

**Turkish Journal of Mathematics** 

http://journals.tubitak.gov.tr/math/

Turk J Math (2022) 46: 912 – 918 © TÜBİTAK doi:10.3906/mat-2112-31

**Research Article** 

# Properties of Abelian-by-cyclic shared by soluble finitely generated groups

Fares GHERBI<sup>\*</sup><sup>(0)</sup>, Nadir TRABELSI<sup>(0)</sup>

Department of Mathematics, Faculty of Sciences, University Ferhat Abbas Setif 1, Setif, Algeria

| <b>B</b> : 1 00 10 0001 |   |                                       |   | <b>D: 137 :</b> 11.09.0000       |
|-------------------------|---|---------------------------------------|---|----------------------------------|
| Received: 08.12.2021    | • | Accepted/Published Unline: 31.01.2022 | • | <b>Final Version:</b> 11.03.2022 |

Abstract: Our main result states that if G is a finitely generated soluble group having a normal Abelian subgroup A, such that G/A and  $\langle x, a \rangle$  are nilpotent (respectively, finite-by-nilpotent, periodic-by-nilpotent, nilpotent-by-finite, finite-by-supersoluble, supersoluble-by-finite) for all  $(x, a) \in G \times A$ , then so is G. We deduce that if  $\mathfrak{X}$  is a subgroup and quotient closed class of groups and if all 2-generated Abelian-by-cyclic groups of  $\mathfrak{X}$  are nilpotent (respectively, finite-by-nilpotent, periodic-by-nilpotent, nilpotent-by-finite, finite-by-supersoluble, supersoluble-by-finite), then so are all finitely generated soluble groups of  $\mathfrak{X}$ . We give examples that show that our main result is not true for other classes of groups, like the classes of Abelian, supersoluble, and FC-groups.

Key words: Coherent, polycyclic, nilpotent, supersoluble, soluble, Abelian-by-cyclic

## 1. Introduction and results

In [6, Lemma] (respectively, [4, Proposition 8 and Theorem]), it is proved that a finitely generated soluble group G having a normal Abelian subgroup A such that G/A and  $\langle x, a \rangle$  are polycyclic (respectively, coherent) for all  $(x, a) \in G \times A$ , is itself polycyclic (respectively, coherent). Recall that a group G is said to be coherent if every finitely generated subgroup is finitely presented. Here we will generalize this result to other classes, more precisely we will prove the following result.

**Theorem 1.1** If G is a finitely generated soluble group having a normal Abelian subgroup A, such that G/A and  $\langle x, a \rangle$  are nilpotent (respectively, finite-by-nilpotent, periodic-by-nilpotent, nilpotent-by-finite, finite-by-supersoluble, supersoluble-by-finite) for all  $(x, a) \in G \times A$ , then so is G.

Recall that G is said to be supersoluble if it has a finite normal series with cyclic factors.

In [3, Theorem 1.1], it is proved that if all metabelian groups of a subgroup and quotient closed class  $\mathfrak{X}$  of groups are periodic-by-nilpotent, then so are all soluble groups of  $\mathfrak{X}$ . As consequences of Theorem 1.1, we have results in the same spirit.

**Corollary 1.2** Let  $\mathfrak{X}$  be a subgroup and quotient closed class of groups. If all 2-generated Abelian-by-cyclic groups of  $\mathfrak{X}$  are nilpotent (respectively, finite-by-nilpotent, periodic-by-nilpotent, nilpotent-by-finite, finite-by-supersoluble, supersoluble-by-finite), then so are all finitely generated soluble groups of  $\mathfrak{X}$ .

<sup>\*</sup>Correspondence: fares.gherbi@univ-setif.dz

<sup>2010</sup> AMS Mathematics Subject Classification: 20F16, 20F99.

We deduce, by Corollary 1.2, by [4, Proposition 8 and Theorem] and by the fact that coherent groups form a local class, the following immediate consequence.

