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Abstract: In this paper, by transforming the permutation problem into the root distribution problem in the unit circle

of certain quadratic and cubic equations, we investigate the permutation behavior of the type f(x) = x+ x23m−2m+1 +

x24m−23m+2m over F24m and f(x) = x+ x2m + x2m+1−1 + ax22m−2m+1 over F22m , respectively.
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1. Introduction
Let q be a power of a prime p , Fq be a finite field with q elements, and let F∗

q denote its multiplicative group.
A polynomial f ∈ Fq[x] is called a permutation polynomial if its associated polynomial mapping f : c 7→ f(c)

from Fq into itself is a bijection [12]. Permutation polynomials over finite fields have been a hot topic of
study for many years due to their significant applications areas such as cryptography [17], combinatorial design
theory [4], coding theory [8], and other areas of mathematics and engineering [15]. Finding new constructions
of permutation polynomials is of tremendous interest in both theoretical and applied aspects. The reader is
referred to the survey paper [6] for a detailed introduction about the developments on permutation polynomials.

The study of permutation polynomials with few terms, especially binomials and trinomials, has attracted
the researcher’s interest due to their simple algebraic form and additional extraordinary properties. Only a
few classes of permutation binomials and trinomials are known. This motivates us to find new families of
permutation trinomials with coefficients over finite fields with even characteristic. A Niho exponent [16] with
respect to the finite field Fq2 is a positive integer d satisfying d ≡ pj mod (q−1) for some nonnegative integer
j . When j = 0 , the integer d is then called a normalized Niho exponent. The Niho exponents are good resources
that lead to desirable objects in sequence design and communications [5]. By utilizing various methods in solving
equations with low degree over finite fields, some new permutation trinomials with Niho exponents were proposed
in [1–3, 7, 9–11, 13, 14, 18, 21–23]. However, only a small number of classes of permutation quadrinomials are
known in the literature. To the best of our knowledge, the permutation behavior of quadrinomials having the
form x2m+1+2m+ax2m+1+1+bx2m+2+cx3 over F22m for odd m were investigated in [19], where a, b, c satisfying
some restrictions.
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The purpose of this paper is to construct several classes of permutation polynomials with Niho exponents.
Recently, a class of permutation quadrinomials of the form x + a1x

22m−2m+1 + a2x
2m + a22x

2m+1−1 over
F22m was proposed in [20], where a1, a2 ∈ F∗

22m and two sets of coefficient triples were obtained with the

restriction a2
m+1

2 6= 1 . Inspired by this work, we study a class of permutation quadrinomials with the form

f(x) = x + x2m + x2m+1−1 + ax22m−2m+1 over F22m . Moreover, we propose a class of permutation trinomials
over finite fields with even characteristic. We reduce the problem of determining the solutions of the equation
f(x) = γ to that of the root distribution in the unit circle of certain related quadratic and cubic equations.

The remainder of this paper is organized as follows. In Section 2, some preliminaries and notations are
introduced, including some useful lemmas. In Section 3, two classes of permutation polynomials with Niho
exponents over finite fields with even characteristic are given.

2. Preliminaries
For two positive integers m and n with m|n , let Fpn be a finite field with pn elements, we use Trnm(·) to
denote the trace function from Fpn to Fpm , i.e.

Trnm(x) = x+ xpm

+ xp2m

+ · · ·+ xp(n/m−1)m

.

For each element x in the finite fields F22m , define x = x2m . The unit circle of F22m is defined as the set

U = {η ∈ F22m : η2
m+1 = ηη = 1}.

Lemma 2.1 ([20]) Let A ∈ F22m\F2m be fixed. Then

U\{1} =

{
u+A

u+A
: u ∈ F2m

}
.

Lemma 2.2 ([21]) Let n = 2m be an even positive integer and a, b ∈ F∗
2n satisfy Trn1 (

b
a2 ) = 0 . Then for the

quadratic equation x2 + ax + b = 0 , we have (i) both two solutions are in the unit circle, if and only if b = a
a

and

Trm1 (
b

a2
) = Trm1 (

1

aa
) = 1.

(ii) there is exactly one solution in the unit circle, if and only if b 6= a
a and

(1 + bb)(1 + aa+ bb) + a2b+ a2b = 0.

