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Abstract: A unified presentation of a class of Humbert’s polynomials in two variables which generalizes the well
known class of Gegenbauer, Humbert, Legendre, Chebycheff, Pincherle, Horadam, Kinney, Horadam–Pethe, Djordjević,
Gould, Milovanovi ć and Djordjevi ć , Pathan and Khan polynomials and many not so called ’named’ polynomials has
inspired the present paper. We define here generalized Humbert–Hermite polynomials of two variables. Several expan-
sions of Humbert-Hermite polynomials, Hermite–Gegenbaurer (or ultraspherical) polynomials and Hermite–Chebyshev
polynomials are proved.

Key words: Hermite polynomials, generalized Humbert polynomials, generalized (p, q) -Fibonacci polynomials, gener-
alized (p, q) -Lucas polynomials

1. Introduction
In 1965, Gould [23] introduced the Humbert polynomials Pn(m,x, y, p, c) and studied the explicit expressions,
recurrence relations, higher derivatives, operational expansion and related inverse relations. By specifying the
parameters, the polynomials Pn(m,x, y, p, c) reduce to some well-known ones such as those under the names
Chebyshev, Gegenbauer, Humbert, Kinney, Legenedre, Liouville and Pincherle.

Because of the generality of the Humbert–Gould polynomials Pn(m,x, y, p, c) , many studies have been
devoted to them, and various generalizations have been presented. For example, the readers may consult the
works due to Agarwal and Parihar [3], Dilcher [13], Djordjević [14–18], Djordjević and Djordjević [19], Djordjević
and Srivastava [20], Djordjević and Milovanović [21], He and Shiue [25, 26], Horadam [28, 29, 33], Horadam and
Mohan [30, 31], Horadam and Pethe [32, 34], Hsu [35], Hsu and Shiue [36], Kruchinin and Kruchinin [39], Dave
[8], Liu [43], Milovanović and Djordjević [45], Pathan and Khan [49, 50, 51], Olver et al. [47], Ramírez [52, 53],
Ozdemir et al. [48], Dere and Simsek [22], Kilar and Simsek [40], Simsek [56], Sinha [55], Shreshta [54], Khan
and Pathan [41], Wang [57] and Wang and Wang [58, 59]. We begin with the following definition.

Humbert–Gould polynomials [23] are defined by the following generating relation

(c−mxt+ ytm)p =

∞∑
n=0

Pn(m,x, y, p, c)tn, (1.1)
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where m is a positive integer and other parameters are unrestricted in general. The explicit representation of
Pn(m,x, y, p, c) is defined by (see [23, p.699]):

Pn(m,x, y, p, c) =

[ n
m ]∑

k=0

(
p

k

)(
p− k

n−mk

)
cp−n+(m−1)kyk(−mx)n−mk. (1.2)

Recently, Wang and Wang [59] introduced the generalized (p, q) -Fibonacci polynomials and (p, q) -Lucas
polynomials defined as follows.

Let m ≥ 2 be a fixed positive integer, and let p(x) and q(x) be polynomials with real coefficients. The
generalized (p, q) -Fibonacci polynomials un,m(x) are defined by (see [53])

un,m(x) = p(x)un−1,m(x) + q(x)un−m,m(x), n ≥ m, (1.3)

with the initial conditions u0,m(x) = 0 , u1,m(x) = 1 , u2,m(x) = p(x) , · · · , um−1,m(x) = pm−2(x), and define
the generalized (p, q) -Lucas polynomials vn,m(x) by

vn,m(x) = p(x)vn−1,m(x) + q(x)vn−m,m(x), n ≥ m, (1.4)

with the initial conditions v0,m(x) = 2 , v1,m(x) = p(x) , v2,m(x) = p2(x) , · · · , vm−1,m(x) = pm−1(x). Thus the
polynomial sequences (un,m(x)) and (vn,m(x)) satisfy the same recurrence relation of order m and different
initial conditions. As usual, we may also call them the generalized Lucas u -polynomial sequence and generalized
v -polynomial sequence, respectively.