**Corollary 1.3** Let  $\mathfrak{X}$  be a subgroup and quotient closed class of groups.

- 1. If all 2-generated Abelian-by-cyclic groups of  $\mathfrak{X}$  are nilpotent, then all locally soluble groups of  $\mathfrak{X}$  are locally nilpotent.
- 2. If all 2-generated Abelian-by-cyclic groups of  $\mathfrak{X}$  are periodic-by-nilpotent, then all locally soluble groups of  $\mathfrak{X}$  are periodic-by-(locally nilpotent).
- 3. If all 2-generated Abelian-by-cyclic groups of  $\mathfrak{X}$  are coherent, then all locally soluble groups of  $\mathfrak{X}$  are coherent.

The consideration of the group  $U(3,\mathbb{Z})$  of all  $3 \times 3$  unitriangular matrices over  $\mathbb{Z}$ , which is finitely generated, torsion-free and nilpotent of class 2 [8, p. 123-124], shows that Theorem 1.1 is not true for the classes of Abelian, finite-by-Abelian, Abelian-by-finite and *FC*-groups. We give in subsection 2.5 below, two examples which show that Theorem 1.1 is not true also for supersoluble groups.

#### 2. Proof of the results

We prove first Theorem 1.1 starting with the finite-by-nilpotent case.

#### 2.1. The finite-by-nilpotent case

**Proposition 2.1** Let G be a finitely generated soluble group having an Abelian normal subgroup A such that G/A and  $\langle x, a \rangle$  are finite-by-nilpotent for all  $(x, a) \in G \times A$ . Then G is finite-by-nilpotent.

**Proof** Let G and A be as stated. Clearly G/A and  $\langle x, a \rangle$  are polycyclic for all x in G and a in A, so by [6, Lemma], G is polycyclic and thus it satisfies the maximal condition on subgroups. Now, as A is Abelian and finitely generated, its torsion subgroup T is finite and normal in G, but the hypotheses on G are inherited by quotients, so we may therefore assume that A is torsion-free. Let  $x \in G$  and  $a \in A$ . Since  $\langle x, a \rangle$  is finite-by-nilpotent, there exists a positive integer c = c(x, a) such that  $\gamma_{c+1}(\langle x, a \rangle)$  is finite. The normality of A in G gives that  $\gamma_{c+1}(\langle x, a \rangle) \leq \gamma_{c+1}(A \langle x \rangle) \leq A$ , so that  $\gamma_{c+1}(\langle x, a \rangle) = 1$  because A is torsion-free, and thus [a, x] = 1. This means that  $A \leq R(G)$  the set of right Engel elements of G. It follows, by [9, Theorem 7.21], that  $A \leq Z_n(G)$  for some positive integer n. Finally, since  $G/Z_n(G) \simeq (G/A)/(Z_n(G)/A)$  is finite-by-nilpotent, G is finite-by-nilpotent; as claimed.

#### 2.2. The nilpotent case

**Proposition 2.2** Let G be a finitely generated soluble group having an Abelian normal subgroup A such that G/A and  $\langle x, a \rangle$  are nilpotent for all  $(x, a) \in G \times A$ . Then G is nilpotent.

We omit the proof of Proposition 2.2 which can be extracted from that of Proposition 2.1.

## 2.3. The periodic-by-nilpotent case

In order to prove the main result of the periodic-by-nilpotent case, we need a preliminary result.

**Lemma 2.3** Let G be a finitely generated Abelian-by-nilpotent group having an Abelian normal subgroup A such that G/A is periodic-by-nilpotent and  $\langle x, a \rangle$  is nilpotent for all  $(x, a) \in G \times A$ . Then G is periodic-by-nilpotent.

**Proof** Let G and A be as stated. Clearly, one can assume that  $A \neq 1$ . Since G is Abelian-by-nilpotent and finitely generated, it satisfies the maximal condition on normal subgroups [10, Theorem 5.34]. As the hypotheses on G are inherited by quotients, we may therefore assume that G is not periodic-by-nilpotent but that every proper quotient of G is. Let  $1 \neq a \in A$  and  $x \in G$ ; since  $\langle x, a \rangle$  is nilpotent, there exists a positive integer c such that [a, cx] = 1. We deduce that a is a right Engel element of G. By a result of Brookes [2],  $a \in Z_n(G)$  for some positive integer n, because G satisfies the maximal condition on normal subgroups. Now, since  $Z_n(G) \neq 1$ , the center Z(G) is nontrivial and therefore G/Z(G) is periodic-by-nilpotent. We deduce by [3, Lemma 4.2] that G is periodic-by-nilpotent, which is a contradiction. This means that G is periodic-by-nilpotent.

