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Abstract: A numerical semigroup is said to be perfect if it does not contain any isolated gaps. In this paper, we will
look at some basic properties of isolated gaps in numerical semigroups. In particular, we will see how they are related
to elements of the Apéry set. We will use these properties to find all of the isolated gaps in a numerical semigroup of
embedding dimension two and demonstrate a simple method of generating some examples of perfect numerical semigroups
of embedding dimension three.
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1. Introduction
Let N denote the set of all nonnegative integers. A numerical semigroup is an additive submonoid S of N such
that N\S is finite. If S is a numerical semigroup and A ⊆ S , we say that A is a generating set of S if for every
s ∈ S there exist a1, . . . , ak ∈ A and n1, . . . , nk ∈ N such that s = n1a1 + · · ·+ nkak . In this case, we use the
notation S = ⟨A⟩ . It is known that every numerical semigroup has a unique finite minimal set of generators
(see, for example, Theorem 2.7 of [5]). The cardinality of this minimal set of generators is called the embedding
dimension of S .

For any numerical semigroup S , the elements of G(S) := N\S are called the gaps of S . The largest
element of G(S) is called the Frobenius number of S and denoted by F (S) . Determining the Frobenius number
of a numerical semigroup is an old and celebrated problem (see [4]).

A gap g of a numerical semigroup S is an isolated gap if g − 1, g + 1 ∈ S . We will let I(S) denote
the set of all isolated gaps of S . A perfect numerical semigroup is one in which I(S) = ∅ . Perfect numerical
semigroups are first explored in [1] and [2]. In [1], the authors introduce the concept and show how to define
an order on all perfect numerical semigroups, allowing them to establish an algorithm which constructs all of
them. In [2], the authors characterize all perfect numerical semigroups with embedding dimension three and
establish formulas for some of their key elements.

In this paper, we will investigate some properties of isolated gaps in numerical semigroups. In particular,
we will see how they can be located by using an important and well-known set of elements of the numerical
semigroup called the Apéry set. We will then demonstrate a very simple method of constructing some perfect
numerical semigroups of embedding dimension three. Specifically, start with a numerical semigroup of em-
bedding dimension two, identify the smallest isolated gap, and include it as a third generator. This is given
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in proposition 3.1 and differs from the method described in [2]. While the method described here does not
produce all numerical semigroups of embedding dimension three, it is very simple, does not involve complicated
formulas, and can be used to generate examples quickly.

2. Basic properties of isolated gaps
If S is a numerical semigroup, then an important property of isolated gaps that we will use repeatedly is that
they conduct isolated gaps of S into S and they conduct elements of S either into I(S) or into S (implying that
S∪I(S) is always a numerical semigroup). For x ∈ N and A ⊆ N , we use the notation x+A = {x+a : a ∈ A} .

Proposition 2.1 Let S be a numerical semigroup that is not perfect. If x ∈ I(S) , then x + I(S) ⊆ S and
x+ S ⊆ I(S) ∪ S .

Proof Let x ∈ I(S) . Then x − 1, x + 1 ∈ S , and since y + 1 ∈ S for any y ∈ I(S) , we have x + y =

(x− 1) + (y + 1) ∈ S . Hence, x+ I(S) ⊆ S . Moreover, for any s ∈ S , we have x− 1 + s, x+ 1+ s ∈ S and so
x+ s ∈ S or x+ s ∈ I(S) . Therefore, x+ S ⊆ I(S) ∪ S , as required. 2

Let S be a numerical semigroup such that I(S) ̸= ∅ and let a be a nonzero element of S . For each
i ∈ {1, . . . , a − 1} , let Ii(S) := {x ∈ I(S) : x ≡ i (mod a)} . For each i such that Ii(S) ̸= ∅ , define
hi := min Ii(S) and ki := max Ii(S) . We will call the elements hi the minimal isolated gaps modulo a and the
elements ki the maximal isolated gaps modulo a. Let h := min I(S) and call it the minimum isolated gap of
S . Clearly h is the smallest of all the minimal isolated gaps modulo a .

