. Huang [14].

2. Preliminaries

The following theorems and definitions are very useful to prove our main results.

Theorem 2.1 (fixed point theorem) Let (X, ρ) be a complete metric space. Assume that $T : X \to X$ is a strictly contractive operator with $\rho(Tx, Ty) \leq \theta \ \rho(x, y)$ where $0 < \theta < 1$. Then

- (i) there exists an unique fixed point x^* of T;
- (ii) the sequence $\{T^n \ x\}_{n \in \mathbb{N}}$ converges to the fixed point x^* of T.

Theorem 2.2 (Hölder's inequality) Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $x \in L^p(E)$ and $y \in L^q(E)$. Then $xy \in L(E)$ and

$$\int_E |x(t)y(t)| \ dt \le \left(\int_E |x^p(t)| \ dt\right)^{\frac{1}{p}} \left(\int_E |y^q(t)| \ dt\right)^{\frac{1}{q}}.$$

Now, we give the definition of Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the Fredholm integral equations (1.1) and (1.2).

Definition 2.3 We say that the Fredholm integral equations (1.1) has the Hyers-Ulam stability, if there exists a real constant S which satisfies the following conditions: For every $\epsilon > 0$, and for each solution $\varphi : [0,1] \to \mathbb{R}$ satisfying the inequation

$$\left|\varphi(x) - \lambda \int_0^1 (1 + x + t) \varphi(t) \, dt\right| \le \epsilon,$$

then there is some $\psi: [0,1] \to \mathbb{R}$ satisfying the integral equation (1.1) such that

$$|\varphi(x) - \psi(x)| \le S \epsilon, \quad \forall x \in [0, 1].$$

Definition 2.4 We say that the Fredholm integral equations (1.2) have the Hyers-Ulam stability, if there exists a real constant S which satisfies the following conditions: For every $\epsilon > 0$, and for each solution $\varphi : [0,1] \to \mathbb{R}$ satisfying the inequality

$$\left|\varphi(x) - x - \lambda \int_0^1 (1 + x + t) \varphi(t) \, dt\right| \le \epsilon,$$

then there exists a solution $\psi: [0,1] \to \mathbb{R}$ satisfies the integral equation (1.2) such that

$$|\varphi(x) - \psi(x)| \le S \epsilon, \quad \forall x \in [0, 1].$$

Definition 2.5 The Fredholm integral equations (1.1) are said to have the Hyers-Ulam-Rassias stability, if there exists a real constant S which fulfills the following: For every $\theta \in C(\mathbb{R}_+, \mathbb{R}_+)$, and for each solution $\varphi : [0, 1] \to \mathbb{R}$ satisfying the inequality

$$\left|\varphi(x) - \lambda \int_0^1 (1 + x + t) \varphi(t) \, dt\right| \le \theta(x),$$

then there is a solution $\psi: [0,1] \to \mathbb{R}$ satisfying the integral equation (1.1) such that

$$|\varphi(x) - \psi(x)| \le S\,\theta(x), \quad \forall x \in [0, 1].$$

Definition 2.6 We say that the Fredholm integral equations (1.2) have the Hyers-Ulam-Rassias stability, if there exists a real constant S which fulfills the following properties: For every $\theta \in C(\mathbb{R}_+, \mathbb{R}_+)$, and for each solution $\varphi : [0, 1] \to \mathbb{R}$ satisfying the inequation

$$\left|\varphi(x) - x - \lambda \int_0^1 (1 + x + t) \varphi(t) \, dt\right| \le \theta(x),$$

then there exists some $\psi: [0,1] \to \mathbb{R}$ satisfying the integral equation (1.2) such that

$$|\varphi(x) - \psi(x)| \le S\,\theta(x), \quad \forall x \in [0, 1].$$

3. Main results

In this section, we are going to prove the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability of the homogeneous and nonhomogeneous Fredholm integral equations of second kind (1.1) and (1.2) with $\lambda < \frac{2}{5}$. First, we investigate the two stabilities of the homogeneous Fredholm integral equation of second kind (1.1).