Lemma 2.3 ([20]) Let m be a positive integer, B1, B2, B3, B4 ∈ F2m and B1(B2B3 + B1B4) 6= 0 . Then the
cubic equation

B1x
3 +B2x

2 +B3x+B4 = 0

has a unique solution in F2m if and only if one of the following two conditions holds: (i) B2
2 +B1B3 = 0 and

m is odd. (ii) B2
2 +B1B3 6= 0 and Trm1 (1 +

(B2
2+B1B3)(B

2
3+B2B4)

(B2B3+B1B4)2
) = 1 .
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3. Main results
In this section, we consider two classes of permutation polynomials with Niho exponents over finite fields with
even characteristic. More precisely, we investigate the permutation behavior of the type f(x) = x+x23m−2m+1+

x24m−23m+2m over F24m and f(x) = x+ x2m + x2m+1−1 + ax22m−2m+1 over F22m , respectively.

Theorem 3.1 Let m be a positive integer, then f(x) = x + x23m−2m+1 + x24m−23m+2m is a permutation
trinomial over F24m .

Proof Here, for each element x in the finite fields F24m , we define x = x22m and U22m = {x ∈ F24m : x22m+1 =

xx = 1} . To prove that f(x) = x+ x23m−2m+1 + x24m−23m+2m permutes F24m , it is sufficient to show that for
any γ ∈ F24m , the equation

x+ x2m(22m−1)+1 + x(22m−2m+1)(22m−1)+1 = γ (3.1)

has a unique solution in F24m .To this end, we discuss the proof according to the following two cases. Case I:
γ = 0 , i.e., f(x) = 0 . Obviously, x = 0 is a solution of (3.1). Next we show that there is no x ∈ F∗

24m satisfying
(3.1). Otherwise, we have

1 + x2m(22m−1) + x(22m−2m+1)(22m−1) = 0. (3.2)

Denote λ = x22m−1 , then λ ∈ U22m . From (3.2) we can deduce

1 + λ2m + λ22m−2m+1 = 0, (3.3)

which implies that
1 + λ2m + λ−2m = 0. (3.4)

Multiplying both sides of (3.4) by λ2m , we obtain

(λ2m)2 + λ2m + 1 = 0. (3.5)

It can be seen that Tr2m1 (1) = 0 . Then we know that (3.5) has no solution in U22m from Lemma 2.2, which
implies that (3.2) has no nonzero solution in F24m . This is a contraction. So, (3.1) has only one solution x = 0

in F24m for γ = 0 . Case Π : γ 6= 0 and f(x) = γ . Obviously, x = 0 is not a solution of (3.1), we only need to
prove that (3.1) has only one solution in F∗

24m . Substituting x = γ
y into (3.1), we have

γ

y
(1 + (

γ

y
)2

m(22m−1) + (
γ

y
)(2

2m−2m+1)(22m−1)) = γ,

and then replacing γ and y with γ2m and y2
m , respectively, we obtain

1 +
γy

γy
+

γy

γy
= y2

m

, (3.6)

which is equivalent to
γγyy + γ2y2 + γ2y2 = γγyyy2

m

. (3.7)
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Raising (3.7) to the 22m -th power, we can get

γγyy + γ2y2 + γ2y2 = γγyyy2
m

. (3.8)

Combining (3.7) and (3.8), we have y2
m

= y2
m , i.e. y = y . Then we have 1+ γ

γ + γ
γ = y2

m which is the unique

solution of (3.6), and substituting it into x = γ
y , we know that the solution of (3.1) is unique in the case γ 6= 0 .

To summarize, we conclude that (3.1) has at most one solution. The proof is completed. 2

Theorem 3.2 Let n = 2m be an even positive integer with m even and m > 2 . Assume that a, µ ∈ Fm
2

satisfying 1 + a 6= 0 , 1 + a+ µ 6= 0 , Trm1 ( 1
1+a ) = 0 and Trm1 (1 + µ

(1+a+µ)2 ) = 0 . Then the quadrinomial

f(x) = x+ x2m + x2m+1−1 + ax22m−2m+1

is a permutation polynomial over F2n .