Many well-known polynomial sequences are special cases of (un,m(x)) and (vn,m(x)) . For example,
when m = 2 , un,m(x) and vn,m(x) turn into the classical (p, q) -Fibonacci polynomials un(x) and (p, q) -
Lucas polynomials vn(x) defined by (see [6, 7, 14–20, 27, 37, 38, 42, 43, 44, 46]), which further reduce to the
polynomials named after Fibonacci, Lucas, Pell, Pell–Lucas, Jacobsthal, Jacobsthal–Lucas, etc. Moreover, by
specifying p(x) and q(x) , the polynomials un,m(x) and vn,m(x) reduce to those introduced in [52, 57, 58, 59].

The generating functions of the sequences (un,m(x)) and (vn,m(x)) are defined by

Um(x, t) =

∞∑
n=0

un,m(x)tn =
t

1− p(x)t− q(x)tm
, (1.5)

and

Vm(x, t) =

∞∑
n=0

vn,m(x)tn =
2− p(x)t

1− p(x)t− q(x)tm
, (1.6)

which further give us the following relation:

vn,m(x) = un+1,m(x) + q(x)un−m+1,m(x), n ≥ m− 1. (1.7)

The two variable Hermite Kamp é de F ériet polynomials Hn(x, y) [1, 2, 5, 9] are defined by

ext+yt2 =

∞∑
n=0

Hn(x, y)
tn

n!
. (1.8)
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The Gould-Hopper polynomials gmn (x, y) (see [24]) is a generalization of (1.8). The notation Hm
n (x, y)

or gmn (x, y) was given by Dattoli et al. [11, 12]. These are specified by

ext+ytm =

∞∑
n=0

Hm
n (x, y)

tn

n!
, (m ≥ 2). (1.9)

Another generalization of Hermite polynomials which we wish to consider in this paper is given by
Hn,m,ν(x, y) [10] in the form of the generating function

eν(x+y)t−(xy+1)tm =

∞∑
n=0

Hn,m,ν(x, y)
tn

n!
, (1.10)

which reduces to the ordinary Hermite polynomials Hn(x) when ν = 2, x = 0 or ν = 2, y = 0 .
This paper is organized as follows. In Section 2, we introduce generalized Humbert–Hermite polynomials

HG
(r)
n+1,m(x, y, z) via generalized (p, q) -Fibonacci polynomials and present their properties, related generating

relations, expressions and identities. In Section 3, various expansions of Hermite-Chebyshev and Hermite–
Gegenbaurer polynomials are obtained.

2. Generalized Humbert–Hermite polynomials

In this section, we introduce generalized Humbert–Hermite polynomials HG
(r)
n+1,m(x, y, z) arising from general-

ized (p, q) -Fibonacci polynomials and derive some properties of these polynomials. We start by the following
definition.

Definition 2.1. For each complex number r , the generalized convolved (p, q) -Fibonacci polynomials,

or in other words, the generalized Humbert–Hermite polynomials HG
(r)
n+1,m(x, y, z) are defined by

(1− p(x)t− q(x)tm)−reyt+ztm =

∞∑
n=0

HG
(r)
n+1,m(x, y, z)

tn

n!
, (2.1)

so that

(1− p(x)t− q(x)tm)−reν(y+z)t−(yz+1)tm =

∞∑
n=0

HG
(r)
n+1,m (x, ν(y + z),−(yz + 1))

tn

n!
,

where m ∈ N , r > 0 and the other parameters are unrestricted in general.
On setting y = z = 0 in (2.1), the result reduces to known result of Wang and Wang [59] as follows:

(1− p(x)t− q(x)tm)−r =

∞∑
n=0

u
(r)
n+1,m(x)tn. (2.2)

Further by taking m = 2 , (2.2) reduces to another known result of Wang and Wang [59].

Note that when r = 1 , the polynomials u
(r)
n,m(x) turn into the generalized (p, q) -Fibonacci polynomials

un,m(x) , i.e. u
(1)
n,m(x) = un,m(x) for n ≥ 1 (see [42, 43, 44]).
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In generating function (2.1), we replace r by −r and then set p(x) = mx
c , q(x) = −wy

c and y = u . Thus
for c ̸= 0 , we obtain

(
1− mx

c
t+

wy

c
tm
)r

eut+ztm = c−r (c−mxt+ wytm)
r
eut+ztm

= c−r
∞∑

n=0

HPn(m,x, y, z, u, w, r, c)
tn

n!
, (2.3)

where HPn(m,x, y, z, w, r, c) are the Humbert–Hermite–Gould polynomials, which further reduces to Hermite–
Gegenbauer polynomials, Pincherlo polynomials, etc., by specifying the parameters m,x, y, r, c . Moreover, by
specifying m , p(x) and q(x) in (2.1), we can obtain a number of polynomial sequences (see Table 1).