Example 2.2 Let S = ⟨5, 8⟩ . Then S = {0, 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26, 28 →} where the no-
tation “28 →” indicates that every integer greater than 28 is an element of S . It follows that I(S) =

{9, 14, 17, 19, 22, 27} . Note that each isolated gap is congruent to either 2 or 4 modulo 5, so the only minimal
isolated gaps modulo 5 are h = h4 = 9 and h2 = 17 . The maximal isolated gaps modulo 5 are k4 = 19 and
k2 = 27 .

If S is a numerical semigroup and a is a nonzero element of S , the Apéry set of a in S is defined to be
the set Ap(S, a) = {s ∈ S : s − a /∈ S} . The Apéry set is considered one of the most useful tools for studying
numerical semigroups. Recall that if a is a positive integer, then a complete system of residues modulo a is a set
of integers such that every integer from 0 to a−1 is congruent modulo a to exactly one element of the set. It is
known that Ap(S, a) is a complete system of residues modulo a . Moreover, Ap(S, a) = {0 = w0, w1, . . . , wa−1}
where, for each i ∈ {0, 1, . . . , a− 1} , wi is the smallest element of S that is congruent to i modulo a (see, for
example, Lemma 2.4 of [5]). Note that Example 2.2 demonstrates that the elements hi and ki generally do not
comprise a complete system of residues modulo a .

The next two results will illustrate how the Apéry set may be used to locate the maximal and minimal
isolated gaps modulo a .

Proposition 2.3 Let S be a numerical semigroup such that I(S) ̸= ∅ and let a be a nonzero element of S . If
ki is a maximal isolated gap modulo a , then ki + a ∈ Ap(S, a) .

Proof Since ki ∈ I(S) , a ∈ S , and ki + a ≡ i (mod a), ki + a cannot be a gap of S (otherwise, by
Proposition 2.1 it would be an isolated gap congruent to i modulo a , contradicting the maximality of ki ).
Hence, ki + a ∈ S . Moreover, since ki + a ≡ i (mod a) and ki + a > ki , it follows that ki + a ∈ Ap(S, a) . 2
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Proposition 2.4 Let S be a numerical semigroup such that I(S) ̸= ∅ and let a be a nonzero element of S . If
hi is a minimal isolated gap modulo a , then hi + 1 ∈ Ap(S, a) or hi − 1 ∈ Ap(S, a) .

Proof Since hi ∈ G(S) and a ∈ S , we have hi−a ∈ G(S) . Moreover, since hi ∈ I(S) , we have hi+1, hi−1 ∈ S .
Note that if hi − a− 1 and hi − a+ 1 are both elements of S , then by the definition of isolated gap, hi − a is
an isolated gap congruent to i modulo a , contradicting the minimality of hi . Hence, at least one of hi − a− 1

and hi − a+ 1 is a gap, implying that hi − 1 ∈ Ap(S, a) or hi + 1 ∈ Ap(S, a) . 2

Let S be a numerical semigroup of embedding dimension two. That is, S = ⟨a, b⟩ where a and b are
relatively prime positive integers. Numerical semigroups of embedding dimension two have been the subject
of much study due to their relatively simple and predictable structure. It is known that every numerical
semigroup of embedding dimension two is symmetric, meaning that for each x ∈ Z , x ∈ S if and only if
F (S) − x /∈ S (see, for example, Corollary 4.7 of [5]). Furthermore, it is known that if S = ⟨a, b⟩ , then
Ap(S, a) = {0, b, 2b, . . . , (a− 1)b} and F (S) = ab− a− b (see Propositions 2.12 and 2.13 of [5]). It should come
as no surprise that the isolated gaps of these numerical semigroups are easy to locate.

If S = ⟨a, b⟩ and S ≠ N , then S can never be a perfect numerical semigroup. To see this note that
−1, 1 /∈ S . Thus, since S is symmetric, F (S) + 1, F (S)− 1 ∈ S . It follows that F (S) ∈ I(S) , so if ⟨a, b⟩ ≠ N
then I(S) ̸= ∅ . In order to insist that I(S) ̸= ∅ when working with numerical semigroups of embedding
dimension two in the results that follow, we will frequently require that 1 < a < b . In this case, we get the
following useful consequence of Proposition 2.3.

