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Abstract: In this study, a collocation method using Euler method for solving systems of linear integro-differential equa-
tions is presented. The solution process is illustrated and various physically relevant results are obtained. Comparison
of the obtained results with exact solutions and solutions obtained by other methods show that the proposed method
is an effective and highly promising for linear integro-differential equation systems. All of numerical calculations have
been made on a computer using a program written in Matlab.
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1. Introduction
Since, the some problems in applied science cannot be expressed with a single equation; differential, integral, or
with a set of integro differential equations consisted of their linear combination can be used for expressing of these
problems [37]. These types of systems are encountered in many branches of physics and engineering. Differential
equation systems have been attracted many interests in the field of elasticity theory [10], dynamics [18], fluid
mechanics [1], circuit problems [43], oscillation problems [14, 32], quantum dynamics [12] etc. Although, the
integral and integro-differantial equations systems are used in many fields of science such as electromagnetic
theory [7], thermoelasticity [20], biology [15], mechanics [38], wave refraction [8], there are no general method for
solving these systems. Therefore, finding new solution systems is an important task for modeling and developing
new applications in the field of physics and engineering. Since, it is usually difficult to find analytical solutions
of IDE, a numerical approximation is required. In recent years, many numerical methods were utilized for
the solution of IDES such as; Adomian decomposition method [5], the homotopy perturbation [39, 41] and
the modified homotopy perturbation method [17], Bessel collocation method [42], the variational iteration
method [34], the Tau method [33], Bernstein operational matrix approach [22], the Spectral method [3], the
Sinc collocation method [16], the Legendre matrix method [35], the Lagrange method [40], the differential
transformation method [4], the Taylor collocation method [13], the Galerkin method [19], the Chebyshev
polynomial method [2], the Fibonacci polynomial method [24]. Among them, Euler collocation method is
a promising system that has many advantages; it is simple to construct the main matrix equations and to
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increase the efficiency and easiness in the programming. In addition, this method has interesting features. One
of them is finding the analytical solutions if the system has exact solution that are polynomial functions. If
the solution of the system is not polynomial function, the upper bound for error can be established by using
this method. Another feature of the method is shorter computation time and improvement of overall accuracy.
According to the unique properties of the system many recent study used this system for solving such kind
of problems. Recently, Mirzaee et al. have studied the Euler matrix method for numerical solutions of the
linear and a class of nonlinear FIDEs [25], the telegraph equations [26], the systems of linear Volterra integral
equations [27], high-order pantograph delay Volterra IDEs [28], nonlinear Volterra type Fractional IDEs [29],
systems of high-order linear differential–difference equations [30] and second-order linear hyperbolic partial
differential equations [31].
In this study a new method based on the Euler polynomials has been suggested for obtaining the closest
numerical solutions to exact solution with the aid of Euler collocation method for IDEs. Then, the devoloped
method was utilized for the solution of some selected systems of IDEs which are particularly important in the
field of wind ripple in the desert, nano-hydrodynamics, population growth model, glass-forming process, and
oceanography. Numerical examples have been illustrated to demonstrate the efficiency and applicably of the
method developed. The results of present method are compared with some existing solutions such as Bessel
collocation, Bernstein collocation, Sinc collocation, Adomian decomposition, Homotopi pertubation, Chebyshev
wavelet, etc. and present method is found superior by means of accuracy.
In this study, system of linear Volterra - Fredholm integro-differential equation is shown as

m1∑
k=0

J∑
j=1

P k
ij(t)y

(k)
j (t) = gi (t) +

m2∑
r=0

J∑
j=1

b∫
a

Kr
fij (t, s) y

(r)
j (s) ds+

m3∑
l=0

J∑
j=1

t∫
a

Kl
vij (t, s) y

(l)
j (s) ds (1.1)

i = 1, 2, . . . , J, m = max {m1,m2,m3} , a ≤ t, s ≤ b with the condition of

m−1∑
k=0

(
ajiky

(k)
j (a) + bjiky

(k)
j (b)

)
= µji, j = 1, . . . , J, i = 0, 1, . . . ,m− 1 (1.2)

where, P k
ij(t) and gi(t) are functions defined on the interval a ≤ t ≤ b ; aik, bik and µji are appropriate

constants; yj(t) is an unknown solution function to be determined. For this purpose, the Euler polynomials
solution of the problem Equation (1.1) and Equation (1.2) in the finite series form is assumed

yj(t) ∼= yjN (t) =

N∑
n=0

ajnEn(t), j = 1, 2, . . . , J (1.3)

where En(t) indicates the Euler-Taylor polynomials which are described as

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, |t| < π (1.4)

Euler polynomials are strictly connected with Bernoulli ones and are used in the Taylor expansion in a
neighborhood of the origin of trigonometric and hyperbolic secant functions. Recursive computation of Euler
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polynomials can be obtained by using the following formula [9];

En(t) +

N∑
k=0

(
n
k

)
Ek(t) = 2tn, n = 1, 2, ... (1.5)

Also, Euler polynomials En(t) can be defined as polynomials of degree n ≥ 0 satisfying the conditions

E′
m(t) = mEm−1(t),m ≥ 1 (1.6)

By means of Equation (1.4), Equation (1.5) and Equation (1.6), the first Euler polynomials are described as
E0(t) = 1,