**Proposition 2.4** Let G be a finitely generated soluble group having an Abelian normal subgroup A such that G/A and  $\langle x, a \rangle$  are periodic-by-nilpotent for all  $(x, a) \in G \times A$ . Then G is periodic-by-nilpotent.

**Proof** Let G and A be as stated. One can assume that  $A \neq 1$ . As the hypotheses on G are inherited by quotients, we may therefore assume that A is torsion-free. Let x be in G and a in A; since  $\langle x, a \rangle$  is both periodic-by-nilpotent and (torsion-free)-by-cyclic, it is nilpotent. On the other hand, since G/A is periodic-by-nilpotent, there is a normal subgroup T of G containing A such that T/A is periodic and  $G/T \simeq (G/A)/(T/A)$  is nilpotent. Let H be a finitely generated subgroup of T. We have  $H/A \cap H \simeq AH/A \leq T/A$ , so  $H/A \cap H$  is finite and hence any infinite part of H contains two distinct elements x, y such that  $x(A \cap H) = y(A \cap H)$ , that is y = xa for some element a of A, and thus  $\langle x, y \rangle = \langle x, a \rangle$  is nilpotent as noted above. By [6, Theorem A], H is finite-by-nilpotent and so T is locally (finite-by-nilpotent). Let P be the torsion subgroup of T. Since T/P is torsion-free, locally nilpotent and Abelian-by-periodic, it is Abelian by [9, Lemma 6.33]. Hence G/P is Abelian-by-nilpotent. Moreover, as  $AP/P \simeq A/(A \cap P) \simeq A$ , the hypotheses on G are satisfied by the quotient G/P, it follows, by Lemma 2.3, that G/P, and therefore G, is periodic-by-nilpotent.

#### 2.4. The nilpotent-by-finite case

We will consider in this subsection the nilpotent-by-finite case and as a consequence the supersoluble-by-finite case.

**Proposition 2.5** Let G be a finitely generated soluble group having an Abelian normal subgroup A such that G/A and  $\langle x, a \rangle$  are nilpotent-by-finite for all  $(x, a) \in G \times A$ . Then G is nilpotent-by-finite.

**Proof** Let G and A be as stated. Clearly, G/A and  $\langle x, a \rangle$  are polycyclic for all  $(x, a) \in G \times A$ , so by [6, Lemma], G is polycyclic and thus it satisfies the maximal condition on subgroups. As the hypotheses on G are inherited by quotients, we may therefore assume that A is torsion-free. Since G/A is nilpotent-by-finite, there is a normal subgroup N of G containing A such that N/A is nilpotent and G/N is finite. As the hypotheses on G are inherited by subgroups, there is no loss of generality if we assume that G/A is nilpotent. Let  $(x, a) \in G \times A$ ,

#### GHERBI and TRABELSI/Turk J Math

so  $\langle x, a \rangle$  is nilpotent-by-finite, and thus there are two positive integers n = n(x, a) and c = c(x, a) such that  $[a^n, x^n] = 1$ . We have that  $[a^n, x^n] = [a, x^n]^n$  and A is torsion-free, so  $[a, x^n] = 1$ . Since G is a finitely generated (torsion-free Abelian)-by-nilpotent group, by [7, Theorem A] there exists a subgroup H of finite index in G such that for all  $x \in H$  and for all positive integer k we have  $C_H(x^k) \leq C_H(x)$ . Clearly one can assume that G = H. We deduce that  $[[a, c-1, x^n], x] = 1$ , which implies that  $[[a, x], c-1, x^n] = 1$  as  $A \langle x \rangle$  is metabelian, hence [[a, x], c-1, x] = 1 by induction on c. Therefore  $A \leq R(G)$  the set of right Engle elements of G. It follows, by [9, Theorem 7.21], that  $A \leq Z_n(G)$  for some integer n > 0. Finally, since  $G/Z_n(G) \simeq (G/A)/(Z_n(G)/A)$  is nilpotent; as required.

Since supersoluble-by-finite groups are nilpotent-by-finite, Proposition 2.5 has the following consequence.