Proposition 2.5 Let S = ⟨a, b⟩ be a numerical semigroup where 1 < a < b . If ki and kj are any two maximal
isolated gaps modulo a , then ki ≡ kj (mod b) .

Proof By Proposition 2.3, ki + a, kj + a ∈ Ap(S, a) . Therefore, since S has embedding dimension two,
ki + a, kj + a ∈ {0, b, 2b, . . . , (a− 1)b} . This implies that b divides ki + a− (kj + a) and so ki ≡ kj (mod b). 2

An obvious question is whether the previous result is also true for the minimal isolated gaps modulo a .
It is, but a bit more can be shown.

Proposition 2.6 Let S = ⟨a, b⟩ be a numerical semigroup where 1 < a < b . Let ki and kj be two maximal
isolated gaps modulo a such that ki < kj . If m ∈ N and ki −ma ∈ I(S) , then kj −ma ∈ I(S) .

Proof Suppose that ki −ma ∈ I(S) . Clearly kj −ma ∈ G(S) (or else kj = kj −ma +ma ∈ S ) so we just
need to show that kj −ma+1, kj −ma− 1 ∈ S . Since ki −ma ∈ I(S) note that ki −ma+1, ki −ma− 1 ∈ S .
By Proposition 2.5 there exists n ∈ N such that ki+nb = kj . Since nb ∈ S , kj−ma+1 = ki−ma+1+nb ∈ S

and kj −ma− 1 = ki −ma− 1 + nb ∈ S . 2

Theorem 2.7 Let S = ⟨a, b⟩ be a numerical semigroup where 1 < a < b . Let ki and kj be two maximal
isolated gaps modulo a such that ki < kj . Then |Ii(S)| = |Ij(S)| .

Proof Note that Proposition 2.6 asserts that |Ii(S)| ≤ |Ij(S)| , so we just need to prove that |Ii(S)| ≥ |Ij(S)| .
We do this by contradiction.

Suppose that |Ii(S)| < |Ij(S)| . Then there exists m ∈ N such that ki−ma, kj−ma, kj−(m+1)a ∈ I(S)

and ki − (m + 1)a /∈ I(S) . Hence, ki −ma = hi and kj −ma > hj . By Proposition 2.5, there exists n ∈ N
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such that ki + nb = kj . Consequently, hi + nb ≡ j (mod a). Since hi ∈ I(S) and nb ∈ S , by Proposition 2.1,
either hi + nb ∈ S or hi + nb ∈ I(S) . We claim that hi + nb ∈ I(S) . To see why this is true, suppose that
hi +nb ∈ S . Since hi ≤ ki , it must then follow that hi +nb ≤ kj . Thus, since hi +nb ≡ kj (mod a), it follows
that kj ∈ S (a contradiction). Therefore, we have that hi + nb ∈ I(S) .

By Proposition 2.4, hi + 1 ∈ Ap(S, a) or hi − 1 ∈ Ap(S, a) . Suppose that hi + 1 ∈ Ap(S, a) (a
similar argument works in the case when hi − 1 ∈ Ap(S, a)). Then hi + 1 = rb where 0 ≤ r < a and so
hi + 1 + nb = (r + n)b .

We claim that hi + 1 + nb /∈ Ap(S, a) . To see why, note that hi + nb = ki −ma + nb = kj −ma > hj .
Hence, hi + 1 + nb > hj + 1 . Since hi + 1 + nb ≡ hj + 1 (mod a) and hj + 1 ∈ S (since hj ∈ I(S)), it follows
that hi +1+nb /∈ Ap(S, a) . Hence, we have that r+n ≥ a . This now implies that hi +nb = hi +nb+1− 1 =

(r+n)b−1 ≥ ab−1 > ab−a−b = F (S) . Therefore hi+nb ∈ S , contradicting the assertion that hi+nb ∈ I(S) .
2

Note that the preceding result is not always true if S has more than two generators.

Example 2.8 Let S = ⟨6, 10, 15⟩ . Then S = {0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30 →} . Note
that I1(S) = {19} and I5(S) = {11, 17, 23, 29} .

The next three results will complete the picture of how and where the isolated gaps in a numerical
semigroup of embedding dimension two arise.