E1(t) = t− 1
2 ,

E2(t) = t2 − t,

E3(t) = t3 − 3
2 t

2 + 1
4 ,

E4(t) = t4 − 2t3 + t,

E5(t) = t5 − 5
2 t

4 + 5
2 t

2 − 1
2 ,

E6(t) = t6 − 3t5 + 5t3 − 3t,

E7(t) = t7 − 7
2 t

6 + 35
4 t4 − 21

2 t2 + 17
8 ,

2. Matrix relations for Euler polynomials

The system of Volterra-Fredholm integro-differential Equation (1.1) is considered to create the matrices of each
term. The desired solution yj(t) defined by the truncated Euler series Equation (1.3) of Equation (1.1) is
modified to extract the matrix form, for n = 0, 1, 2, . . . , N as

yj(t) = E(t)Aj , j = 1, 2, . . . , J (2.1)

where
E(t) =

[
E0(t) E1(t) . . . EN (t)

]

A1 =


a10
a11
...

a1N

 , A2 =


a20
a21
...

a2N

 , . . . , AJ =


aJ0
aJ1

...
aJN


T(t) =

[
1 t ... tN

]

(S−1)T =



1 0 0 . . . 0
1

2

(
1
0

)
1 0 . . . 0

1

2

(
2
0

)
1

2

(
2
1

)
1 . . . 0

...
...

... . . . ...
1

2

(
N
0

)
1

2

(
N
1

)
1

2

(
N
2

)
. . . 1


(N+1)×(N+1)
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T(t) = E(t)(S)−1 ⇒ E(t) = T(t)S (2.2)

can be expressed as
yj(t) = T(t)SAj

The relation between the matrix E(t) and its derivatives are

E′(t) = T′(t)S = T(t)BS

where

B =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
... . . . ...

0 0 0 0 N
0 0 0 0 0


(N+1)×(N+1)

, B0 =


1 0 0 . . . 0
0 1 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 0
0 0 0 . . . 1


(N+1)×(N+1)

y
(k)
j (t) = Ek(t)A = T(t)BkSAj , k = 0, 1, 2, ... (2.3)

Y(k)(t) =



y
(k)
1 (t)

y
(k)
2 (t)

...

y
(k)
J (t)


=



T(t)BkSA1

T(t)BkSA2

...

T(t)BkSAJ


= T(t)BkSA

Besides, the matrix form of the kernel function Kr
fij (t, s) and Kl

vij (t, s) in Equation (1.1) is computed as
follows

Kr
fij (t, s) = [kfmn], m, n = 0, 1, . . . , N

kfmn =
1

m!n!
.
∂m+nKr

fij (0, 0)

∂tm∂sn

Kr
fij (t, s) = T(t)Kr

fijT(s)
T (2.4)

b∫
a

Kr
fij (t, s) y

(r)
j (s) ds = T(t)Kr

fijQfBrSAj = Fr
ij(t)Aj (2.5)

Fr
ij(t) = T(t)Kr

fijQfBrS

Qf = [qmn] =

b∫
a

TT (s)T (s) ds

m, n = 0, 1, . . . , N qmn =
bm+n+1 − am+n+1

m+ n+ 1
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Kl
vij (t, s) = [kvmn], m, n = 0, 1, . . . , N

kvmn =
1

m!n!
.
∂m+nKl

vij (0, 0)

∂tm∂sn

Kl
vij (t, s) = T(t)Kl

vijT(s)
T (2.6)

t∫
a

Kl
vij (t, s) y

(l)
j (s) ds = T(t)Kl

vijQv(t)BlSAj = Vl
ij(t)Aj (2.7)

Vl
ij(t) = T(t)Kl

vijQv(t)BlS

Qv(t) = [qmn(t)] =

t∫
a

TT (s)T (s) ds

m, n = 0, 1, . . . , N qmn(t) =
tm+n+1 − am+n+1

m+ n+ 1

By substituting the matrix relations Equation (2.3), Equation (2.5) and Equation (2.7) into Equation (1.1):

m1∑
k=0

J∑
j=1

P k
ij(t)T(t)BkSAj = gi (t) +

m2∑
r=0

J∑
j=1

Fr
ij(t)Aj +

m3∑
l=0

J∑
j=1

Vl
ij(t)Aj (2.8)

m1∑
k=0

Pk(t)T(t)BkSA = G (t) +

m2∑
r=0

Fr(t)A +

m3∑
l=0

Vl(t)A

where

Pk =



P k
11 P k

12 · · · P k
1J

P k
21 P k

22 · · · P k
2J

...
... . . . ...

P k
J1 P k

J2 · · · P k
JJ


, T(t) =



T(t) 0 · · · 0

0 T(t) · · · 0

...
... . . . ...

0 0 · · · T(t)


, A =



A1

A2

...

AJ



Bk =



Bk 0 · · · 0

0 Bk · · · 0

...
... . . . ...

0 0 · · · Bk


, S =



S 0 · · · 0

0 S · · · 0

...
... . . . ...

0 0 · · · S


, G(t) =



g1(t)

g2(t)

...

gJ(t)


103



ELMACI et al./Turk J Math

Fr(t) =



Fr
11(t) Fr

12(t) · · · Fr
1J(t)

Fr
21(t) Fr

22(t) · · · Fr
2J(t)

...
... . . . ...

Fr
J1(t) Fr

J2(t) · · · Fr
JJ(t)


, Vl(t) =



Vl
11(t) Vl

12(t) · · · Vl
1J(t)

Vl
21(t) Vl

22(t) · · · Vl
2J(t)

...
... . . . ...