Theorem 3.1 Consider H a fixed real number such that $H \ge \frac{5}{2}$ and $\lambda H < 1$. Let $\varphi : [0,1] \to \mathbb{R}$ a continuous function and the kernel $K : [0,1] \times [0,1] \to \mathbb{R}$ defined by K(x,t) = 1 + x + t. If φ is such that

$$\left|\varphi(x) - \lambda \int_0^1 (1+x+t)\,\varphi(t)\,dt\right| \le \epsilon,\tag{3.1}$$

where $\epsilon \geq 0$ then there exists a solution $\psi : [0,1] \to \mathbb{R}$ of the Fredholm integral equation (1.1) and a real constant S such that $|\varphi(x) - \psi(x)| \leq S \epsilon$ for all $x \in [0,1]$. **Proof** Firstly, we define an operator T by,

$$(T\varphi)(x) = \lambda \int_0^1 (1+x+t)\varphi(t) dt, \quad \varphi \in L^2([0,1]).$$
 (3.2)

We have for each $x \in [0, 1]$,

$$\left| \int_{0}^{1} (1+x+t) dt \right| \le H$$
 and $\left| \left(\int_{0}^{1} \int_{0}^{1} (1+x+t)^{2} dt dx \right)^{\frac{1}{2}} \right| \le H,$

for any $H \geq \frac{5}{2}$.

Now, we define a metric ρ as follows,

$$\rho(\varphi_1,\varphi_2) = \left\{ \left(\int_0^1 \left| \frac{\varphi_1(x) - \varphi_2(x)}{\lambda H} \right|^2 dx \right)^{\frac{1}{2}} : \varphi_1, \varphi_2 \in L^2([0,1]), \ \lambda H < 1 \right\}.$$

By using the Hölder's inequality, we obtain that

$$\begin{split} \int_{0}^{1} \left| \int_{0}^{1} (1+x+t) \varphi(t) \, dt \right|^{2} dx &\leq \int_{0}^{1} \left(\int_{0}^{1} (1+x+t)^{2} \, dt \int_{0}^{1} \varphi^{2}(t) \, dt \right) dx \\ &\leq \int_{0}^{1} \varphi^{2}(t) \, dt \int_{0}^{1} \int_{0}^{1} (1+x+t)^{2} \, dt dx < \infty. \end{split}$$

This implies that $T\varphi \in L^2([0,1])$ and T is a self-mapping of $L^2([0,1])$. Thus, the solution of the equation (3.2) is the fixed point of T. So,

$$\begin{split} \rho(T\varphi_1, T\varphi_2) &= \left(\int_0^1 \left| \frac{(T\varphi_1)(x) - (T\varphi_2)(x)}{\lambda H} \right|^2 \, dx \right)^{\frac{1}{2}} \\ &= \frac{1}{H} \left(\int_0^1 \left| \int_0^1 (1 + x + t) \left(\varphi_1(t) - \varphi_2(t)\right) \, dt \right|^2 \, dx \right)^{\frac{1}{2}} \\ &\leq \frac{1}{H} \left(\int_0^1 \int_0^1 (1 + x + t)^2 \, dt dx \right)^{\frac{1}{2}} \left(\int_0^1 |\varphi_1(t) - \varphi_2(t)|^2 \, dt \right)^{\frac{1}{2}} \\ &\leq \left(\int_0^1 |\varphi_1(t) - \varphi_2(t)|^2 \, dt \right)^{\frac{1}{2}} \\ &= \lambda H \left(\int_0^1 \left| \frac{\varphi_1(t) - \varphi_2(t)}{\lambda H} \right|^2 \, dt \right)^{\frac{1}{2}} \\ &= \lambda H \rho(\varphi_1, \varphi_2). \end{split}$$

Since $\lambda H < 1$, T is a strictly contractive operator. Then by Theorem 2.1 the equation (3.2) has a unique solution $\varphi^* \in L^2([0,1])$, where $\varphi^* = \lim_{r \to \infty} \varphi_r$ for

$$\varphi_r(x) = \lambda \int_0^1 (1+x+t) \,\varphi_{r-1}(t) \,dt$$

and $\varphi_0 \in L^2([0,1])$ is an arbitrary function.

Let $\psi \in L^2([0,1])$ be a solution of inequality (3.1) and

$$\psi(x) - \lambda \int_0^1 (1+x+t) \,\psi(t) \,dt =: h(x).$$
(3.3)

Obviously, we have $|h(x)| \leq \epsilon$ for all $x \in [0, 1]$. Then we can conclude that the solution of equation

$$\psi(x)=h(x)+\lambda\int_0^1(1+x+t)\,\psi(t)\,dt$$

is $\psi^* \in L^2([0,1])$, where $\psi^* = \lim_{r \to \infty} \psi_r$ for

$$\psi_r(x) = h(x) + \lambda \int_0^1 (1+x+t) \,\psi_{r-1}(t) \,dt$$

and $\psi_0 \in L^2([0,1])$ is an arbitrary function.