Proposition 2.9 Let S = ⟨a, b⟩ be a numerical semigroup with 1 < a < b . Let hi be a minimal isolated gap
modulo a . Then, for each positive integer n , either hi + nb ∈ S or hi + nb , is another minimal isolated gap
modulo a .

Proof Note that hi ∈ I(S) and nb ∈ S , so by Proposition 2.1, if hi + nb /∈ S then hi + nb ∈ I(S) . Thus, we
just need to show that hi + nb is a minimal isolated gap modulo a .

Let hi +nb ≡ j (mod a). Since hi +nb ∈ I(S) , hj exists and hi +nb ≥ hj . Suppose that hi +nb > hj .
Since hj ∈ I(S) , hj + 1, hj − 1 ∈ S . Hence, hi + nb+ 1, hi + nb− 1 /∈ Ap(S, a) .

By Proposition 2.4, hi+1 ∈ Ap(S, a) or hi−1 ∈ Ap(S, a) . We will show that each leads to a contradiction.
If hi+1 ∈ Ap(S, a) then hi+1 = kb for some k ∈ {0, 1, . . . , a−1} . It follows that hi+nb+1 = (k+n)b . Since
hi + nb+ 1 /∈ Ap(S, a) , we have that k + n ≥ a . Hence, hi + nb = (k + n)b− 1 ≥ ab− 1 > ab− a− b = F (S) .
This implies that hi + nb ∈ S , a contradiction. Similarly, if hi − 1 ∈ Ap(S, a) , then hi − 1 = kb for some
k ∈ {0, 1, . . . , a−1} . It follows that hi+nb−1 = (k+n)b . Since hi+nb−1 /∈ Ap(S, a) , we have that k+n ≥ a .
Hence, hi + nb = (k + n)b+ 1 ≥ ab+ 1 > ab− a− b = F (S) . This implies that hi + nb ∈ S which is another
contradiction. 2

Proposition 2.10 Let S = ⟨a, b⟩ be a numerical semigroup with 1 < a < b . Let n be the smallest nonnegative
integer such that h+ nb ∈ S . Then h+ nb ∈ aN .

Proof Since h + nb ∈ S , there exist u, v ∈ N such that h + nb = ua + vb . Note that if v ≥ n then
h = ua + (v − n)b ∈ S (a contradiction). Hence, v < n . This implies that h + (n − v)b = ua ∈ S . Since n is
minimal, we have that v = 0 . 2
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Theorem 2.11 Let S = ⟨a, b⟩ be a numerical semigroup with 1 < a < b . Let n be the smallest nonnegative
integer such that h+ nb ∈ aN . Then h, h+ b, ..., h+ (n− 1)b are all the minimal isolated gaps modulo a .

Proof By Proposition 2.10, we have that h, h+ b, ..., h+(n− 1)b are all minimal isolated gaps modulo a . We
just need to prove that this list is complete.

Suppose that hj is any minimal isolated gap modulo a . Let h = hi and suppose that m ∈ N such that
kj = hi +ma . Then Ii(S) = {hi, hi + a, . . . , hi +ma} and by Theorem 2.7, Ij(S) = {hj , hj + a, . . . hj +ma} .
Hence, kj > ki and by Proposition 2.5, kj = ki + ub for some u ∈ N . This implies that hj = hi + ub . Since
hj /∈ S , by hypothesis u < n and the proof is complete. 2

Theorem 2.11 suggests that if S ̸= N and S has embedding dimension two, then every element of I(S)

has the form h+ s for some s ∈ S . The following example will help to illustrate what we have proven.

Example 2.12 Consider S = ⟨7, 12⟩ . Then Ap(S, 7) = {0, 12, 24, 36, 48, 60, 72} . With the Apéry set, it is easy
to organize all the elements (and gaps) of S into an array with one row for each residue class modulo 7. This
makes it easy to locate all the isolated gaps.