Vl
J1(t) Vl

J2(t) · · · Vl
JJ(t)


and then by using the collocation points

tu = a+
b− a

N
u, u = 0, 1, · · · , N

we obtain the system of matrix equations

m1∑
k=0

Pk(tu)T(tu)BkSA = G (tu) +

m2∑
r=0

Fr(tu)A +

m3∑
l=0

Vl(tu)A (2.9)

and their the fundamental matrix form

m1∑
k=0

PkTBkSA = G +

m2∑
r=0

FrA+

m3∑
l=0

VlA (2.10)

where

[Pk]J(N+1)×J(N+1) , TJ(N+1)×J(N+1), Bk
J(N+1)×J(N+1), SJ(N+1)×J(N+1), AJ(N+1)×1,

GJ(N+1)×1, [Fr]J(N+1)×J(N+1), [Vl]J(N+1)2×J(N+1).

or briefly
WA = G ⇔ [W : G] (2.11)

where

W =

m1∑
k=0

PkTBkS−
m2∑
r=0

FrA−
m3∑
l=0

VlA

Besides, we can find for the condition Equation (1.2), by using the relation Equation (2.3),

m−1∑
k=0

(
ajik T (a)BkS + bjik T (b)BkS

)
A = [µjk]

or [
Uk : µk

]
, k = 0, 1, . . .m− 1. (2.12)

Consequently, any rows of Equation (2.11) by the rows matrix Equation (2.12) is replaced, hence the desired
augmented matrix or the resulted matrix equation comes out as

W̃ A = G̃ ⇒
[
W̃: G̃

]
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If rank W̃ = rank
[
W̃: G̃

]
= J(N + 1) then we can write A = W̃

−1
G̃ .

By solving the system, the unknown Euler coefficients matrix is determined and the Euler polynomial solu-
tion is obtained.

yj(t) ∼= yjN (t) =

N∑
n=0

ajnEn(t), a ≤ t ≤ b, i = 1, 2, . . . , n

However, when det(W̃) = 0 , if rank W̃ = rank
[
W̃: G̃

]
< J(N + 1) , then we may find a particular

solution. Otherwise if rank W̃ ̸= rank
[
W̃: G̃

]
< J(N + 1) , then there is no solution.

3. Accuracy of solution
The accuracy of the present method is tested. We define the residual function using the linear parts of Equation
(1.1) for the present method as [6, 21, 36].

Rj,N (t) = L[yj,N (t)]− gj(t) (3.1)

where the linear part is

L[yj,N (t)] =

m1∑
k=0

J∑
j=1

P k
ij(t)y

(k)
j,N (t)−

m2∑
r=0

J∑
j=1

b∫
a

Kr
fij (t, s) y

(r)
j,N (s) ds−

m3∑
l=0

J∑
j=1

t∫
a

Kl
vij (t, s) y

(l)
j,N (s) ds.

By means of the residual function defined by Rj,N (t) and the mean value of the function |Rj,N (t)| on the
interval [a, b] , the accuracy of the solution can be controlled and the error can be estimated [6, 36]. Thus, we
can estimate the upper bound of the mean error Rj,N as follows:∣∣∣∣∣∣

b∫
a

Rj,N (t) dt

∣∣∣∣∣∣ ⩽
b∫

a

|Rj,N (t) dt|

b∫
a

|Rj,N (t)| dt = (b− a) |Rj,N (c)| , a ⩽ c ⩽ b

⇒

∣∣∣∣∣∣
b∫

a

Rj,N (t) dt

∣∣∣∣∣∣ = (b− a) |Rj,N (c)|

⇒ (b− a) |Rj,N (c)| ⩽
b∫

a

|Rj,N (t)| dt

|Rj,N (c)| ⩽

b∫
a

|Rj,N (t)| dt

b− a
= Rj,N

Kürkçü and coworkers developed the convergence of Dickson polynomial solution of the nonlinear model problem
using the residual function in Banach space [21]. We will use the convergence criterions for solutions system of
Volterra-Fredholm integro differantial equations with Euler polynomials.
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4. Applications
In this section, four examples are solved with the present method, then the obtained results are compared with
the exact solutions and solutions obtained by other methods. To do this, a special module on Matlab run on
PC with 8 GB RAM and i7-8550M processor with 1.80 Ghz.
On the other hand, it is worth specifying that CPU running time corresponding to different N is separately
evaluated via timing module on Matlab, after quitting the local kernel of our module. Also, by making use of
a computational order of convergence formula deployed in [11], the experimental order of timing complexity
(EOTN ) versus N can be established in accordance with the main structure of the present method as

EOTN =
log |τN−1/τN |
log |(N − 1)/N |

,

where τN is an exact time operated by timing module corresponding to N. Thereby, timing complexity of the
present method is discussed in the numerical applications.
Example 1. [19] Consider the following system of linear Volterra-Fredholm integro differential equations

y′′′1 (t) + ty′′2 (t)− y′1(t) + 2ty2(t) = g1(t) +

2∫
0

(
(ts2)y′1(s) + tsy′′1 (s)− (ts2)y′2(s)

)
ds

+

t∫
0

(
(t2s3)y′′′1 (s)− tsy′′2 (s) + (2t3s)y′′′2 (s)

)
ds

y′′′2 (t) + ty′′1 (t)− ty′2(t)− y1(t) = g2(t) +

2∫
0

(
(ts2)y′1(s) + t2sy′′1 (s)− (2ts)y′′′2 (s)

)
ds

+

t∫
0

(
(3t3s)y1(s)− t3s2y′′2 (s)