Proof To prove that f(x) = x+ x2m + x2m+1−1 + ax22m−2m+1 permutes F2n , it is sufficient to show that for
any γ ∈ F2n , the equation

f(x) = x+ x2m + x2m+1−1 + ax22m−2m+1 = γ (3.9)

has at most one solution in F2n . To this end, we discuss the proof according to the following two situations.
Case I: γ = 0 , i.e. f(x) = 0 . It is clear that (3.9) has a solution x = 0 . Next we show that there is no x ∈ F∗

2n

satisfying (3.9). Otherwise, we have

1 + x2m−1 + x2m+1−2 + ax22m−2m = 0. (3.10)

Denote by θ = x2m−1 , then θ ∈ U . From (3.10) we can deduce

1 + aθ + θ + θ2 = 0,

which implies that
θ + a = θ2(1 + θ). (3.11)

Taking 2m -th power on both sides of (3.11) and multiplying by (3.11), it leads to

(θ + a)(θ + a) = (1 + θ)(1 + θ),

which implies
1 + θa+ θa+ a2 = θ + θ. (3.12)

Multiplying both sides of (3.12) by θ , we obtain

θ2(1 + a) + θ(1 + a2) + 1 + a = 0. (3.13)

Note that 1+a 6= 0 , let α = 1+a and β = 1 . It can be seen that β = α
α and Trm1 ( 1

αα ) = Trm1 ( 1
1+a ) = 0 . Then

we know that (3.13) has no solution in U by Lemma 2.2, which implies that (3.10) has no nonzero solution in
F2n . This is a contradiction. Therefore, (3.9) has only one solution x = 0 in F2n for γ = 0 . Case Π : γ 6= 0
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and f(x) = γ . Obviously, x = 0 is not a solution of (3.9), we only need to prove that (3.9) has only one solution
in F∗

2n . Substituting x = γ
y into (3.9), we have

1

y
(1 + a

γy

γy
+

γy

γy
+ (

γy

γy
)2) = 1.

Let ε = γ
γ ∈ U , we obtain

1

y
(1 + aε

y

y
+ ε

y

y
+ ε2

y2

y2
) = 1,

which implies that
yy2 + aεy3 + εy2y + ε2y3 + y2y2 = 0. (3.14)

Taking 2m -th power on both sides of (3.14), we have

y2y + aεy3 + εyy2 + ε2y3 + y2y2 = 0. (3.15)

Adding (3.14) and (3.15), we obtain

Ay3 +Ay3 +Byy2 +By2y = 0, (3.16)

where A = aε + ε2 and B = 1 + ε . If ε = 1 , then γ = γ . And (3.16) turns to (1 + a)y3 + (1 + a)y3 = 0 ,
which means that y = y . Thus plugging y = y into (3.14), we have y = 1 + a is a unique solution of (3.16).
Thus, (3.9) has unique solution in F2m . For each ε ∈ U\{1} , we know that there exists a unique γ ∈ F2n\F2m

by Lemma 2.1, then x can be determined uniquely by y . So we only need to prove that for each ε ∈ U\{1} ,
(3.16) has a unique solution in F∗

2n . Now the solution of (3.16) is divided into the following two cases.
(i) A+B+A+B = 0 . From (3.16), we can easily get that y = y is the unique solution. Furthermore, plugging
y = y into (3.14), we have y = 1 + aε+ ε+ ε2 . Hence, (3.16) has a unique solution in F2m . Next we need to
prove that there is no other solution in F2n\F2m satisfying (3.16). Set C = A+B , since A+B +A+B = 0 ,
we can get C + C = 0 , which implies C ∈ F2m . Therefore, (3.16) is equivalent to

Ay3 +Ay3 + (A+ C)yy2 + (A+ C)y2y = 0,

which can be written as
Ay2(y + y) +Ay2(y + y) + Cyy(y + y) = 0. (3.17)

Note that y 6= y , dividing (3.17) by y + y results in

Ay2 +Ay2 + Cyy = 0,

then by eliminating y2 on both sides of above equation, we can get

A(
y

y
)2 + C

y

y
+A = 0.