**Corollary 2.6** Let G be a finitely generated soluble group having an Abelian normal subgroup A such that G/A and  $\langle x, a \rangle$  are supersoluble-by-finite for all  $(x, a) \in G \times A$ . Then G is nilpotent-by-finite and hence supersoluble-by-finite.

## 2.5. The supersoluble case

In this subsection, we give two examples showing that Theorem 1.1 is not true for the class of supersoluble groups.

**Example 2.7** Let  $P = \langle a_1 \rangle \times \langle a_2 \rangle$  be an elementary Abelian 7-group and let  $\alpha$  and  $\beta$  be two automorphisms of P defined by  $a_1^\beta = a_1^4$ ,  $a_2^\beta = a_2^2$ ,  $a_1^\alpha = a_2$ ,  $a_2^\alpha = a_1$ , and let  $G = P \rtimes \langle \alpha, \beta \rangle$ . We have that  $o(\beta) = 3$ ,  $o(\alpha) = 2$  and  $\beta^{\alpha} = \beta^2$  so that  $\langle \alpha, \beta \rangle = \langle \alpha \rangle \langle \beta \rangle \simeq S_3$ . First, we prove that  $\langle \alpha, \beta \rangle$  acts irreducibly on P, that is there is no subgroup of order 7 of P which is  $\langle \alpha, \beta \rangle$ -invariant. Let  $Q = \left\langle a_1^i a_2^j \right\rangle$ , where  $0 \le i, j \le 6$ , be a subgroup of P of order 7, we show that either  $\alpha \notin N_G(Q)$  or  $\beta \notin N_G(Q)$ . Assume that  $\alpha \in N_G(Q)$ , so  $i, j \neq 0$  and  $Q^{\alpha} = \left\langle a_{1}^{i}a_{1}^{j} \right\rangle = \left\langle a_{1}^{i}a_{2}^{j} \right\rangle$ , which gives that  $a_{2}^{i}a_{1}^{j} = (a_{1}^{i}a_{2}^{j})^{k}$  for some  $1 \leq k \leq 6$ . It follows that  $a_1^{j-ki} = a_2^{kj-i} = 1$ , we deduce that 7|j-ki| and 7|kj-i|, so  $7|j^2-i^2$ , hence 7|j-i| or 7|j+i|. We obtain that either i = j or 7 | j + i and the latter gives  $(i, j) \in \{(6, 1); (5, 2); (4, 3); (3, 4); (2, 5); (1, 6)\}$ . For such subgroups Q, we have to show that  $\beta \notin N_G(Q)$ . Assume, for a contradiction, that  $\beta \in N_G(Q)$  and consider first the subgroup  $Q = \langle a_1^i a_2^i \rangle$ . So  $Q^\beta = \langle a_1^{4i} a_2^{2i} \rangle = \langle a_1^i a_2^i \rangle$ , hence  $a_1^{4i} a_2^{2i} = a_1^{ki} a_2^{ki}$  for some  $1 \le k \le 6$ . We deduce that  $a_1^{4i-ki} = a_2^{ki-2i} = 1$ , so 7|4i-ki| and 7|ki-2i|, hence 7|2i|, which gives the contradiction that  $7 | i. Now take (i, j) = (6, 1), so Q = \left\langle a_1^6 a_2 \right\rangle and Q^{\beta} = \left\langle a_1^6 a_2 \right\rangle^{\beta} = \left\langle a_1^{24} a_2^2 \right\rangle = \left\langle a_1^3 a_2^2 \right\rangle, hence a_1^3 a_2^2 = a_1^{6k} a_2^k for (i, j) = (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1), (6, 1),$ some  $1 \le k \le 6$ . We deduce that  $a_1^{3-6k} = a_2^{k-2} = 1$ , so 7|3-6k and 7|k-2, which gives the contradiction that  $7 \mid -9$ . In the same way, we show that the remaining cases cannot occur. Therefore, Q cannot be  $\langle \alpha, \beta \rangle$ invariant. We deduce that G has no subgroup of order 7.3.2, which implies that G is not supersoluble as it is well known [1, Theorem 1.4.1] that supersoluble groups satisfy the converse of Lagrange's Theorem. Now P is a normal Abelian subgroup of G such that  $G/P \simeq S_3$  is supersoluble, and for every  $(x,a) \in G \times P$ , we have  $\langle x, a \rangle \leq \langle x \rangle P \neq G$ . But it is proved in [1, Lemma 3.4.3] that proper subgroups of each group of order 7<sup>2</sup>.3.2 are supersoluble and hence so is  $\langle x, a \rangle$ . It follows that Theorem 1.1 is not true for the class of finite supersoluble groups.