)
ds

y1(0) = −1, y1(2) = 1, y′1(0) = 1

y2(0) = 2, y2(2) = 8, y′2(0) = −3

where

g1(t) = 5 +
218

15
t+ 3t2 − 3t3 + 8t4 − 12t5 − 3

2
t6

g2(t) = 13 +
602

15
t+ 2t2 − 7t3 +

3

2
t5 − 5

3
t6 +

9

2
t7 − 3

5
t8

with exact solutions y1(t) = t3 − 2t2 + t− 1, y2(t) = 2t3 − t2 − 3t+ 2 . To use the Euler matrix formulation
illustrated above, we define the following for N = 3 in 0 ≤ t, s ≤ 2 :

P0 (t) =

 0 2t

−1 0

 , P1 (t) =

−1 0

0 −t

 , P2 (t) =

0 t

t 0

 , P3 (t) =

1 0

0 1
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P0 =



P0(0) 0 0 0

0 P0(2/3) 0 0

0 0 P0(4/3) 0

0 0 0 P0(2)


, P1 =



P1(0) 0 0 0

0 P1(2/3) 0 0

0 0 P1(4/3) 0

0 0 0 P1(2)



P2 =



P2(0) 0 0 0

0 P2(2/3) 0 0

0 0 P2(4/3) 0

0 0 0 P2(2)


, P3 =



P3(0) 0 0 0

0 P3(2/3) 0 0

0 0 P3(4/3) 0

0 0 0 P3(2)



Kf0 (t) =

0 0

0 0

 ,Kf1 (t) =

ts2 −ts2

ts2 0

 ,Kf2 (t) =

 ts 0

t2s 0

 ,Kf3 (t) =

0 0

0 −2ts



Kv0 (t) =

 0 0

3t3s 0

 ,Kv1 (t) =

0 0

0 0

 ,Kv2 (t) =

0 −ts

0 −t3s2

 ,Kv3 (t) =

t2s3 2t3s

0 0



T =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

1
2

3

4

9

8

27
0 0 0 0

0 0 0 0 1
2

3

4

9

8

27

1
4

3

16

9

64

27
0 0 0 0

0 0 0 0 1
4

3

16

9

64

27

1 2 4 8 0 0 0 0

0 0 0 0 1 2 4 8



,S =



1 −1

2
0

1

4
0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −3

2
0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 −1

2
0

1

4

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 −3

2

0 0 0 0 0 0 0 1



B1 =

 B 0

0 B

 , B2 =

 B2 0

0 B2

 , B3 =

 B3 0

0 B3

 , Qf =

 Qf 0

0 Qf
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T =



T(0) 0 0 0 0 0 0 0

0 T(0) 0 0 1 0 0 0

0 0 T(
2

3
) 0 0 0 0 0

0 0 0 T(
2

3
) 0 0 0 0

0 0 0 0 T(
4

3
) 0 0 0

0 0 0 0 0 T(
4

3
) 0 0

0 0 0 0 0 0 T(2) 0

0 0 0 0 0 0 0 T(2)



G =



g(0)

g(2
3
)

g(4
3
)

g(2)


,g(0) =

[
5
13

]
,g(2

3
) =


9106

607

2526

65

 ,g(4
3
) =


−1489

134

12035

154

 ,g(2) =


−4949

15

409



The augmented matrix for this fundamental matrix equation is calculated as

[W : G] =



0 −1 1 6 0 0 0 0 : 5

−1
1

2
0 −1

4
0 0 0 6 : 13

−16 −917

45
−943

45
−4013

340

4

3
2

140

27
−451

405
:

9106

607

−1073

81
−10043

739
−3426

263
−5222

407
0 −2

3

538

2187

202

9
:

2526

65

−32 −1789

45
−1931

45
−1883

29

8

3

52

9

424

27
−14809

82
: −1489

134

−7633

81
−5679

80
−252

5
−13559

436
0 −4

3

8018

289

2841

35
:

12035

154

−48 −887

15
−973

15
−15324

35
4

34

3

116

3
−7273

5
: −4949

15

−529 −15133

30
−6658

15
−43443

140
0 −2

1006

3
1066 : 409
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[U : µ] =



1 −1

2
0

1

4
0 0 0 0 : −1

0 0 0 0 1 −1

2
0

1

4
: 2

1
3

2
2

9

4
0 0 0 0 : 1

0 0 0 0 1
3

2
2

9

4
: 8

0 1 −1 0 0 0 0 0 : 1

0 0 0 0 0 1 −1 0 : −3


Hence, the new augmented matrix based on condition can be obtained as follows:

[
W̃:G̃

]
=



0 −1 1 6 0 0 0 0 : 5

−1
1

2
0 −1

4
0 0 0 6 : 13

1 −1

2
0

1

4
0 0 0 0 : −1

0 0 0 0 1 −1

2
0

1

4
: 2

1
3

2
2

9

4
0 0 0 0 : 1

0 0 0 0 1
3

2
2

9

4
: 8

0 1 −1 0 0 0 0 0 : 1

0 0 0 0 0 1 −1 0 : −3


By solving this system, substituting the resulting unknown Euler coefficients matrix:

A =

[
−1

1

2
−1

2
1 1 −1 2 2

]T
into Equation (2.1) we obtain the exact solution for N = 3 as

y1,3(t) = t3 − 2t2 + t− 1, y2,3(t) = 2t3 − t2 − 3t+ 2

. Example 2. Consider the following system of linear Volterra integro differential equations

y′1(t) + y2(t) = 1 + t+ t2 +

t∫
0

(−y1(s)− y2(s)) ds

y′2(t)− y1(t) = −1− t+

t∫
0

(−y1(s) + y2(s))ds
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y1(0) = 1, y2(0) = −1