Using the definitions of Hm
n (y, z) and u

(r)
n+1,m(x) given by (1.9) and (2.2) in (2.1), we find the represen-

tation

HG
(r)
n+1,m(x, y, z) =

n∑
k=0

n!Hm
k (y, z)u

(r)
n−k+1,m(x)

k!
. (2.4)

Some special cases of (2.4) are given below.
On replacing q(x) by −q(x) in (2.4), we get

HG
(r)
n+1,m(x, y, z) = HC(r,m)

n (x, y, z) =

n∑
k=0

n!Hm
k (y, z)C

(r,m)
n−k (x)

k!
.

Here HC
(r,m)
n (x, y, z) are Hermite–Gegenbaurer polynomials of three variables.

HC(1,m)
n (x, y, z) = HUm

n (x, y, z) =

n∑
k=0

n!Hm
k (y, z)Um

n−k(x)

k!
,

where HUm
n (x, y, z) are Hermite–Chebychev polynomials of three variables.

HC1/2,m
n (x, y, z) = HPm

n (x, y, z) =

n∑
k=0

n!Hm
k (y, z)Pm

n−k(x)

k!
,

where HPm
n (x, y, z) are Hermite–Legendre polynomials of three variables.

By writing −q(x) for q(x) and setting z = −1 and y = 2x , the generating function (2.1) can be put in
the form

[1− p(x)t+ q(x)tm]−re2xt−tm =

∞∑
n=0

HG(r,m)
n (x)tn. (2.5)

Furthermore, the Hermite–Gegenbaurer (or ultraspherical) polynomials HC
(r,2)
n (x)= HCr

n(x) of one
variable, for nonnegative integer r are given by

e2xt−t2(1− p(x)t+ q(x)t2)−r =

∞∑
n=0

HCr
n(x)

tn

n!
. (2.6)
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G
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)
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+
1
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(x
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tn n
!

H
u
(r

)
n
+
1
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(x
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)
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F
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+
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F
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+
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Letting r = 1/2 and r = 1 in (2.6) gives

e2xt−t2(1− p(x)t+ q(x)t2)−1/2 =

∞∑
n=0

HPn(x)
tn

n!
, (2.7)

where HPn(x) are Hermite–Legendre polynomials and

e2xt−t2(1− p(x)t+ q(x)t2)−1 =

∞∑
n=0

HUn(x)
tn

n!
, (2.8)

respectively, where HUn(x) are Hermite–Chebyshev polynomials.
Now, we establish the explicit expressions for the generalized Hermite–Humbert polynomials. We begin

by the following theorem.
Theorem 2.1. The following explicit expressions for the generalized Hermite–Humbert polynomials

HG
(r)
n+1,m(x, y, z) holds true:

HG
(r)
n+1,m(x, y, z) =

n∑
s=0

[n−s
m ]∑

j=0

n!
(
−rN

) (
Nj

)
(−p)n−s−mj(−q)j

×Hm
s (y, z)

1

s!
, (2.9)

where N = n− s− (m− 1)j.

Proof From (2.1) can be expanded as

∞∑
n=0

HG
(r)
n+1,m(x, y, z)

tn

n!
=

∞∑
k=0

(
−rk

)
(−pt− qtm)k

∞∑
s=0

Hm
s (y, z)

ts

s!

=

∞∑
n=0

[ n
m ]∑

j=0

(
−rn− (m− 1)j

) (
n− (m− 1)jj

)
(−p)n−mj(−q)jtn

×
∞∑
s=0

Hm
s (y, z)

ts

s!
.

Replacing n by n− s in above equation, we have

∞∑
n=0

HG
(r)
n+1,m(x, y, z)

tn

n!
=

∞∑
n=0

n∑
s=0

[n−s
m ]∑

j=0

(
−rn− s− (m− 1)j

) (
n− s− (m− 1)jj

)
(−p)n−s−mj(−q)j

×Hm
s (y, z)

tn

s!
.