For
$$\varphi_0(x) = \psi_0(x) = 0$$
, we get,
 $|\varphi_1(x) - \psi_1(x)| = |h(x)| \le \epsilon$,
 $|\varphi_2(x) - \psi_2(x)| = \left|h(x) + \lambda \int_0^1 (1 + x + t)(\psi_1(t) - \varphi_1(t))dt\right| \le \epsilon \left(1 + \lambda \int_0^1 |1 + x + t| dt\right)$
 $|\varphi_3(x) - \psi_3(x)| = \left|h(x) + \lambda \int_0^1 (1 + x + t_2)(\psi_2(t_2) - \varphi_2(t_2))dt_2\right|$
 $\le \epsilon + \epsilon \lambda \int_0^1 |1 + x + t_2| \left(1 + \lambda \int_0^1 |1 + t_2 + t_1| dt_1\right) dt_2$
 $\le \epsilon \left(1 + \lambda \int_0^1 |1 + x + t_2| dt_2 + \lambda^2 \int_0^1 |1 + x + t_2| \int_0^1 |1 + t_2 + t_1| dt_1 dt_2\right)$
.....

$$\begin{split} |\varphi_{r}(x) - \psi_{r}(x)| &= \left| h(x) + \lambda \int_{0}^{1} (1 + x + t) (\psi_{r-1}(x) - \varphi_{r-1}(x)) dt \right| \\ &\leq \epsilon \left(1 + \lambda \int_{0}^{1} |1 + x + t_{r-1}| dt_{r-1} + t_{r-1} |dt_{r-1} + t_{r-2}| dt_{r-2} dt_{r-1} + \cdots \right) \\ &+ \lambda^{2} \int_{0}^{1} |1 + x + t_{r-1}| \int_{0}^{1} |1 + t_{r-1} + t_{r-2}| \int_{0}^{1} |1 + t_{r-2} + t_{r-3}| \cdots \\ &\cdots + \lambda^{r-1} \int_{0}^{1} |1 + x + t_{r-1}| \int_{0}^{1} |1 + t_{r-1} + t_{r-2}| \int_{0}^{1} |1 + t_{r-2} + t_{r-3}| \cdots \\ &\cdots \int_{0}^{1} |1 + t_{2} + t_{1}| dt_{1} \cdots dt_{r-3} dt_{r-2} dt_{r-1} \right) \\ &\leq \epsilon \left(1 + \lambda H + (\lambda H)^{2} + \dots + (\lambda H)^{r-1} \right) = \epsilon \left(\frac{1 - (\lambda H)^{r}}{1 - \lambda H} \right), \end{split}$$

as $r \to \infty$, we obtain

$$|\varphi^*(x) - \psi^*(x)| \le \frac{1}{1 - \lambda H} \epsilon.$$

Let us choose $S = \frac{1}{1 - \lambda H}$, hence $|\varphi^*(x) - \psi^*(x)| \leq S\epsilon$, and $0 < \lambda H < 1$, where S is the Hyers-Ulam stability constant for (1.1). Hence, by the virtue of Definition 2.3 the Fredholm integral equation (1.1) has the Hyers-Ulam stability.

The following theorem shows the Hyers-Ulam-Rassias stability of the homogeneous Fredholm integral equation of second kind (1.1).

Theorem 3.2 Consider H a fixed real number such that $H \ge \frac{5}{2}$ and $\lambda H < 1$. Let $\varphi : [0,1] \to \mathbb{R}$ a continuous function and the kernel $K : [0,1] \times [0,1] \to \mathbb{R}$ defined by K(x,t) = 1 + x + t such that

$$\int_0^1 |1 + x + t| \theta(t) dt \le \theta(x) \int_0^1 |1 + x + t| dt,$$

for all $x \in [0,1]$, where $\theta \in C(\mathbb{R}_+, \mathbb{R}_+)$. If φ is such that

$$\left|\varphi(x) - \lambda \int_0^1 (1+x+t)\,\varphi(t)\,dt\right| \le \theta(x),\tag{3.4}$$

then there exists a solution $\psi : [0,1] \to \mathbb{R}$ of the Fredholm integral equation (1.1) and a real constant S such that $|\varphi(x) - \psi(x)| \leq S \theta(x)$ for all $x \in [0,1]$.