We selected our second example from [5, 23, 39, 42], which solved this system of VIDEs by the Adomian
decomposition (ADM), Homotopy perturbation (HPM), Bessel collocation and Fibonacci polynomials method.
The proposed method is applied and the approximate solutions are obtained as

y1,3(t) = 0.23699t3 + 0.47415t2 + 2t+ 1

y2,3(t) = −0.23252t3 − 0.47802t2 − 1

y1,7(t) = 0.00031t7 + 0.00123t6 + 0.00845t5 + 0.04162t4

+0.16668t3 + 0.5t2 + 2t+ 1

y2,7(t) = −0.00031t7 − 0.00123t6 − 0.00845t5 − 0.04162t4

−0.16668t3 − 0.5t2 − 1

y1,10(t) = 4.34159 ∗ 10−7t10 + 2.38798 ∗ 10−6t9 + 2.52686 ∗ 10−5t8

+1.98047 ∗ 10−4t7 + 0.00139t6 + 0.00833t5 + 0.04167t4

+0.16667t3 + 0.5t2 + 2t+ 1

y2,10(t) = −4.34159 ∗ 10−7t10 − 2.38798 ∗ 10−6t9 − 2.52686 ∗ 10−5t8

−1.98047 ∗ 10−4t7 − 0.00139t6 + 0.00833t5 − 0.04167t4

−0.16667t3 − 0.5t2 − 1

for N = 3, 7, 10 respectively. When the solutions are examined, it will be seen that the Taylor expansion of the
exact solution of the equation system is obtained.
It can be inferred from Table 1 that the CPU running time results with the experimental order of timing
complexity (EOTN ) are highly remarkable in the meaning of the numerical computations.

Table 1. CPU time and EOTN for example 2.

N 4 5 6 7 8 9 10
CPU time 1.0630 1.0880 1.0900 1.1020 1.1040 1.1170 1.1880
EOTN 0.0928 0.1042 0.0101 0.0710 0.0136 0.0994 0.5849

The comparison of the approximate solutions obtained by the Euler collocation method with the absolute errors
obtained by Adomian decomposition (ADM), Homotopy perturbation (HPM) and Bessel collocation methods
are given in Table 2 and 3. The results obtained with the proposed method and the results obtained with
Fibonacci polynomials are very close to each other for N = 10 .
It can be seen that the approximate solutions obtained by Euler collocation method give better results than the
solutions obtained by Adomian decomposition, Homotopy perturbation and Bessel collocation method in Table
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Table 2. Absolute errors of y1(t) for example 2.

t ADM
|e1,7(t)|

HPM
|e1,7(t)|

Bessel
|e1,7(t)|

Euler
|e1,7(t)|

Bessel
|e1,10(t)|

Euler
|e1,10(t)|

0 0 0 0 0 0 0
0.2 3.0e-09 3.0e-09 3.0530e-09 3.0530e-09 1.1569e-13 1.0303e-13
0.4 3.20e-07 3.20e-07 3.2758e-09 3.2759e-09 1.6609e-13 1.168e-13
0.6 5.364e-06 5.364e-06 3.1170e-09 3.1173e-09 2.3115e-13 1.2346e-13
0.8 3.909e-05 3.909e-05 2.4377e-09 2.4382e-09 2.9798e-13 1.1324e-13
1 1.79861e-04 1.79861e-04 8.4851e-08 8.4852e-08 4.0115e-12 4.289e-12

Table 3. Absolute errors of y2(t) for example 2.

t ADM
|e2,7(t)|

HPM
|e2,7(t)|

Bessel
|e2,7(t)|

Euler
|e2,7(t)|

Bessel
|e2,10(t)|

Euler
|e2,10(t)|

0 0 0 0 0 0 0
0.2 2.0e-09 2.0e-09 2.0681e-09 2.0681e-09 5.3069e-14 6.6835e-14
0.4 3.20e-07 3.20e-07 1.6889e-09 1.6890e-09 2.6645e-15 5.6399e-14
0.6 5.359e-06 5.359e-06 1.1459e-09 1.1461e-09 6.7946e-14 4.8406e-14
0.8 3.9028e-05 3.9028e-05 2.0071e-10 2.0118e-10 1.6120e-13 3.4417e-14
1 1.79279e-04 1.79279e-04 8.8769e-08 8.8770e-08 4.8770e-12 4.5959e-12
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Figure 1. Comparison of the actual absolute error functions for y1(t) and y2(t) of system for example 2.

2 and 3. Also, absolute error functions for y1(t) and y2(t) of system for Example 2 are illustrated in Figure 1.
It can be clearly seen that they approach zero, as N is increased.
The upper bounds of the residual error functions of the solutions in 0 < t < 1 :
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|R1,3| = 0.006437, |R1,4| = 0.000443, |R1,5| = 0.000032, |R1,6| = 0.000002,

|R1,7| = 0.8127e− 07, |R1,8| = 0.3230e− 08, |R1,9| = 0.1287e− 09, |R1,10| = 0.4225e− 11,

|R2,3| = 0.008320, |R2,4| = 0.000559, |R2,5| = 0.000037, |R2,6| = 0.000002,

|R2,7| = 0.9199e− 07, |R2,8| = 0.3644e− 08, |R2,9| = 0.1422e− 09, |R2,10| = 0.4653e− 11,

µ1,N =

{
|R1,4|
|R1,3|

,
|R1,5|
|R1,4|

,
|R1,6|
|R1,5|

, . . .

}
= {0.068764, 0.071350, 0.050404 . . .}

µ2,N =

{
|R2,4|
|R2,3|

,
|R2,5|
|R2,4|

,
|R2,6|
|R2,5|

, . . .

