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Abstract: Our main result states that if G is a finitely generated soluble group having a normal Abelian subgroup
A , such that G/A and ⟨x, a⟩ are nilpotent (respectively, finite-by-nilpotent, periodic-by-nilpotent, nilpotent-by-finite,
finite-by-supersoluble, supersoluble-by-finite) for all (x, a) ∈ G × A , then so is G . We deduce that if X is a subgroup
and quotient closed class of groups and if all 2 -generated Abelian-by-cyclic groups of X are nilpotent (respectively,
finite-by-nilpotent, periodic-by-nilpotent, nilpotent-by-finite, finite-by-supersoluble, supersoluble-by-finite), then so are
all finitely generated soluble groups of X . We give examples that show that our main result is not true for other classes
of groups, like the classes of Abelian, supersoluble, and FC -groups.

Key words: Coherent, polycyclic, nilpotent, supersoluble, soluble, Abelian-by-cyclic

1. Introduction and results
In [6, Lemma] (respectively, [4, Proposition 8 and Theorem]), it is proved that a finitely generated soluble group
G having a normal Abelian subgroup A such that G/A and ⟨x, a⟩ are polycyclic (respectively, coherent) for
all (x, a) ∈ G × A , is itself polycyclic (respectively, coherent). Recall that a group G is said to be coherent if
every finitely generated subgroup is finitely presented. Here we will generalize this result to other classes, more
precisely we will prove the following result.

Theorem 1.1 If G is a finitely generated soluble group having a normal Abelian subgroup A , such that
G/A and ⟨x, a⟩ are nilpotent (respectively, finite-by-nilpotent, periodic-by-nilpotent, nilpotent-by-finite, finite-
by-supersoluble, supersoluble-by-finite) for all (x, a) ∈ G×A , then so is G .

Recall that G is said to be supersoluble if it has a finite normal series with cyclic factors.
In [3, Theorem 1.1], it is proved that if all metabelian groups of a subgroup and quotient closed class X

of groups are periodic-by-nilpotent, then so are all soluble groups of X . As consequences of Theorem 1.1, we
have results in the same spirit.

Corollary 1.2 Let X be a subgroup and quotient closed class of groups. If all 2-generated Abelian-by-cyclic
groups of X are nilpotent (respectively, finite-by-nilpotent, periodic-by-nilpotent, nilpotent-by-finite, finite-by-
supersoluble, supersoluble-by-finite), then so are all finitely generated soluble groups of X .
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We deduce, by Corollary 1.2, by [4, Proposition 8 and Theorem] and by the fact that coherent groups
form a local class, the following immediate consequence.

Corollary 1.3 Let X be a subgroup and quotient closed class of groups.

1. If all 2-generated Abelian-by-cyclic groups of X are nilpotent, then all locally soluble groups of X are
locally nilpotent.

2. If all 2-generated Abelian-by-cyclic groups of X are periodic-by-nilpotent, then all locally soluble groups
of X are periodic-by-(locally nilpotent).

3. If all 2-generated Abelian-by-cyclic groups of X are coherent, then all locally soluble groups of X are
coherent.

The consideration of the group U(3,Z) of all 3 × 3 unitriangular matrices over Z , which is finitely
generated, torsion-free and nilpotent of class 2 [8, p. 123-124], shows that Theorem 1.1 is not true for the
classes of Abelian, finite-by-Abelian, Abelian-by-finite and FC -groups. We give in subsection 2.5 below, two
examples which show that Theorem 1.1 is not true also for supersoluble groups.

2. Proof of the results
We prove first Theorem 1.1 starting with the finite-by-nilpotent case.

2.1. The finite-by-nilpotent case

Proposition 2.1 Let G be a finitely generated soluble group having an Abelian normal subgroup A such that
G/A and ⟨x, a⟩ are finite-by-nilpotent for all (x, a) ∈ G×A . Then G is finite-by-nilpotent.

Proof Let G and A be as stated. Clearly G/A and ⟨x, a⟩ are polycyclic for all x in G and a in A , so by
[6, Lemma], G is polycyclic and thus it satisfies the maximal condition on subgroups. Now, as A is Abelian
and finitely generated, its torsion subgroup T is finite and normal in G , but the hypotheses on G are inherited
by quotients, so we may therefore assume that A is torsion-free. Let x ∈ G and a ∈ A . Since ⟨x, a⟩ is
finite-by-nilpotent, there exists a positive integer c = c(x, a) such that γc+1(⟨x, a⟩) is finite. The normality
of A in G gives that γc+1(⟨x, a⟩) ≤ γc+1(A ⟨x⟩) ≤ A , so that γc+1(⟨x, a⟩) = 1 because A is torsion-free,
and thus [a,c x] = 1 . This means that A ≤ R(G) the set of right Engel elements of G . It follows, by [9,
Theorem 7.21], that A ≤ Zn (G) for some positive integer n . Finally, since G/Zn (G) ≃ (G/A)/(Zn (G) /A) is
finite-by-nilpotent, G is finite-by-nilpotent; as claimed. 2