On comparing the coefficients of tn on both sides, we get (2.9). 2

Remark 2.1. On setting y = z = 0 in Theorem 2.1, the result reduces to the known result of Wang
and Wang [59].
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Remark 2.2. On setting m = 2, z = −1 and replacing y by 2y in Theorem 2.1, it reduces to the following
result involving Hermite numbers Hs

HG
(r)
n+1,2(x, 2y,−1) = n!

n∑
s=0

[n−s
2 ]∑

j=0

(
−rn− s− j

) (
n− s− jj

)
(−p)n−s−2j(−q)j × Hs

s!
. (2.10)

Theorem 2.2. The following explicit expressions for the generalized Hermite–Humbert polynomials

HG
(r)
n+1,m(x, y, z) holds true:

HG
(r)
n+1,m(x, y, z) =

n∑
s=0

n!Hm
s (y, z)

s!

[n−s
2 ]∑

i=0

×
∑

0≤j≤i

(
r + i− 1
i

)(
i
j

)(
M
N

)(
p(x)

2

)n−s−mj

qj(x), (2.11)

where M = n+ 2r − s− (m− 2)j − 1 , N = n− s− 2i− (m− 2)j .

Proof Let p(x) = p and q(x) = q in (2.1). Then generating function (2.1) can be written as

∞∑
n=0

HG
(r)
n+1,m(x, y, z)

tn

n!
= (1− pt− qtm)−reyt+ztm .

Now

(1− pt− qtm)−r =

(
1− pt+

(
pt

2

)2

−
(
pt

2

)2

− qtm

)−r

=

(
1− pt

2

)−2r
(
1−

(pt2 )
2 + qtm

(1− pt
2 )

2

)−r

=

∞∑
i=0

(
−r
i

){(
pt

2

)2

+ qtm

}i(
1− pt

2

)−2r−2i

=

∞∑
i=0

(
−r
i

)
(−1)i

(
pt

2

)2i i∑
j=0

(
i
j

){
qtm

(pt2 )
2

} ∞∑
k=0

(
−2r − 2i
k

)
(−1)k

(
pt

2

)k

=

∞∑
i=0

i∑
j=0

∞∑
k=0

(
r + i− 1
i

)(
i
j

)(
2r + 2i+ k − 1
k

)(p
2

)2i−2j+k

qjt2i−2j+k+mj .

From (2.1), we have
∞∑

n=0

HG
(r)
n+1,m(x, y, z)

tn

n!
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=

∞∑
n=0

[n2 ]∑
i=0

∑
0≤j≤i

(
r + i− 1
i

)(
i
j

)(
n+ 2r − (m− 2)j − 1
n− 2i− (m− 2)j

)(
p(x)

2

)n−mj

qj(x)tn

×
∞∑
s=0

Hm
s (y, z)

ts

s!

=

∞∑
n=0

n∑
s=0

Hm
s (y, z)

s!

[n−s
2 ]∑

i=0

∑
0≤j≤i

(
r + i− 1
i

)(
i
j

)(
M
N

)(
p(x)

2

)n−s−mj

qj(x)tn.

On comparing the coefficients of tn on both the sides, we get the desired result (2.11). 2

Remark 2.3. On setting y = z = 0 in Theorem 2.2, it reduces to the known result of Wang and Wang
[59].

3. On expansions of Hermite–Chebyshev and Hermite–Gegenbaurer polynomials
In this section, we prove several theorems on the expansions of Hermite–Gegenbaurer and Hermite–Chebyshev
polynomials of three variables. We will start with (2.1), (2.3) and a special case of (2.1) by replacing q(x) by
−q(x) and setting r = 1 . Thus we get

(1− p(x)t+ q(x)tm)−1eyt+ztm =

∞∑
n=0

HUn,m(x, y, z)
tn

n!
, (3.1)

which will be used in obtaining the corollaries of the following theorem.

Theorem 3.1. For k ∈ N and x, y, z ∈ C ,

n∑
s=0

Hm
s (ky, kz)u

(rk,m)
n+1−s(x)

s!

=
∑

n1+n2+···+nk=n

HG
(r)
n1+1,m(x, y, z)HG

(r)
n2+1,m(x, y, z) · · ·HG

(r)
nk+1,m(x, y, z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
. (3.2)

Proof The definition of HG
(r)
n+1,m(x, y, z) given in (2.1) can be written as

[
(1− p(x)t− q(x)tm)−reyt+ztm

]k
= (1− p(x)t− q(x)tm)−rkekyt+kztm =

[ ∞∑
n=0

HG
(r)
n+1,m(x, y)

tn

n!