Denote λ = y
y , then above equation is equivalent to

λ2 +
C

A
λ+

A

A
= 0. (3.18)

923



LIU/Turk J Math

Since A
A =

C
A
C
A

, to prove that there is no other solution in F2n\F2m satisfying (3.16), it suffices to prove that

Trm1 (AA
C2 ) = 0 by Lemma 2.2. Let µ = ε+ ε , we have

AA = (aε+ ε2)(aε+ ε2) = a2 + aε+ aε+ 1 = a2 + 1 + aµ,

BB = (1 + ε)(1 + ε) = ε+ ε = µ,

AB +AB = (aε+ ε2)(1 + ε) + (aε+ ε2)(1 + ε)

= (1 + a)µ+ µ2,

C2 = (A+B)(A+B) = AA+AB +AB +BB = 1 + a2 + µ2.

Recall that
A+A+B +B = aε+ ε2 + aε+ ε2 + 1 + ε+ 1 + ε = aµ+ µ+ µ2 = 0,

then we get µ = 0 or µ = 1 + a . Note that µ 6= 1 + a , we only consider µ = 0 . It can be verified that

Trm1 (
AA

C2
) = Trm1 (

1 + a2

1 + a2
) = Trm1 (1) = 0,

since m is even. So (3.16) has no other solution in F2n\F2m . That is to say, y = y = 1 + aε + ε + ε2 is the
unique solution of (3.16), then (3.9) has a unique solution in F∗

2n .
(ii) A+ B + A+ B 6= 0 . It can easy to check y = y does not satisfy (3.16), so we only consider y 6= y . Then
by eliminating y3 on both sides of (3.16) gives

Aλ3 +A+Bλ2 +Bλ = 0, (3.19)

where λ = y
y ∈ U\{1} . Next we need to prove (3.19) has unique solution in U\{1} . Since ε ∈ U , then

ε 6= ε , which implies that B 6= B . By Lemma 2.1, λ can be represented as λ = X+B
X+B , where X ∈ F2m and

B ∈ F2n\F2m , then (3.19) can be rewritten as

A(
X +B

X +B
)3 +B(

X +B

X +B
)2 +B(

X +B

X +B
) +A = 0,

which can be simplified as
D1X

3 +D2X
2 +D3X +D4 = 0, (3.20)

over F2m , where 
D1 = A+A+B +B,

D2 = AB +AB +B2 +B
2
,

D3 = AB
2
+AB2 +B2B +BB

2
,

D4 = AB
3
+AB3.

Therefore, we only need to prove that (3.20) has a unique solution in F2m . From Lemma 2.3 (ii), we will show

that D2
2 +D1D3 6= 0 and Trm1 (1+

(D2
2+D1D3)(D

2
3+D2D4)

(D2D3+D1D4)2
) = 1 . First, denote ν = AA+BB = 1+a2+µ(a+1) ,

and we can get

D2
2 = A2B

2
+A

2
B2 +B4 +B

4
,
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and

D1D3 = (A+A+B +B)(AB
2
+AB2 +B2B +BB

2
)

= A2B
2
+A

2
B2 +AAB2 +AAB

2
+AB2B +ABB

2

+ AB3 +AB
3
+B3B +BB

3
.

Then, we have

D2
2 +D1D3 = B4 +B

4
+AB3 +AB

3
+B3B +BB

3

+ AAB2 +AAB
2
+AB2B +ABB

2

= (B2 +B
2
)(B2 +B

2
+AA+AB +AB +BB)

= (B +B)2(ν +D2).

Here, ν + D2 = 1 + a2 + µ(a + 1) + (1 + a)µ + µ2 + (1 + ε)2 + (1 + ε)2 = 1 + a2 6= 0 . Furthermore, we get
D2

2 +D1D3 6= 0 since B ∈ F2n\F2m . Next, we still need to prove that

Trm1 (1 +
(D2

2 +D1D3)(D
2
3 +D2D4)

(D2D3 +D1D4)2
) = 1.

It is clear to check that

D2
3 = A2B

4
+A

2
B4 +B4B

2
+B2B

4
,

D2D4 = (AB +AB +B2 +B
2
)(AB

3
+AB3)

= A2B
4
+A

2
B4 +AABB

3
+AAB3B +AB

5
+AB5 +AB2B

3
+AB3B

2
,

D2D3 = (AB +AB +B2 +B
2
)(AB

2
+AB2 +B2B +BB

2
)

= A2B
3
+A

2
B3 +AB4 +AB

4
+AABB

2
+AAB2B +B4B +BB

4

+ B3B
2
+B2B

3
+ABB

3
+AB3B,

D1D4 = (A+A+B +B)(AB
3
+AB3)

= A2B
3
+A

2
B3 +AAB

3
+AAB3 +ABB

3
+ABB3 +AB

4
+AB4.