2.2. The nilpotent case

Proposition 2.2 Let G be a finitely generated soluble group having an Abelian normal subgroup A such that
G/A and ⟨x, a⟩ are nilpotent for all (x, a) ∈ G×A . Then G is nilpotent.

We omit the proof of Proposition 2.2 which can be extracted from that of Proposition 2.1.
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2.3. The periodic-by-nilpotent case
In order to prove the main result of the periodic-by-nilpotent case, we need a preliminary result.

Lemma 2.3 Let G be a finitely generated Abelian-by-nilpotent group having an Abelian normal subgroup A such
that G/A is periodic-by-nilpotent and ⟨x, a⟩ is nilpotent for all (x, a) ∈ G×A . Then G is periodic-by-nilpotent.

Proof Let G and A be as stated. Clearly, one can assume that A ̸= 1 . Since G is Abelian-by-nilpotent
and finitely generated, it satisfies the maximal condition on normal subgroups [10, Theorem 5.34]. As the
hypotheses on G are inherited by quotients, we may therefore assume that G is not periodic-by-nilpotent but
that every proper quotient of G is. Let 1 ̸= a ∈ A and x ∈ G ; since ⟨x, a⟩ is nilpotent, there exists a positive
integer c such that [a,c x] = 1 . We deduce that a is a right Engel element of G . By a result of Brookes
[2], a ∈ Zn (G) for some positive integer n , because G satisfies the maximal condition on normal subgroups.
Now, since Zn (G) ̸= 1 , the center Z (G) is nontrivial and therefore G/Z(G) is periodic-by-nilpotent. We
deduce by [3, Lemma 4.2] that G is periodic-by-nilpotent, which is a contradiction. This means that G is
periodic-by-nilpotent. 2

Proposition 2.4 Let G be a finitely generated soluble group having an Abelian normal subgroup A such that
G/A and ⟨x, a⟩ are periodic-by-nilpotent for all (x, a) ∈ G×A . Then G is periodic-by-nilpotent.

Proof Let G and A be as stated. One can assume that A ̸= 1 . As the hypotheses on G are inherited by
quotients, we may therefore assume that A is torsion-free. Let x be in G and a in A ; since ⟨x, a⟩ is both
periodic-by-nilpotent and (torsion-free)-by-cyclic, it is nilpotent. On the other hand, since G/A is periodic-by-
nilpotent, there is a normal subgroup T of G containing A such that T/A is periodic and G/T ≃ (G/A)/(T/A)

is nilpotent. Let H be a finitely generated subgroup of T . We have H/A∩H ≃ AH/A ≤ T/A , so H/A∩H is
finite and hence any infinite part of H contains two distinct elements x, y such that x(A∩H) = y(A∩H) , that
is y = xa for some element a of A , and thus ⟨x, y⟩ = ⟨x, a⟩ is nilpotent as noted above. By [6, Theorem A],
H is finite-by-nilpotent and so T is locally (finite-by-nilpotent). Let P be the torsion subgroup of T . Since
T/P is torsion-free, locally nilpotent and Abelian-by-periodic, it is Abelian by [9, Lemma 6.33]. Hence G/P is
Abelian-by-nilpotent. Moreover, as AP/P ≃ A/(A∩P ) ≃ A , the hypotheses on G are satisfied by the quotient
G/P , it follows, by Lemma 2.3, that G/P , and therefore G , is periodic-by-nilpotent. 2

2.4. The nilpotent-by-finite case
We will consider in this subsection the nilpotent-by-finite case and as a consequence the supersoluble-by-finite
case.

Proposition 2.5 Let G be a finitely generated soluble group having an Abelian normal subgroup A such that
G/A and ⟨x, a⟩ are nilpotent-by-finite for all (x, a) ∈ G×A . Then G is nilpotent-by-finite.