Proof By a similar procedure to the previous we define a strictly contractive operator T as in (3.2) since $\lambda H < 1$. By (3.3) we have $|h(x)| \leq \theta(x)$ for all $x \in [0, 1]$. As in the previous proof, for $\varphi_0(x) = \psi_0(x) = 0$, we get,

$$\begin{aligned} |\varphi_{1}(x) - \psi_{1}(x)| &= |h(x)| \leq \theta(x), \\ |\varphi_{2}(x) - \psi_{2}(x)| &= \left| h(x) + \lambda \int_{0}^{1} (1 + x + t)(\psi_{1}(t) - \varphi_{1}(t))dt \right| \leq \theta(x) \left(1 + \lambda \int_{0}^{1} |1 + x + t| dt \right) \\ |\varphi_{3}(x) - \psi_{3}(x)| &= \left| h(x) + \lambda \int_{0}^{1} (1 + x + t_{2})(\psi_{2}(t_{2}) - \varphi_{2}(t_{2}))dt_{2} \right| \\ &\leq \theta(x) + \theta(x) \lambda \int_{0}^{1} |1 + x + t_{2}| \left(1 + \lambda \int_{0}^{1} |1 + t_{2} + t_{1}| dt_{1} \right) dt_{2} \\ &\leq \theta(x) \left(1 + \lambda \int_{0}^{1} |1 + x + t_{2}| dt_{2} + \lambda^{2} \int_{0}^{1} |1 + x + t_{2}| \int_{0}^{1} |1 + t_{2} + t_{1}| dt_{1} dt_{2} \right) \end{aligned}$$

SIMÕES and SELVAN/Turk J Math

as $r \to \infty$, we obtain

$$|\varphi^*(x) - \psi^*(x)| \le \frac{1}{1 - \lambda H} \,\theta(x)$$

for all $x \in [0, 1]$. Let us choose $S = \frac{1}{1 - \lambda H}$, hence $|\varphi^*(x) - \psi^*(x)| \le S\theta(x)$, and $0 < \lambda H < 1$. Hence, by the virtue of Definition 2.5 the Fredholm integral equation (1.1) has the Hyers-Ulam-Rassias stability.

Now, we are going to establish the Hyers-Ulam stability of the nonhomogeneous Fredholm integral equation of second kind (1.2).

Theorem 3.3 Consider H a fixed real number such that $H \ge \frac{5}{2}$ and $\lambda H < 1$. Let $\varphi : [0,1] \to \mathbb{R}$ a continuous function and the kernel $K : [0,1] \times [0,1] \to \mathbb{R}$ defined by K(x,t) = 1 + x + t. If φ is such that

$$\left|\varphi(x) - x - \lambda \int_0^1 (1 + x + t) \varphi(t) dt\right| \le \epsilon,$$
(3.5)

where $\epsilon \ge 0$ then there exists a solution $\psi : [0,1] \to \mathbb{R}$ of the nonhomogeneous Fredholm integral equation (1.2) and a real constant S such that $|\varphi(x) - \psi(x)| \le S \epsilon$ for all $x \in [0,1]$.

Proof Let us define an operator T as

$$(T\varphi)(x) = x + \lambda \int_{0}^{1} (1 + x + t) \varphi(t) dt, \quad \varphi \in L^{2}([0, 1]).$$
 (3.6)

We have $T\varphi \in L^2([0,1])$ and T a self-mapping of $L^2([0,1])$. The solution of the equation (3.6) is the fixed point of the strictly contractive operator T since $\lambda H < 1$. By Theorem 2.1 the equation (3.6) has a unique solution $\varphi^* \in L^2([0,1])$, where $\varphi^* = \lim_{r \to \infty} \varphi_r$ for

$$\varphi_r(x) = x + \lambda \int_0^1 (1 + x + t) \varphi_{r-1}(t) dt$$

93

and $\varphi_0 \in L^2([0,1])$ is an arbitrary function.

Let $\psi \in L^2([0,1])$ be a solution of inequality (4) and

$$\psi(x) - x - \lambda \int_0^1 (1 + x + t) \,\psi(t) \, dt =: h(x).$$

We have $|h(x)| \leq \epsilon$ for all $x \in [0,1]$. Then we can conclude that the solution of equation

$$\psi(x) = h(x) + x + \lambda \int_0^1 (1+x+t)\,\psi(t)\,dt$$

is $\psi^* \in L^2([0,1])$, where $\psi^* = \lim_{r \to \infty} \psi_r$ for

$$\psi_r(x) = h(x) + x + \lambda \int_0^1 (1 + x + t) \,\psi_{r-1}(t) \,dt$$

and $\psi_0 \in L^2([0,1])$ is an arbitrary function.