**Example 2.8** Let  $G_1 = \mathbb{Z} \times G = \mathbb{Z} \times (P \rtimes \langle \alpha, \beta \rangle)$ , where G is the previous example. So  $G_1$  is not supersoluble.

Put  $A = \mathbb{Z} \times P$ , so A is a normal Abelian subgroup of  $G_1$  such that  $G_1/A \simeq S_3$  is supersoluble, and for every  $(x, a) \in G_1 \times A$ , we have  $\langle x, a \rangle \leq \langle x \rangle A = \mathbb{Z}(\langle x \rangle P)$  which is cyclic-by-supersoluble, hence supersoluble. Therefore, Theorem 1.1 is not true for the class of infinite supersoluble groups.

#### 2.6. The finite-by-supersoluble case

Before proving the result on the finite-by-supersoluble case, we need the following preliminary result.

**Lemma 2.9** Let G be a finitely generated (torsion-free nilpotent)-by-(finite cyclic) group having an Abelian normal subgroup A such that G/A and  $\langle x, a \rangle$  are finite-by-supersoluble for all  $(x, a) \in G \times A$ . Then G is supersoluble.

**Proof** Let G and A be as stated. Since G is polycyclic, we will show, by induction on the Hirsch length h(G) of G, that G is supersoluble. Note that, as G is (torsion-free)-by-cyclic, any finite subgroup of G is cyclic, and hence any finite-by-supersoluble subgroup of G is supersoluble. It follows that our claim is true if h(G) = 0. Suppose now that h(G) > 0 and that any polycyclic group H, of Hirsch length less than h(G), which is (torsion-free nilpotent)-by-(finite cyclic) and having an Abelian normal subgroup B such that H/Band  $\langle x, b \rangle$  are finite-by-supersoluble for all  $(x, b) \in H \times B$ , is supersoluble. We will first show that G has an infinite cyclic normal subgroup C. Indeed, let N be a torsion-free normal nilpotent subgroup of G and let  $x \in G$  such that  $G = N \langle x \rangle$  and G/N is finite. If  $A \cap N = 1$ , then A is isomorphic to a subgroup of G/N, that is A is finite. Since G/A is finite-by-supersoluble, we get that G is finite-by-supersoluble and hence supersoluble; which proves the existence of C. So one can assume that  $A \cap N \neq 1$ . Since N is nilpotent and  $1 \neq A \cap N \triangleleft N$ , we deduce that  $A \cap Z(N) = (A \cap N) \cap Z(N) \neq 1$ . Put  $K := \langle x, a \rangle$  for some  $1 \neq a \in A \cap Z(N)$ , so K is finite-by-supersoluble, hence supersoluble. As  $1 \neq A \cap Z(N) \cap K \triangleleft K$ ,  $A \cap Z(N) \cap K$  is a term of a cyclic normal series of K, so  $A \cap Z(N) \cap K$  contains a nontrivial cyclic subgroup, say  $C = \langle c \rangle$ , which is normal in K. Let  $g \in G$  and  $t \in C$ , so  $g = bx^k$  and  $t = c^{k'}$  for some  $b \in N$  and  $k, k' \in \mathbb{Z}$ . Hence  $t^{g} = (c^{k'})^{bx^{k}} = (c^{bx^{k}})^{k'} = (c^{x^{k}})^{k'}$ , as  $c \in Z(N)$ . But  $c^{x^{k}} = c^{k''}$  for some  $k'' \in \mathbb{Z}$ , because  $C \triangleleft K$ , so  $t^{g} = c^{k'k''}$ and therefore C is an infinite cyclic normal subgroup of G. Now, let T/C be the torsion subgroup of N/C, which is finite, so T is an (infinite cyclic)-by-finite normal subgroup of G and N/T is torsion-free. Since T is torsion-free, we deduce that T is infinite cyclic. If h(G/T) = 0, then G is (infinite cyclic)-by-finite, so G is either finite-by-(infinite cyclic) or finite-by-(infinite dihedral) (see for instance [12, Lemma 4.1]) and hence Gis supersoluble. It follows that G/T is a (torsion-free nilpotent)-by-(finite cyclic) group whose Hirsch length is less than h(G), so by the inductive hypothesis, G/T is supersoluble. As T is cyclic, we obtain that G is supersoluble, as required. 