]k
.

Using (1.9), we can write

ekyt+kztm =

∞∑
s=0

Hm
s (ky, kz)

ts

s!
.

Thus it follows that the above result is essentially equivalent to
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∞∑
n=0

u
(rk,m)
n+1,m(x)tn

∞∑
s=0

Hm
s (ky, kz)

ts

s!

=

∞∑
n=0

∑
n1+n2+···+nk=n

HG
(r)
n1+1,m(x, y, z)HG

(r)
n2+1,m(x, y, z) · · ·HG

(r)
nk+1,m(x, y, z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
tn.

An application of manipulation of series yields

∞∑
n=0

n∑
s=0

Hm
s (ky, kz)u

(rk,m)
n+1−s(x)

s!
tn

=

∞∑
n=0

∑
n1+n2+···+nk=n

HG
(r)
n1+1,m(x, y, z)HG

(r)
n2+1,m(x, y, z) · · ·HG

(r)
nk+1,m(x, y, z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
tn.

Now equating coefficients of tn on both sides of the resulting equation will give the required result. 2

Remark 3.1. On setting r = 1 in Theorem 3.1, the result reduces to
Corollary 3.1. For k ∈ N and x, y, z ∈ C ,

n∑
s=0

Hm
s (ky, kz)Ck,m

n−s(x)

s!

=
∑

n1+n2+···+nk=n

HUm
n1
(x, y, z)HUm

n2
(x, y, z) · · ·HUm

nk
(x, y, z)

n1!n2! · · ·nk!
. (3.3)

Remark 3.2. On taking r = 0 in Theorem 3.1, the result reduces to
Corollary 3.2. For k ∈ N and y, z ∈ C ,

Hm
n (ky, kz)

n!
=

∑
n1+n2+···+nk=n

Hm
n1
(y, z)Hm

n2
(y, z) · · ·Hm

nk
(y, z)

n1!n2! · · ·nk!
. (3.4)

Remark 3.3. On setting m = 2 , r = 0 , z = −1 , y = 2x in Theorem 3.1, it reduces to known result of
Batahan and Shehata [4,p.50.,Eq. (2.1)].

Corollary 3.3. For k ∈ N and x ∈ C ,

[n2 ]∑
r=0

(−k)r(2kx)n−2r

(n− 2r)r!
=

∑
n1+n2+···+nk=n

Hn1
(x)Hn2

(x) · · ·Hnk
(x)

n1!n2! · · ·nk!
. (3.5)

Theorem 3.2. For k ∈ N and X,Y ∈ C ,

n∑
s=0

Hm
s (kY, kZ)u

(rk,m)
n+1−s(X)

s!
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=
∑

n1+n2+···+nk=n

HG
(r)
n1+1,m(X,Y, Z)HG

(r)
n2+1,m(X,Y, Z) . . .HG

(r)
nk+1,m(X,Y, Z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
, (3.6)

where X =
k∑

i=0

xi and Y =
k∑

j=0

yj , Z =
k∑

l=0

zl .

Proof The definition of HG
(r)
n+1,m(x, y, z) can be written as

[
(1− p(X)t− q(X)tm)

−r
eY t+Ztm

]k
= (1− p(X)t− q(X)tm)

−rk
ekY t+kZtm

=

[ ∞∑
n=0

HG
(r)
n+1,m(x1 + x2 + · · ·+ xk, y1 + y2 + · · ·+ yk, z1 + z2 + · · ·+ zk)

tn

n!

]k
.

Using (1.9), we can write

ekY t+kZtm =

∞∑
s=0

Hm
s (kY, kZ)

ts

s!
.

Thus it follows that the above result is essentially equivalent to

∞∑
n=0

urk,m
n+1 (X)tn

∞∑
s=0

Hm
s (kY, kZ)

ts

s!

=

∞∑
n=0

∑
n1+n2+···+nk=n

HG
(r)
n1+1,m(X,Y, Z)HG

(r)
n2+1,m(X,Y, Z) . . .HG

(r)
nk+1,m(X,Y, Z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
tn.