Then, we have

D2
3 +D2D4 = B4B

2
+B2B

4
+AABB

3
+AAB3B +AB

5
+AB5

+ AB2B
3
+AB3B

2

= (B +B)2(BBν +D4),
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and

D2D3 +D1D4 = AAB
3
+AAB3 +AABB

2
+AAB2B +B4B +BB

4

+ B3B
2
+B2B

3

= (B +B)3(AA+BB) = (B +B)3ν.

We will show that ν = 1 + a2 + (a + 1)µ 6= 0 in the following description. If ν = 0 , then µ = 1 + a = ε + ε ,
which is equivalent to

ε2 + (1 + a)ε+ 1 = 0. (3.21)

Since 1+a
1+a = 1 and Trm1 ( 1

1+a ) = 0 . We know that (3.21) has no solution in U from Lemma 2.2, it is a
contradiction. It is easy to calculate that

BBD2 +D4 = BB(AB +AB +B2 +B
2
) +AB

3
+AB3,

BBD2 +D4

(B +B)2ν
=

BB

ν
+

AB
3
+AB3 +BB(AB +AB)

(B +B)2ν

=
BB

ν
+

(B +B)(AB
2
+AB2)

(B +B)2ν

=
BB

ν
+

AB
2
+AB2

(B +B)ν
,

and
D2D4

(B +B)2ν2
=

AB
3
+AB3 +AABB

ν2
+

(AB
2
+AB2)2

(B +B)2ν2
.

Then we have

Trm1 (
(D2

3 +D2D4)(D
2
2 +D1D3)

(D2D3 +D1D4)2
)

= Trm1 (
(B +B)2(BBν +D4)(B +B)2(ν +D2)

(B +B)6ν2
)

= Trm1 (
(BBν +D4)(ν +D2)

(B +B)2ν2
)

= Trm1 (
BB

B2 +B
2 +

BBD2 +D4

(B +B)2ν
+

D2D4

(B +B)2ν2
)

= Trm1 (
BB

B2 +B
2 +

BB

ν
+

AB
2
+AB2

(B +B)ν
+

AB
3
+AB3

ν2
+

AABB

ν2
+

(AB
2
+AB2)2

(B +B)2ν2
)

= Trm1 (
BB

B2 +B
2 +

AB
3
+AB3

ν2
+

BB

ν
+

AABB

ν2
)

= Trm1 (
BB

B2 +B
2 +

BB

ν
+

AB
3
+AB3

ν2
).
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Therefore, to prove (3.20) has a unique solution in F2m , we only need to prove

Trm1 (1 +
BB

B2 +B
2 +

BB

ν
+

AB
3
+AB3

ν2
) = 1. (3.22)

Since B ∈ F2n\F2m and B 6= B , the equation x2 + (B +B)x+BB = 0 has no solution in F2m , so we can get

Trm1 ( BB

B2+B
2 ) = 1 from Lemma 2.2. Thus (3.22) is equivalent to

Trm1 (1 +
BB

ν
+

AB
3
+AB3

ν2
) = 0.

It is clear that BB = µ, ν = 1 + a2 + aµ+ µ , and

AB
3
+AB3 = (aε+ ε2)(1 + ε)3 + (aε+ ε2)(1 + ε)3 = (1 + a)µ2,

we have

Trm1 (1 +
BB

ν
+

AB3 +AB
3

ν2
) = Trm1 (1 +

µ

1 + a2 + aµ+ µ
+

(1 + a)µ2

(1 + a2 + aµ+ µ)2
)

= Trm1 (1 +
µ

(1 + a+ µ)2
) = 0,

since Trm1 (1 + µ
(1+a+µ)2 ) = 0 . Thus (3.19) has a unique solution in F2m from Lemma 2.3 (ii), which implies

that (3.20) has exactly one solution λ in U\{1} . Moreover, we can plug y = λy into (3.14), then we have that

y = λ2+aελ3+ελ+ε2

λ2 is the unique solution of (3.14) in F2m . Therefore, (3.9) has a unique solution in F∗
2n . To

summarize, we conclude that (3.9) has at most one solution. The proof is completed. 2
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