**Proposition 2.10** Let G be a finitely generated soluble group having an Abelian normal subgroup A such that G/A and  $\langle x, a \rangle$  are finite-by-supersoluble for all  $(x, a) \in G \times A$ . Then G is finite-by-supersoluble.

**Proof** Let G and A be as stated. Since finite-by-supersoluble groups are nilpotent-by-finite, we deduce, by Proposition 2.5, that G is nilpotent-by-finite and hence it is (torsion-free nilpotent)-by-finite. Let N be a normal torsion-free nilpotent subgroup of G such that G/N is finite. Since the hypotheses of the proposition are satisfied by subgroups of G, we deduce, by Lemma 2.9, that for all g in G,  $N\langle g \rangle$  is supersoluble. Now let X be an infinite subset of G. As G/N is finite, there are two distinct elements x, y in X such that xN = yN,

so  $\langle x, y \rangle = \langle x, a \rangle$  for some  $a \in N$  and hence  $\langle x, y \rangle \leq N \langle x \rangle$  and thus  $\langle x, y \rangle$  is supersoluble. Consequently, every infinite part of G contains two distinct elements generating a supersoluble group. It follows, by a result of Groves [5, Theorem], that G is finite-by-supersoluble, as required.

# 2.7. Proof of Corollary 1.2

Corollary 1.2 is a particular case of the following general result.

**Proposition 2.11** Let  $\mathfrak{X}$  be a subgroup and quotient closed class of groups and let  $\mathfrak{Y}$  be a class of groups that contain all finitely generated soluble group G having an Abelian normal subgroup A such that G/A and  $\langle x, a \rangle$  are in  $\mathfrak{Y}$  for all  $(x, a) \in G \times A$ .

- 1. If all finitely generated Abelian-by-cyclic groups of  $\mathfrak{X}$  are in  $\mathfrak{Y}$ , then all finitely generated soluble groups of  $\mathfrak{X}$  are in  $\mathfrak{Y}$ .
- 2. Suppose that  $\mathfrak{Y}$  contains all finitely generated Abelian groups. If all 2-generated Abelian-by-cyclic groups of  $\mathfrak{X}$  are in  $\mathfrak{Y}$ , then all finitely generated soluble groups of  $\mathfrak{X}$  are in  $\mathfrak{Y}$ .

**Proof** Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be as stated.

- Suppose that all finitely generated Abelian-by-cyclic groups of X are in 𝔅 and let G be a finitely generated soluble group in the class 𝔅. We will show by induction on the derived length d of G that G is in the class 𝔅. If d = 1, then G is Abelian and thus, by hypothesis, it is in 𝔅. Assume that d > 1 and that any finitely generated soluble group of 𝔅 of derived length less than d is in the class 𝔅. Put A := G<sup>(d-1)</sup>, so A is an Abelian normal subgroup of G and by the inductive hypothesis, G/A belongs to 𝔅. Let (x, a) ∈ G × A, so ⟨x, a⟩ is a finitely generated Abelian-by-cyclic group in the class 𝔅, hence, by hypothesis, ⟨x, a⟩ is in 𝔅. It follows, by hypothesis, that G is in the class 𝔅.
- Suppose that 𝔅 contains all finitely generated Abelian groups and that all 2-generated Abelian-by-cyclic groups of 𝔅 are in 𝔅. Let G be a finitely generated soluble group in the class 𝔅. Again by induction on the derived length d of G. If d = 1, then G is Abelian and thus it is in 𝔅. Assume that d > 1 and put A := G<sup>(d-1)</sup>, so A is an Abelian normal subgroup of G and by the inductive hypothesis, G/A belongs to 𝔅. Let (x, a) ∈ G × A, so ⟨x, a⟩ is a 2-generated Abelian-by-cyclic group of the class 𝔅 and hence ⟨x, a⟩ is in the class 𝔅 and consequently G will be in 𝔅, as required.