}
= {0.067214, 0.066662, 0.050053 . . .}

so
|R1,N+1|
|R1,N |

< 1,
|R2,N+1|
|R2,N |

< 1

It can be easily seen that
{
|R1,N |

}∞
N=3

satisfies the inequality |R1,N+1| ≤ µ1,N |R1,N | with respect to µ1,N < 1

and
{
|R2,N |

}∞
N=3

satisfies the inequality |R2,N+1| ≤ µ2,N |R2,N | with respect to µ2,N < 1 . Hence
{
|R1,N |

}∞
N=3

and
{
|R2,N |

}∞
N=3

are convergent.

The first eight elements of
{
|R1,N |

}∞
N=3

and
{
|R2,N |

}∞
N=3

are illustrated in Figure(2) and one can see that
they approach zero, as N is increased.
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Figure 2. The residual functions of example 2.

Example 3. [3, 22, 33] The following system of linear Fredholm integro differential equations was solved
previously by using Tau, Bernstein collocation and spectral methods.
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y′′1 (t) + y′2(t) = 8 + 3/10t+ 3t2 −
1∫

0

((2ts)y1(s)− 6tsy2(s)) ds

y′1(t) + y′′2 (t) = 4/5 + 21t−
1∫

0

(
(6t+ 3s2)y1(s)− (12t+ 6s2)y2(s)

)
ds

y1(0) + y′1(0) = 1, y1(1) + y′1(1) = 10

y2(0) + y′2(0) = 1, y2(1) + y′2(1) = 7

Proceeding the same way as illustrated in Example 1 and Example 2, we obtain:

y1,3(t) = 4.47868 ∗ 10−16t3 + 3t2 + 1

y2,3(t) = t3 + 2t− 1

y1,5(t) = −5.05746 ∗ 10−16t5 + 4.47393 ∗ 10−16t4 − 1.33923 ∗ 10−16t3

+3t2 − 8.16972 ∗ 10−16t+ 1

y2,5(t) = −5.45078 ∗ 10−17t5 + 1.49225 ∗ 10−15t4

+t3 − 1.36269 ∗ 10−16t2 + 2t− 1

y1,10(t) = −6.144 ∗ 10−13t10 + 2.54006 ∗ 10−12t9 − 4.47711 ∗ 10−12t8

+4.36821 ∗ 10−12t7 − 2.54574 ∗ 10−12t6 + 8.79425 ∗ 10−13t5

−1.63915 ∗ 10−13t4 + 1.37065 ∗ 10−14t3 + 3t2 + 6.16325 ∗ 10−15t+ 1

y2,10(t) = −4.9156 ∗ 10−13t10 + 2.26969 ∗ 10−12t9 − 4.38513 ∗ 10−12t8

+4.58254 ∗ 10−12t7 − 2.79685 ∗ 10−12t6 + 1.0034 ∗ 10−12t5

−2.00272 ∗ 10−13t4 + t3 + 5.06064 ∗ 10−15t2 + 2t− 1

for N = 3, 5, 10 respectively.
When the solutions are examined, it will be seen that the exact solution is the Taylor expansion of y1(t) = 3t2+1 ,
y2(t) = t3 + 2t− 1 .
The CPU running time results with the experimental order of timing complexity (EOTN ) are given in Table
4. The comparison of the approximate solutions obtained by the Euler collocation method with the absolute
errors obtained by Tau, Spectral and Bernstein operational matrix methods are given in Table 5 and 6.
It can be seen that the approximate solutions obtained by Euler collocation method give better results than the
solutions obtained by Tau, Spectral and Bernstein operational matrix method in Table 5 and 6. Also, absolute
error functions for y1(t) and y2(t) of system for Example 3 are illustrated in Figure 3. It can be clearly seen
that they approach zero, as N is increased.
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Table 4. CPU time and EOTN for example 3.

N 4 5 6 7 8 9 10
CPU time 1.1070 1.1170 1.1210 1.1400 1.1550 1.1650 1.1690
EOTN 0.0634 0.0403 0.0196 0.1090 0.0979 0.0732 0.0325

Table 5. Absolute errors of y1(t) for example 3.

t Tau
|e1,3(t)|

Bernstein
|e1,3(t)|

Euler
|e1,3(t)|

Spectral
|e1,5(t)|

Bernstein
|e1,5(t)|

Euler
|e1,5(t)|

0 3.e-14 3.55271e-15 0 0.0e-09 8.88178e-16 9.99201e-16
0.2 3.e-14 3.10862e-15 4.4409e-16 9.1e-08 1.36470e-06 1.33227e-15
0.4 3.e-14 2.66454e-15 1.3323e-15 6.031e-06 2.42077e-06 1.33227e-15
0.6 3.e-14 2.22045e-15 3.5527e-15 7.08e-05 3.31536e-06 1.33227e-15
0.8 3.e-14 1.33227e-15 6.2172e-15 4.10261e-04 1.21331e-05 1.77636e-15
1 3.e-14 1.33227e-15 9.77e-15 1.61516e-03 1.29523e-04 1.77636e-15

Table 6. Absolute errors of y2(t) for example 3.