For $\varphi_0(x) = \psi_0(x) = 0$, we get,

$$\begin{split} |\varphi_r(x) - \psi_r(x)| &= \left| h(x) + \lambda \int_0^1 (1 + x + t) (\psi_{r-1}(x) - \varphi_{r-1}(x)) dt \right| \\ &\leq \epsilon \left(1 + \lambda \int_0^1 |1 + x + t_{r-1}| dt_{r-1} + \lambda^2 \int_0^1 |1 + x + t_{r-1}| \int_0^1 |1 + t_{r-1} + t_{r-2}| dt_{r-2} dt_{r-1} + \cdots \right) \\ &\cdots + \lambda^{r-1} \int_0^1 |1 + x + t_{r-1}| \int_0^1 |1 + t_{r-1} + t_{r-2}| \int_0^1 |1 + t_{r-2} + t_{r-3}| \cdots \\ &\cdots \int_0^1 |1 + t_2 + t_1| dt_1 \cdots dt_{r-3} dt_{r-2} dt_{r-1} \right) \\ &\leq \epsilon \left(1 + \lambda H + (\lambda H)^2 + \dots + (\lambda H)^{r-1} \right) = \epsilon \left(\frac{1 - (\lambda H)^r}{1 - \lambda H} \right), \end{split}$$

as $r \to \infty$, we obtain

$$|\varphi^*(x) - \psi^*(x)| \le \frac{1}{1 - \lambda H} \epsilon.$$

Let us choose $S = \frac{1}{1 - \lambda H}$, hence $|\varphi^*(x) - \psi^*(x)| \le S\epsilon$, and $0 < \lambda H < 1$, where S is the Hyers-Ulam stability constant for (1.2). Hence, by the virtue of Definition 2.4 the nonhomogeneous Fredholm integral equation (1.2) has the Hyers-Ulam stability.

Finally, the following corollary proves the Hyers-Ulam-Rassias stability of the nonhomogeneous Fredholm integral equation of second kind (1.2).

Corollary 3.4 Consider H a fixed real number such that $H \ge \frac{5}{2}$ and $\lambda H < 1$. Let $\varphi : [0,1] \to \mathbb{R}$ a continuous function and the kernel $K : [0,1] \times [0,1] \to \mathbb{R}$ defined by K(x,t) = 1 + x + t such that

$$\int_0^1 |1 + x + t| \theta(t) dt \le \theta(x) \int_0^1 |1 + x + t| dt,$$

for all $x \in [0,1]$, where $\theta \in C(\mathbb{R}_+, \mathbb{R}_+)$. If φ is such that

$$\left|\varphi(x) - x - \lambda \int_0^1 (1 + x + t) \varphi(t) dt\right| \le \theta(x), \tag{3.7}$$

then there exists a solution $\psi : [0,1] \to \mathbb{R}$ of the nonhomogeneous Fredholm integral equation (1.2) and a real constant S such that $|\varphi(x) - \psi(x)| \leq S \theta(x)$ for all $x \in [0,1]$.

4. Examples

In order to illustrate our results we will present some examples.

Let us consider the nonhomogeneous Fredholm integral equation of second kind (1.2) defined by

$$\varphi(x) = x + \lambda \int_0^1 (1 + x + t) \varphi(t) dt$$

for all $x \in [0,1]$ and $\lambda = \frac{1}{5}$. Let $H = \frac{13}{5}$ and the perturbation of the solution $\varphi(x) = \frac{587}{500}x + \frac{28}{100}$.

We realize that all conditions of Theorem 3.3 are satisfied. In fact $\lambda H = \frac{13}{25} < 1$ and φ is a continuous function such that

$$\left|\varphi(x) - x - \lambda \int_0^1 (1 + x + t) \varphi(t) \, dt\right| = \left|\frac{3}{5000}x + \frac{1}{3000}\right| \le \frac{7}{7500} := \epsilon.$$

By the exact solution $\psi(x) = \frac{210}{179}x + \frac{50}{179}$, we realize that

$$|\varphi(x) - \psi(x)| = \left|\frac{73}{89500}x + \frac{3}{4475}\right| \le \frac{1}{1 - \lambda H} \epsilon = \frac{7}{3600}.$$
(4.1)

To illustrate the inequality (4.1), we have the Figure 1.