Proof Let G and A be as stated. Clearly, G/A and ⟨x, a⟩ are polycyclic for all (x, a) ∈ G × A , so by [6,
Lemma], G is polycyclic and thus it satisfies the maximal condition on subgroups. As the hypotheses on G are
inherited by quotients, we may therefore assume that A is torsion-free. Since G/A is nilpotent-by-finite, there is
a normal subgroup N of G containing A such that N/A is nilpotent and G/N is finite. As the hypotheses on G

are inherited by subgroups, there is no loss of generality if we assume that G/A is nilpotent. Let (x, a) ∈ G×A ,

914



GHERBI and TRABELSI/Turk J Math

so ⟨x, a⟩ is nilpotent-by-finite, and thus there are two positive integers n = n(x, a) and c = c(x, a) such that
[an,c x

n] = 1 . We have that [an,c x
n] = [a,c x

n]
n and A is torsion-free, so [a,c x

n] = 1 . Since G is a finitely
generated (torsion-free Abelian)-by-nilpotent group, by [7, Theorem A] there exists a subgroup H of finite index
in G such that for all x ∈ H and for all positive integer k we have CH(xk) ≤ CH(x) . Clearly one can assume
that G = H . We deduce that [[a,c−1 x

n], x] = 1 , which implies that [[a, x],c−1 x
n] = 1 as A ⟨x⟩ is metabelian,

hence [[a, x],c−1 x] = 1 by induction on c . Therefore A ≤ R(G) the set of right Engel elements of G . It follows,
by [9, Theorem 7.21], that A ≤ Zn (G) for some integer n > 0 . Finally, since G/Zn (G) ≃ (G/A)/(Zn (G) /A)

is nilpotent, G is nilpotent; as required. 2

Since supersoluble-by-finite groups are nilpotent-by-finite, Proposition 2.5 has the following consequence.

Corollary 2.6 Let G be a finitely generated soluble group having an Abelian normal subgroup A such that
G/A and ⟨x, a⟩ are supersoluble-by-finite for all (x, a) ∈ G × A . Then G is nilpotent-by-finite and hence
supersoluble-by-finite.

2.5. The supersoluble case
In this subsection, we give two examples showing that Theorem 1.1 is not true for the class of supersoluble
groups.

Example 2.7 Let P = ⟨a1⟩ × ⟨a2⟩ be an elementary Abelian 7-group and let α and β be two automorphisms
of P defined by aβ1 = a41 , aβ2 = a22 , aα1 = a2 , aα2 = a1 , and let G = P ⋊ ⟨α, β⟩ . We have that o(β) = 3 ,
o(α) = 2 and βα = β2 so that ⟨α, β⟩ = ⟨α⟩ ⟨β⟩ ≃ S3 . First, we prove that ⟨α, β⟩ acts irreducibly on P ,

that is there is no subgroup of order 7 of P which is ⟨α, β⟩-invariant. Let Q =
〈
ai1a

j
2

〉
, where 0 ≤ i, j ≤ 6 ,

be a subgroup of P of order 7 , we show that either α /∈ NG(Q) or β /∈ NG(Q) . Assume that α ∈ NG(Q) ,

so i, j ̸= 0 and Qα =
〈
ai2a

j
1

〉
=

〈
ai1a

j
2

〉
, which gives that ai2a

j
1 = (ai1a

j
2)

k for some 1 ≤ k ≤ 6 . It follows

that aj−ki
1 = akj−i

2 = 1 , we deduce that 7 |j − ki and 7 |kj − i , so 7
∣∣j2 − i2 , hence 7 |j − i or 7 |j + i . We

obtain that either i = j or 7 |j + i and the latter gives (i, j) ∈ {(6, 1); (5, 2); (4, 3); (3, 4); (2, 5); (1, 6)} . For such
subgroups Q , we have to show that β /∈ NG(Q) . Assume, for a contradiction, that β ∈ NG(Q) and consider
first the subgroup Q =

〈
ai1a

i
2

〉
. So Qβ =

〈
a4i1 a2i2

〉
=

〈
ai1a

i
2

〉
, hence a4i1 a2i2 = aki1 aki2 for some 1 ≤ k ≤ 6 . We

deduce that a4i−ki
1 = aki−2i

2 = 1 , so 7 |4i− ki and 7 |ki− 2i , hence 7 |2i , which gives the contradiction that

7 |i . Now take (i, j) = (6, 1) , so Q =
〈
a61a2

〉
and Qβ =

〈
a61a2

〉β
=

〈
a241 a22

〉
=

〈
a31a

2
2

〉
, hence a31a

2
2 = a6k1 ak2 for

some 1 ≤ k ≤ 6 . We deduce that a3−6k
1 = ak−2

2 = 1 , so 7 |3− 6k and 7 |k − 2 , which gives the contradiction
that 7 |−9 . In the same way, we show that the remaining cases cannot occur. Therefore, Q cannot be ⟨α, β⟩-
invariant. We deduce that G has no subgroup of order 7.3.2 , which implies that G is not supersoluble as it is
well known [1, Theorem 1.4.1] that supersoluble groups satisfy the converse of Lagrange’s Theorem. Now P is
a normal Abelian subgroup of G such that G/P ≃ S3 is supersoluble, and for every (x, a) ∈ G × P , we have
⟨x, a⟩ ≤ ⟨x⟩P ̸= G . But it is proved in [1, Lemma 3.4.3] that proper subgroups of each group of order 72.3.2 are
supersoluble and hence so is ⟨x, a⟩ . It follows that Theorem 1.1 is not true for the class of finite supersoluble
groups.