## 2.8. Application

If  $\mathfrak{X}$  is a class of groups, then denote by  $(\mathfrak{X}, \infty)$  the class of groups in which every infinite subset contains a pair of distinct elements generating an  $\mathfrak{X}$ -group. In [5], it was proved that any finitely generated soluble group in the class  $(\mathfrak{U}, \infty)$  is finite-by-supersoluble, where  $\mathfrak{U}$  denotes the class of supersoluble groups. As an application of our results, we will improve this result as follows.

**Proposition 2.12** If G is a finitely generated soluble group in the class  $(\mathfrak{FU}, \infty)$ , then it is finite-bysupersoluble;  $\mathfrak{F}$  being the class of finite groups. **Proof** Let G be as stated. Since  $(\mathfrak{FU}, \infty)$  is a subgroup and quotient closed class, one can assume, by Corollary 1.2, that G is a 2-generated Abelian-by-cyclic group. Let A be a normal Abelian subgroup of Gand let  $x \in G$  such that  $G = A \langle x \rangle$ . Since supersoluble groups are nilpotent-by-finite, G belongs to the class  $(\mathfrak{NF}, \infty)$ , where  $\mathfrak{N}$  denotes the class of nilpotent groups. It follows, by [11], that G is nilpotent-by-finite and hence it satisfies the maximal condition on subgroups. We deduce that the torsion subgroup T of A is finite. So factoring G by T, one can assume that A is torsion-free. Therefore every finite-by-supersoluble subgroup of G is cyclic-by-supersoluble, so supersoluble. Consequently, G belongs to the class  $(\mathfrak{U}, \infty)$  and hence G is finite-by-supersoluble by [5], as claimed.  $\Box$ 

## Acknowledgment

This work was completed by the support of the General Directorate of Scientific Research and Technological Development (DGRSDT, Algeria).

#### References

- [1] Bray HG, Deskins WE, Johnson D. Between Nilpotent and Solvable. Poly-gonal, Washington, 1982.
- Brookes CJB. Engel elements of soluble groups. Bulletin of the London Mathematical Society 1986; 18 (1): 7-10. doi: 10.1112/blms/18.1.7
- [3] Endimioni G, Traustason G. On torsion-by-nilpotent groups. Journal of Algebra 2001; 241 (2): 669-676. doi: 10.1006/jabr.2001.8772
- [4] Groves JRJ. Soluble groups in which every finitely generated subgroup is finitely presented. Journal of the Australian Mathematical Society (Series A) 1978; 26 (1): 115-125. doi: 10.1017/S1446788700011599
- [5] Groves JRJ. A conjecture of Lennox and Wiegold concerning supersoluble groups. Journal of the Australian Mathematical Society (Series A) 1983; 35 (2): 218-220. doi: 10.1017/S1446788700025702
- [6] Lennox JC, Wiegold J. Extensions of a problem of Paul Erdős on groups. Journal of the Australian Mathematical Society (Series A) 1981; 31 (4): 459-463. doi: 10.1017/S1446788700024253
- [7] Lennox JC. On a centrality property of finitely generated torsion free soluble groups. Journal of Algebra 1971; 18 (4): 541–548. doi: 10.1016/0021-8693(71)90137-2
- [8] Robinson DJS. A course in the theory of groups. Springer-Verlag, New York, 1982.
- [9] Robinson DJS. Finiteness Conditions and Generalized Soluble Groups Part 2. Springer-Verlag, New York, 1972.
- [10] Robinson DJS. Finiteness Conditions and Generalized Soluble Groups Part 1. Springer-Verlag, New York, 1972.
- [11] Trabelsi N. Soluble groups with a condition on infinite subsets. Algebra Colloquium 2002; 9 (4): 427-432.
- [12] Wall CTC. Poincaré complexes I. Annals of Mathematics (Second Series) 1967; 86 (2): 213-245. doi: 10.2307/1970688