Let us consider the same nonhomogeneous Fredholm integral equation of second kind (1.2) but now with $\lambda = \frac{1}{100}$. Let H = 3 and the perturbation of the solution $\varphi(x) = \frac{10052}{10000}x + \frac{851}{100000}$. We have $\lambda H = \frac{3}{100} < 1$ and φ a continuous function such that

$$\left|\varphi(x) - x - \lambda \int_0^1 (1 + x + t) \,\varphi(t) \, dt\right| = \left|\frac{5334}{6000000}x + \frac{341}{6000000}\right| \le \frac{227}{2400000} := \epsilon.$$

By the exact solution $\psi(x) = \frac{118200}{117599}x + \frac{1000}{117599}$, we realize that

$$|\varphi(x) - \psi(x)| = \left| \frac{26287}{293997500} x + \frac{76749}{11759900000} \right| \le \frac{1}{1 - \lambda H} \epsilon = \frac{227}{2328000}.$$
 (4.2)

95

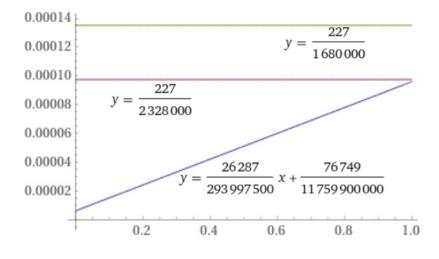


Figure 1.

If we consider H = 30, we get a worse result but still acceptable. We get,

$$|\varphi(x) - \psi(x)| = \left| \frac{26287}{293997500} x + \frac{76749}{11759900000} \right| \le \frac{1}{1 - \lambda H} \epsilon = \frac{227}{1680000}.$$
 (4.3)

Therefore, we have that the nonhomogeneous Fredholm integral equation of second kind (1.2) has the Hyers-Ulam stability.

To illustrate the inequalities (4.2) and (4.3), we have the Figure 2.

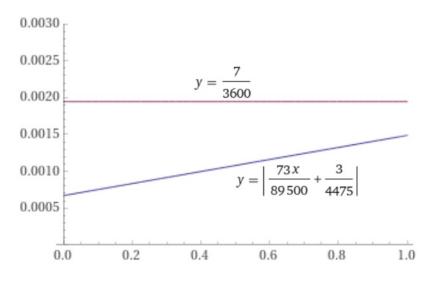


Figure 2.

Acknowledgment

This research was supported by the Center of Mathematics and Applications of University of Beira Interior (CMA-UBI) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), under the reference UIDB/00212/2020, and by the Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), under the reference UIDB/04106/2020.