0 0 7 14 21 28 35 42 49 56 63 70 →
1 36 43 50 57 64 71 →
2 72 →
3 24 31 38 45 52 59 66 73 →
4 60 67 74 →
5 12 19 26 33 40 47 54 61 68 75 →
6 48 55 62 69 76 →

The minimal isolated gap is h = 13 . All of the isolated gaps of S are as follows: I2(S) = {37, 44, 51, 58, 65} ,
I4(S) = {25, 32, 39, 46, 53} , and I6(S) = {13, 20, 27, 34, 41} . Note that |I2(S)| = |I4(S)| = |I6(S)| and that
h = h6 = 13 , h+ 12 = 25 = h4 , h+ 2(12) = 37 = h2 , and h+ 3(12) = 49 ∈ 7N . Since each isolated gap must
be of the form hi +7n for some i ∈ {0, . . . , 6} and some n ∈ N , each isolated gap is therefore of the form h+ s

for some s ∈ S . Observe how adding 12 to an isolated gap moves you from one “row” of isolated gaps to the
next (until you ultimately land in the top row), while adding 7 to an isolated gap moves you along the row you
are already in.

3. Constructing examples of perfect numerical semigroups of embedding dimension three

The results of the previous section suggest a way of easily constructing a perfect numerical semigroup of
embedding dimension three. Start with a numerical semigroup of embedding dimension two, identify the
smallest isolated gap, and then include it as a third generator.

Theorem 3.1 Let S = ⟨a, b⟩ be a numerical semigroup where 1 < a < b . Then ⟨a, b, h⟩ is a perfect numerical
semigroup.

Proof Suppose that there exists x ∈ I(⟨a, b, h⟩) . Since S ⊆ ⟨a, b, h⟩ we have that x ∈ G(S) . Note that x

cannot be an isolated gap of S , for then, by Theorem 2.11, x = h+s for some s ∈ S , implying that x ∈ ⟨a, b, h⟩ .
Hence, x− 1 ∈ G(S) or x+ 1 ∈ G(S) .
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Suppose that x− 1 ∈ G(S) . Then since x− 1 ∈ ⟨a, b, h⟩ , it follows that x− 1 = nh+ s for some n ≥ 1

and s ∈ S . By Proposition 2.1, if n ≥ 2 then nh ∈ S and so x− 1 ∈ S (a contradiction). Thus, we have that
n = 1 . But then, by Proposition 2.1, x− 1 ∈ I(S) ∪ S . Since x− 1 ∈ G(S) , we have that x− 1 ∈ I(S) . This
implies that x = x− 1 + 1 ∈ S and since S ⊆ ⟨a, b, h⟩ , we also have that x ∈ ⟨a, b, h⟩ (a contradiction).

A similar argument shows that if x+ 1 ∈ G(S) then once again it follows that x ∈ ⟨a, b, h⟩ . 2

Example 3.2 As in Example 2.2, let S = ⟨5, 8⟩ . Recall that I(S) = {9, 14, 17, 19, 22, 27} so h = 9 . Note that
h+5 = 14 and h+10 = 19 are the other isolated gaps congruent to 4 modulo 5 while h+8 = 17, h+8+5 = 22 ,
and h + 8 + 10 = 27 are the isolated gaps congruent to 2 modulo 5. The numerical semigroup ⟨5, 8, 9⟩ =

{0, 5, 8, 9, 10, 13 →} is perfect.

Identifying the value of h is made easier using the following observation.

Proposition 3.3 Let S = ⟨a, b⟩ be a numerical semigroup where 1 < a < b . Then h = 1 or the ordered pair
(h mod a , h mod b) ∈ {(1,−1), (−1, 1)} .

Proof By Proposition 2.4, h− 1 ∈ Ap(S, a) or h+ 1 ∈ Ap(S, a) . Since Ap(S, a) = {0, b, 2b, . . . , (a− 1)b} , it
follows that h ≡ 1 (mod b) or h ≡ −1 (mod b).