t Tau
|e1,3(t)|

Bernstein
|e1,3(t)|

Euler
|e1,3(t)|

Spectral
|e1,5(t)|

Bernstein
|e1,5(t)|

Euler
|e1,5(t)|

0 3.1e-14 1.77636e-15 0 0.0e-09 7.77156e-16 9.99201e-16
0.2 2.7e-14 1.55431e-15 0 2.0e-09 2.8736e-07 9.99201e-16
0.4 2.4e-14 1.22125e-15 0 3.25e-07 4.54527e-07 7.77156e-16
0.6 2.3e-14 1.05471e-15 0 5.527e-06 5.63863e-07 5.55112e-16
0.8 2.0e-14 8.88178e-16 0 4.1242e-05 2.69271e-06 0
1 2.0e-14 6.66134e-16 0 1.95682e-04 3.35922e-05 8.88178e-16

The upper bounds of the residual error functions of the solutions in 0 < t < 1 :

|R1,3| = 0.1433e− 14, |R1,4| = 0.1812e− 14, |R1,5| = 0.7568e− 15, |R1,6| = 0.1305e− 13,

|R1,7| = 0.2640e− 13, |R1,8| = 0.3024e− 13, |R1,9| = 0.1892e− 13, |R1,10| = 0.1852e− 13,

|R2,3| = 0.1008e− 14, |R2,4| = 0.3885e− 14, |R2,5| = 0.1116e− 15, |R2,6| = 0.4518e− 13,

|R2,7| = 0.9779e− 13, |R2,8| = 0.1319e− 12, |R2,9| = 0.3777e− 13, |R2,10| = 0.3864e− 14,

The first eight elements of
{
|R1,N |

}∞
N=3

and
{
|R2,N |

}∞
N=3

are illustrated in Figure 4. It is clearly seen that in
Figure 3 and in Figure 4, Euler collocation method gives better results than the others.
Example 4. [16] As a last example, we consider the following system:

y′1(t) = −2 + t2 − t4 +
3t5

20
+ 2t6 +

t7

5
− t8

8
+

t∫
0

(
(s3 − t2)y1(s) + (12s2 − t)y2(s)

)
ds
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Figure 3. Comparison of the actual absolute error functions for y1(t) and y2(t) of system for example 3
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Figure 4. The residual functions of example 3

y′2(t) = 4− 8t− t3

3
+ 2t4 − 8t5

5
+

t6

30
− 4et +

t∫
0

((s− t)y1(s) + 8(1− s)y2(s) + 2y3(s)) ds
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y′3(t) = 3− 7t2

2
+

4t3

3
+

6t5

5
− 7t6

30
+

t∫
0

((2t− s)y1(s) + 6sy2(s) + 2y3(s)) ds

y1(0) = 0, y2(0) = 1, y3(0) = 2

The approximate solutions are obtained for N = 3 and N = 8 as

y1,3(t) = 1.33512t3 − 0.44503t2 − 2t

y2,3(t) = −0.99908t3 − 0.00096t2 + 1

y3,3(t) = 0.46547t3 + 0.95226t2 + 3t+ 2

y1,8(t) = −1.43534 ∗ 10−11t8 + 7.10806 ∗ 10−11t7 − 3.71604 ∗ 10−12t6

+2.13106 ∗ 10−11t5 + t4 + 1.95871 ∗ 10−12t3 − 1.45595 ∗ 10−13t2

−2t+ 2.35502 ∗ 10−15

y2,8(t) = 1.72905 ∗ 10−10t8 + 6.44961 ∗ 10−10t7 − 2.96804 ∗ 10−9t6

+3.97823 ∗ 10−9t5 − 2.50223 ∗ 10−9t4 − t3 + 1.9207 ∗ 10−11t2

−3.07188 ∗ 10−16t+ 1

y3,8(t) = 7.71779 ∗ 10−5t8 + 0.00035t7 + 0.00282t6 + 0.01664t5

+0.08334t4 + 0.33333t3 + t2 + 3t+ 2

for N = 3, 8 respectively.
When the solutions are examined, it will be seen that the exact solution of Volterra IDE is the Taylor expansion
of y1(t) = 3t2 + 1 , y2(t) = t3 + 2t− 1 .
The CPU running time results with the experimental order of timing complexity (EOTN ) are given in Table
7. The comparison of the approximate solutions obtained by the Euler collocation method with the absolute
errors obtained by Sinc collocation and Chebyshev wavelet methods are given in Table 8, 9 and 10.

Table 7. CPU time and EOTN for example 3.

N 4 5 6 7 8
CPU time 1.1450 1.1530 1.1850 1.2080 1.2370
EOTN 0.1520 0.0312 0.1501 0.1247 0.1777

It can be seen that the approximate solutions obtained by Euler collocation method give better results than
the solutions obtained by Tau, Spectral and Bernstein operational matrix method in Table 8, 9 and 10. Also,
absolute error functions for y1(t) , y2(t) and y3(t) of system for Example 4 are illustrated in Figure 5. It can
be clearly seen that they approach zero, as N is increased.
The upper bounds of the residual error functions of the solutions in 0 < t < 1 :
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Table 8. Absolute errors of y1(t) for example 4.

t Sinc collocation
|e1,8(t)|

Chebyshev wavelet
|e1,8(t)|

Euler |e1,8(t)|

0 0 2.690833666996184e-13 2.355018829071e-15
0.1 1.358996248868038e-9 2.293998324631729e-13 2.026157019941e-15
0.2 4.693820221390865e-9 1.593725151849412e-13 2.664535259100e-15
0.3 7.953928582438152e-8 4.383160501220118e-13 1.976196983833e-14
0.4 2.280309290281224e-7 9.818812429784884e-13 1.424416140594e-13
0.5 3.156846541951807e-7 2.298161660974074e-13 6.540323838067e-13
0.6 1.91852210118526e-7 4.305888978706207e-12 2.228883744237e-12
0.7 1.10596880320557e-7 1.162048235414658e-11 6.223244142234e-12
0.8 3.562425212599862e-7 2.287792177924075e-11 1.506839097942e-11
0.9 3.857868307033385e-7 4.14988043928588e-11 3.277045301786e-11