Example 2.8 Let G1 = Z×G = Z×(P ⋊⟨α, β⟩) , where G is the previous example. So G1 is not supersoluble.
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Put A = Z × P , so A is a normal Abelian subgroup of G1 such that G1/A ≃ S3 is supersoluble, and for
every (x, a) ∈ G1 × A , we have ⟨x, a⟩ ≤ ⟨x⟩A = Z(⟨x⟩P ) which is cyclic-by-supersoluble, hence supersoluble.
Therefore, Theorem 1.1 is not true for the class of infinite supersoluble groups.

2.6. The finite-by-supersoluble case
Before proving the result on the finite-by-supersoluble case, we need the following preliminary result.

Lemma 2.9 Let G be a finitely generated (torsion-free nilpotent)-by-(finite cyclic) group having an Abelian
normal subgroup A such that G/A and ⟨x, a⟩ are finite-by-supersoluble for all (x, a) ∈ G × A . Then G is
supersoluble.

Proof Let G and A be as stated. Since G is polycyclic, we will show, by induction on the Hirsch length
h(G) of G , that G is supersoluble. Note that, as G is (torsion-free)-by-cyclic, any finite subgroup of G is
cyclic, and hence any finite-by-supersoluble subgroup of G is supersoluble. It follows that our claim is true if
h(G) = 0 . Suppose now that h(G) > 0 and that any polycyclic group H , of Hirsch length less than h(G) ,
which is (torsion-free nilpotent)-by-(finite cyclic) and having an Abelian normal subgroup B such that H/B

and ⟨x, b⟩ are finite-by-supersoluble for all (x, b) ∈ H × B , is supersoluble. We will first show that G has
an infinite cyclic normal subgroup C . Indeed, let N be a torsion-free normal nilpotent subgroup of G and
let x ∈ G such that G = N ⟨x⟩ and G/N is finite. If A ∩ N = 1 , then A is isomorphic to a subgroup of
G/N , that is A is finite. Since G/A is finite-by-supersoluble, we get that G is finite-by-supersoluble and hence
supersoluble; which proves the existence of C . So one can assume that A ∩N ̸= 1 . Since N is nilpotent and
1 ̸= A∩N ◁ N , we deduce that A∩Z(N) = (A∩N)∩Z(N) ̸= 1 . Put K := ⟨x, a⟩ for some 1 ̸= a ∈ A∩Z(N) ,
so K is finite-by-supersoluble, hence supersoluble. As 1 ̸= A ∩ Z(N) ∩ K ◁ K , A ∩ Z(N) ∩ K is a term
of a cyclic normal series of K , so A ∩ Z(N) ∩ K contains a nontrivial cyclic subgroup, say C = ⟨c⟩ , which
is normal in K . Let g ∈ G and t ∈ C , so g = bxk and t = ck

′ for some b ∈ N and k, k′ ∈ Z . Hence

tg = (ck
′
)bx

k

= (cbx
k

)k
′
= (cx

k

)k
′ , as c ∈ Z(N) . But cx

k

= c
k′′

for some k′′ ∈ Z , because C ◁ K , so tg = c
k′k′′

and therefore C is an infinite cyclic normal subgroup of G . Now, let T/C be the torsion subgroup of N/C ,
which is finite, so T is an (infinite cyclic)-by-finite normal subgroup of G and N/T is torsion-free. Since T is
torsion-free, we deduce that T is infinite cyclic. If h(G/T ) = 0 , then G is (infinite cyclic)-by-finite, so G is
either finite-by-(infinite cyclic) or finite-by-(infinite dihedral) (see for instance [12, Lemma 4.1]) and hence G

is supersoluble. It follows that G/T is a (torsion-free nilpotent)-by-(finite cyclic) group whose Hirsch length
is less than h(G) , so by the inductive hypothesis, G/T is supersoluble. As T is cyclic, we obtain that G is
supersoluble, as required. 2

Proposition 2.10 Let G be a finitely generated soluble group having an Abelian normal subgroup A such that
G/A and ⟨x, a⟩ are finite-by-supersoluble for all (x, a) ∈ G×A . Then G is finite-by-supersoluble.