Since h is the smallest isolated gap modulo b , we may repeat this argument to see that h− 1 ∈ Ap(S, b)

or h+ 1 ∈ Ap(S, b) where Ap(S, b) = {0, a, . . . , (b− 1)a} . Thus, we also have that h ≡ 1 (mod a) or h ≡ −1

(mod a).
We now show that if h ̸= 1 , then h (mod a) = 1 if and only if h (mod b) = −1 . Suppose that h (mod

a) = h (mod b) = 1 . Then h−1 ∈ Ap(S, a)∩Ap(S, b) , implying that h−1 ∈ {0, b, . . . , (a−1)b}∩{0, a, . . . , (b−
1)a} . Since a and b are relatively prime, h− 1 = 0 (a contradiction). 2

Proposition 3.3 suggests that identifying the smallest isolated gap in a numerical semigroup ⟨a, b⟩ of
embedding dimension two can be accomplished using techniques from an introductory course in Number Theory
(see for example, Section 2.3 of [3]). Recall that if a and b are relatively prime positive integers and m and n

are arbitrary integers, then by the Chinese Remainder Theorem the system

x ≡ m (mod a)

x ≡ n (mod b)

will have a unique solution x ∈ {0, 1, . . . , ab− 1} . Moreover, if u, v ∈ Z and 1 = ua+ vb , then x ≡ nua+mvb

(mod ab). Proposition 3.3 says that h will be congruent modulo ab to the solution x to one of the following:

x ≡ 1 (mod a)

x ≡ −1 (mod b)

or
x ≡ −1 (mod a)

x ≡ 1 (mod b)

Since a and b are relatively prime, the Euclidean algorithm can be used to find integers u and v such that
1 = au + bv (and additional solutions u0 = u + kb and v0 = v − ka for any integer k ). It then follows that
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either h ≡ (1)au + (−1)bv (mod ab) or h ≡ (−1)au + (1)bv (mod ab). Since one of u and v will be positive
and the other negative, one of these solutions will turn out to be a nonnegative integer combination of a and b .
If the value of this nonnegative integer combination is less than ab , then it is clearly an element of S . Hence,
the other solution will be the gap that we are looking for.

Example 3.4 Let S = ⟨13, 21⟩ . Using the Euclidean algorithm, we see that 1 = 13(−8) + 21(5) . Hence,
either h ≡ (1)13(−8)+ (−1)21(5) (mod 273) or h ≡ (−1)13(−8)+ (1)21(5) (mod 273) . Note that if the latter
statement is true, then h ≡ 13 · 8+21 · 5 (mod 273) . But 13 · 8+21 · 5 = 209 and 209 < 13 · 21 . Hence, h ∈ S .
Since this is a contradiction, the former statement must be true. Hence, h ≡ −209 (mod 273) , which implies
that h = 64 . It follows that ⟨13, 21, 64⟩ is perfect.

From Proposition 3.3, we get the following corollary.

Corollary 3.5 A numerical semigroup of embedding dimension two generated by consecutive integers has exactly
one isolated gap. Furthermore, this isolated gap is the Frobenius number.

Proof It is enough to show that the smallest isolated gap is the Frobenius number. Let S = ⟨a, a+1⟩ for any
a ≥ 2 . Note that 1 = (−1)(a)+(1)(a+1) . Hence, by Proposition 3.3 we have that h ≡ (1)(−1)(a)+(−1)(1)(a+

1) (mod (a)(a+1)). Thus, h = −2a−1+a2+a = a2−a−1 . Moreover, F (S) = (a)(a+1)−a−(a+1) = a2−a−1 .
Therefore, I(S) = {F (S)} , as required. 2

Note that the method posed by Theorem 3.1 does not always work if S has an embedding dimension
greater than two, since Theorem 2.7 may not be true.

Example 3.6 Consider S = ⟨5, 8, 11⟩ = {0, 5, 8, 10, 11, 13, 15, 16, 18 →} . Note that I(S) = {9, 12, 14, 17} and
so h = 9 . It is not true that 9 + s = 12 for some s ∈ S .

Finally, we note also that unlike the method proposed in [2], this method cannot be used to construct all
perfect numerical semigroups of embedding dimension three.

Example 3.7 It is shown in [2] (Example 19) that ⟨19, 32, 33⟩ is perfect. If S = ⟨19, 32⟩ , then h = 417 . If
S = ⟨19, 33⟩ , then h = 362 . Finally, if S = ⟨32, 33⟩ , then h = 991 . Note ⟨19, 32, 417⟩ , ⟨19, 33, 362⟩ , and
⟨32, 33, 991⟩ are all perfect numerical semigroups, not equal to ⟨19, 32, 33⟩ .
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