Table 9. Absolute errors of y2(t) for example 4.

t Sinc collocation
|e2,8(t)|

Chebyshev wavelet
|e2,8(t)|

Euler |e2,8(t)|

0 -1 4.568290190576363e-11 9,99200722163e-16
0.1 3.83559517480592e-10 7.276357294472291e-11 8,644196469731e-13
0.2 1.268595006820305e-9 9.451994742448733e-12 4,949485266081e-12
0.3 2.160990852928535e-8 9.397482791939638e-12 1,305766605952e-11
0.4 6.159458376675531e-8 6.947387110045611e-11 2,551714395338e-11
0.5 8.588650235452633e-8 1.311859509911528e-10 4,291345057084e-11
0.6 5.673403202788307e-8 1.191982068604602e-10 6,599165658372e-11
0.7 1.572101726576846e-8 7.294698178839099e-11 9,529710354172e-11
0.8 7.177556560211684e-8 9.545503276697787e-11 1,311921682401e-10
0.9 7.297406701134435e-8 2.184930569804066e-11 1,749609346291e-10

|R1,3| = 0.11121, |R1,4| = 0.3236e− 05, |R1,5| = 0.2348e− 07, |R1,6| = 0.2497e− 09,

|R1,7| = 0.6027e− 11, |R1,8| = 0.1199e− 12,

|R2,3| = 0.000241, |R2,4| = 0.7797e− 05, |R2,5| = 0.2716e− 06, |R2,6| = 0.1179e− 07,

|R2,7| = 0.4102e− 09, |R2,8| = 0.1402e− 10,

|R3,3| = 1.586408, |R3,4| = 1.573905, |R3,5| = 1.572941, |R3,6| = 1.572877,

|R3,7| = 1.572873, |R3,8| = 1.572873,

µ1,N =

{
|R1,4|
|R1,3|

,
|R1,5|
|R1,4|

,
|R1,6|
|R1,5|

, . . .

}
= {0.000029, 0.007257, 0.010632 . . .}
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Table 10. Absolute errors of y3(t) for example 4.

t Sinc collocation
|e3,8(t)|

Chebyshev wavelet
|e3,8(t)|

Euler |e3,8(t)|

0 0 2.517951624980696e-9 9,992007221626e-15
0.1 7.60110641095935e-10 9.565157554902726e-10 1,987414677274e-10
0.2 2.659342968058808e-9 1.156512219324668e-9 1,767723745161e-10
0.3 4.452058366410938e-8 2.494912720862885e-9 1,767754831405e-10
0.4 1.274582408505864e-7 2.886766381493544e-10 1,936295568328e-10
0.5 1.781702421155273e-7 2.470650795061146e-9 1,877165090036e-10
0.6 1.161282012773767e-7 8.319567257331073e-12 2,17974971406e-10
0.7 3.939668680175146e-8 2.555123224112776e-9 2,100888352174e-10
0.8 1.624219851947828e-7 8.62669047307918e-10 2,572271284862e-10
0.9 1.710572963276035e-7 1.0369349823236e-9 3,843192430963e-10
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Figure 5. Comparison of the actual absolute error functions for y1(t) , y2(t) and y3(t) of system for example 4.

µ2,N =

{
|R2,4|
|R2,3|

,
|R2,5|
|R2,4|

,
|R2,6|
|R2,5|

, . . .

}
= {0.032244, 0.034830, 0.043399 . . .}

µ3,N =

{
|R3,4|
|R3,3|

,
|R3,5|
|R3,4|

,
|R3,6|
|R3,5|

, . . .

}
= {0.992119, 0.999388, 0.999959 . . .}

so
|R1,N+1|
|R1,N |

< 1,
|R2,N+1|
|R2,N |

< 1,
|R3,N+1|
|R3,N |

< 1.
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It can be easily seen that
{
|R1,N |

}∞
N=3

satisfies the inequality |R1,N+1| ≤ µ1,N |R1,N | with respect to µ1,N <

1 ,
{
|R2,N |

}∞
N=3

satisfies the inequality |R2,N+1| ≤ µ2,N |R2,N | with respect to µ2,N < 1 and
{
|R3,N |

}∞
N=3

satisfies the inequality |R3,N+1| ≤ µ3,N |R3,N | with respect to µ3,N < 1 . Hence
{
|R1,N |

}∞
N=3

,
{
|R2,N |

}∞
N=3

and
{
|R3,N |

}∞
N=3

are convergent.

The first six elements of
{
|R1,N |

}∞
N=3

,
{
|R2,N |

}∞
N=3

and
{
|R3,N |

}∞
N=3

are illustrated in Figure 6 and one can
see that they approach zero, as N is increased.
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Figure 6. The residual functions of example 4.

5. Conclusion
We have applied the Euler polynomial matrix collocation method to some model problems. We have also solved
rapidly and efficiently these problems without requiring detailed procedure as can be followed CPU running
time with EOTN . As seen from Tables 1-10, the Euler polynomial solutions coincide with the exact solutions
of model problems. To show efficiency of the method, we have applied the presented scheme for four numerical
examples. In Examples 1 - 4, we have computed absolute errors and residual errors. The Euler polynomial
solutions approach to the exact solution, as N is increased. This situation reflects on the residual functions of
problems. Hence, it is easily observed that the present method is so convenient to solve the systems of linear
integro differential model problems.
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