References

- [1] Alsina C, Ger R. On some inequalities and stability results related to the exponential function. Journal of Inequalities Applications 1998; 2 (4): 373-380.
- [2] Andras S, Baricz A, Pogány T. Ulam-Hyers stability of singular integral equations, via weakly Picard operators. Fixed Point Theory 2016; 17 (1): 21-36.
- [3] Aoki T. On the stability of the linear transformation in Banach Spaces. Journal of the Mathematical Society of Japan 1950; 2 (1-2): 64-66.
- [4] Başci Y, Öğrekçi S, Misir A. On Ulam's type stability criteria for fractional integral equations including Hadamard type singular kernel. Turkish Journal of Mathematics 2020; 44 (4): 1498-1509.
- [5] Belbali H, Benbachir M. Existence results and Ulam-Hyers stability to impulsive coupled system fractional differential equations. Turkish Journal of Mathematics 2021; 45: 1368-1385.
- Bourgin DG. Classes of transformations and bordering transformations. Bulletin of the American Mathematical Society 1951; 57 (4): 223-237.
- [7] Castro LP, Simões AM. Different Types of Hyers-Ulam-Rassias Stabilities for a Class of Integro-Differential Equations. Filomat 2017; 31 (17): 5379-5390.
- [8] Castro LP, Simões AM. Hyers-Ulam and Hyers-Ulam-Rassias stability of a class of Hammerstein integral equations. American Institute of Physics, Conference Proceedings 2017; 1798 (1): 1-10.
- [9] Castro LP, Simões AM. Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric. Mathematical Methods in the Applied Sciences 2018; 41 (17): 7367-7383.
- [10] Castro LP, Simões AM. Hyers-Ulam and Hyers-Ulam-Rassias Stability for a Class of Integro-Differential Equations. Mathematical Methods in Engineering: Theoretical Aspects. Tas K, Baleanu D, Tenreiro Machado JA (edts.), Springer, 2019; 81-94.
- [11] Chung J. Hyers-Ulam stability theorems for Pexiders equations in the space of Schwartz distributions. Archiv der Mathematik 2005; 84 (6): 527-537.
- [12] Gachpazan M, Baghani O. Hyers-Ulam stability of Volterra Integral equation. International Journal of Nonlinear Analysis and Applications 2010; 1 (2); 19-25.
- [13] Gachpazan M, Baghani O. Hyers-Ulam stability of Nonlinear Integral Equation. Fixed Point Theory and Applications 2010; 2010: 1-6.
- [14] Gu Z, Huang J. Hyers-Ulam stability of Fredholm Integral equation. Mathematica Aeterna 2015; 5 (2): 257-261.
- [15] Hua L, Huang J, Li Y. Hyers-Ulam stability of some Fredholm Integral equation. International Journal of Pure and Applied Mathematics 2015; 104 (1): 107-117.
- [16] Hyers DH. On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America 1941; 27 (4): 222-224.
- [17] Li T, Zada A, Faisal S. Hyers-Ulam stability of nth order linear differential equations. Journal of Nonlinear Science and Applications 2016; 9 (5): 2070-2075.

- [18] Luo D, Abdeljawad T, Luo Z. Ulam-Hyers stability results for a novel nonlinear Nabla Caputo fractional variableorder difference system. Turkish Journal of Mathematics 2021; 45 (1): 456-470.
- [19] Murali R, Selvan AP. On the Generlized Hyers-Ulam Stability of Linear Ordinary Differential Equations of Higher Order. International Journal of Pure and Applied Mathematics 2017; 117 (12): 317-326.
- [20] Murali R, Selvan AP. Hyers-Ulam-Rassias Stability for the Linear Ordinary Differential Equation of Third order. Kragujevac Journal of Mathematics 2018; 42 (4): 579-590.
- [21] Murali R, Selvan AP. Hyers-Ulam stability of nth order differential equation. Proyectiones 2019; 38 (3): 553-566.
- [22] Murali R, Selvan AP. Fourier Transforms and Ulam Stabilities of Linear Differential Equations. Frontiers in Functional Equations and Analytic Inequalities, Springer, Cham 2019; 195-217.
- [23] Murali R, Selvan AP, Park C. Ulam stability of linear differential equations using Fourier transform. AIMS Mathematics 2020; 5 (2): 766-780.
- [24] Rassias JM, Murali R, Selvan AP. Mittag-Leffler-Hyers-Ulam Stability of Linear Differential Equations using Fourier Transforms. Journal of Computational Analysis and Applications 2021; 29 (1): 68-85.
- [25] Rassias TM. On the stability of the linear mappings in Banach Spaces. Proceedings of the American Mathematical Society 1978; 72 (2): 297-300.
- [26] Rassias TM. On the stability of functional equations and a problem of Ulam. Acta Applicandae Mathematicae 2000; 62 (1): 23-130.
- [27] Ravi K, Murali R, Selvan AP. Stability for a Particular Fredholm Integral equation. Asian Journal of Mathematics and Computer Research 2016; 11 (4): 325-333.
- [28] Ravi K, Murali R, Selvan AP. Hyers-Ulam Stability of a Fredholm Integral equation with Trigonometric Kernels. Universal Journal of Mathematics 2016; 1 (1): 24-29.
- [29] Rus IA. Ulam Stabilities of Ordinary Differential Equations in a Banach Space. Carpathian Journal of Mathematics 2010; 26 (1): 103-107.
- [30] Takahasi SE, Miura T, Miyajima S. On the Hyers-Ulam stability of the Banach space-valued differential equation $y' = \lambda y$. Bulletin of the Korean Mathematical Society 2002; 39 (2): 309-315.
- [31] Ulam SM. A Collection of Mathematical Problems. Interscience Publishers, New York, 1960.
- [32] Xue J. Hyers-Ulam stability of linear differential equations of second order with constant coefficient. Italian Journal of Pure and Applied Mathematics 2014; 32: 419-424.