Proof Let G and A be as stated. Since finite-by-supersoluble groups are nilpotent-by-finite, we deduce,
by Proposition 2.5, that G is nilpotent-by-finite and hence it is (torsion-free nilpotent)-by-finite. Let N be a
normal torsion-free nilpotent subgroup of G such that G/N is finite. Since the hypotheses of the proposition
are satisfied by subgroups of G , we deduce, by Lemma 2.9, that for all g in G , N⟨g⟩ is supersoluble. Now let
X be an infinite subset of G . As G/N is finite, there are two distinct elements x, y in X such that xN = yN ,
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so ⟨x, y⟩ = ⟨x, a⟩ for some a ∈ N and hence ⟨x, y⟩ ≤ N ⟨x⟩ and thus ⟨x, y⟩ is supersoluble. Consequently,
every infinite part of G contains two distinct elements generating a supersoluble group. It follows, by a result
of Groves [5, Theorem], that G is finite-by-supersoluble, as required. 2

2.7. Proof of Corollary 1.2

Corollary 1.2 is a particular case of the following general result.

Proposition 2.11 Let X be a subgroup and quotient closed class of groups and let Y be a class of groups that
contain all finitely generated soluble group G having an Abelian normal subgroup A such that G/A and ⟨x, a⟩
are in Y for all (x, a) ∈ G×A .

1. If all finitely generated Abelian-by-cyclic groups of X are in Y , then all finitely generated soluble groups
of X are in Y .

2. Suppose that Y contains all finitely generated Abelian groups. If all 2-generated Abelian-by-cyclic groups
of X are in Y , then all finitely generated soluble groups of X are in Y .

Proof Let X and Y be as stated.

1. Suppose that all finitely generated Abelian-by-cyclic groups of X are in Y and let G be a finitely generated
soluble group in the class X . We will show by induction on the derived length d of G that G is in the
class Y . If d = 1 , then G is Abelian and thus, by hypothesis, it is in Y . Assume that d > 1 and
that any finitely generated soluble group of X of derived length less than d is in the class Y . Put
A := G(d−1) , so A is an Abelian normal subgroup of G and by the inductive hypothesis, G/A belongs
to Y . Let (x, a) ∈ G×A , so ⟨x, a⟩ is a finitely generated Abelian-by-cyclic group in the class X , hence,
by hypothesis, ⟨x, a⟩ is in Y . It follows, by hypothesis, that G is in the class Y .

2. Suppose that Y contains all finitely generated Abelian groups and that all 2 -generated Abelian-by-cyclic
groups of X are in Y . Let G be a finitely generated soluble group in the class X . Again by induction on
the derived length d of G . If d = 1 , then G is Abelian and thus it is in Y . Assume that d > 1 and put
A := G(d−1) , so A is an Abelian normal subgroup of G and by the inductive hypothesis, G/A belongs
to Y . Let (x, a) ∈ G × A , so ⟨x, a⟩ is a 2 -generated Abelian-by-cyclic group of the class X and hence
⟨x, a⟩ is in the class Y and consequently G will be in Y , as required.

2

2.8. Application

If X is a class of groups, then denote by (X,∞) the class of groups in which every infinite subset contains a pair
of distinct elements generating an X -group. In [5], it was proved that any finitely generated soluble group in
the class (U,∞) is finite-by-supersoluble, where U denotes the class of supersoluble groups. As an application
of our results, we will improve this result as follows.

Proposition 2.12 If G is a finitely generated soluble group in the class (FU,∞) , then it is finite-by-
supersoluble; F being the class of finite groups.
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Proof Let G be as stated. Since (FU,∞) is a subgroup and quotient closed class, one can assume, by
Corollary 1.2, that G is a 2 -generated Abelian-by-cyclic group. Let A be a normal Abelian subgroup of G

and let x ∈ G such that G = A ⟨x⟩ . Since supersoluble groups are nilpotent-by-finite, G belongs to the class
(NF,∞) , where N denotes the class of nilpotent groups. It follows, by [11], that G is nilpotent-by-finite and
hence it satisfies the maximal condition on subgroups. We deduce that the torsion subgroup T of A is finite.
So factoring G by T , one can assume that A is torsion-free. Therefore every finite-by-supersoluble subgroup
of G is cyclic-by-supersoluble, so supersoluble. Consequently, G belongs to the class (U,∞) and hence G is
finite-by-supersoluble by [5], as claimed. 2
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