An application of manipulation of series yields

∞∑
n=0

n∑
s=0

Hm
s (kY, kZ)u

(rk,m)
n+1−s(X)

s!
tn

=

∞∑
n=0

∑
n1+n2+···+nk=n

HG
(r)
n1+1,m(X,Y, Z)HG

(r)
n2+1,m(X,Y, Z) . . .HG

(r)
nk+1,m(X,Y, Z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
tn.

Now equating coefficients of tn on both sides of the resulting equation will give the required result. 2

Remark 3.4. On setting r = 1 in Theorem 3.2, the result reduces to
Corollary 3.4. For k ∈ N and X,Y, Z ∈ C ,

n∑
s=0

Hm
s (kY, kZ)Ck,m

n−s(X)

s!

=
∑

n1+n2+···+nk=n

HUm
n1
(X,Y, Z)HUm

n2
(X,Y, Z) · · ·HUm

nk
(X,Y, Z)

n1!n2! · · ·nk!
. (3.7)
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Remark 3.5. On setting r = 0 in Theorem 3.2, the result reduces to
Corollary 3.5. For k ∈ N and Y, Z ∈ C ,

Hm
n (kY, kZ)

n!
=

∑
n1+n2+···+nk=n

Hm
n1
(Y, Z)Hm

n2
(Y, Z) · · ·Hm

nk
(Y, Z)

n1!n2! · · ·nk!
. (3.8)

Remark 3.6. On setting m = 2 , r = 0 , Z = −1 , Y = 2X in Theorem 3.2, the result reduces to known
result of Batahan and Shehata [4,p.51.,Eq. (2.4)].

Corollary 3.6. For k ∈ N

[n2 ]∑
s=0

(−k)s(2k(x1 + x2 + · · ·+ xk))
n−2s

(n− 2s)!s!
=

∑
n1+n2+···+nk=n

Hn1(x1)Hn2(x2) · · ·Hnk
(xk)

n1!n2! · · ·nk!
. (3.9)

Theorem 3.3. For k ∈ N and x ∈ C ,

[ n
m ]∑

s=0

(−1)s(rk)n−(m−1)s(p(x))
n−ms(q(x))s

s! (n−ms)!

=
∑

n1+n2+···+nk=n

u
(r)
n1+1,m(x)u

(r)
n2+1,m(x) · · ·u(r)

nk+1,m(x). (3.10)

Proof Using the power series of [1− p(x)t− q(x)tm]−r and making the necessary series arrangements gives

[1− p(x)t− q(x)tm]−rk =

∞∑
n=0

[ n
m ]∑

s=0

(−1)s(rk)n−(m−1)s(p(x))
n−ms(q(x))s

s! (n−ms)!
tn.

In addition to this, we can write

[1− p(x)t− q(x)tm]−rk =
[
[1− p(x)t− q(x)tm]−r

]k
=

[ ∞∑
n=0

u
(r)
n+1,m(x)tn

]k

=

∞∑
n=0

∑
n1+n2+···+nk=n

u
(r)
n1+1,m(x)u

(r)
n2+1,m(x) · · ·u(r)

nk+1,m(x)tn.

Now equating coefficients of t on both sides of the resulting equation will give the required result. 2

Remark 3.7. Setting r = 1 in Theorem 3.3, the result reduces to
Corollary 3.7. For k ∈ N and x ∈ C ,

[ n
m ]∑

s=0

(−1)s(k)n−(m−1)s(p(x))
n−ms(q(x))s

s! (n−ms)!

=
∑

n1+n2+···+nk=n

Um
n1
(x)Um

n2
(x) · · ·Um

nk
(x). (3.11)
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Similarly, we can define generalized (p, q) -Lucas polynomials as follows:
Definition 3.1. For each complex number r , the generalized convolved (p, q) -Lucas polynomials, or in

other words, the generalized Humbert–Hermite polynomials Hv
(r)
n,m(x, y, z) are defined by

(
2− p(x)t

1− p(x)t− q(x)tm

)r

eyt+ztm =

∞∑
n=0

Hv(r)n,m(x, y, z)
tn

n!
, (3.12)

where m ∈ N , r > 0 and the other parameters are unrestricted in general.
On setting y = z = 0 in (3.12), it reduces to known result of Wang and Wang [59] as follows:

(
2− p(x)t

1− p(x)t− q(x)tm

)r

=

∞∑
n=0

v(r)n,m(x)tn. (3.13)

Theorem 3.4. For k ∈ N and x, y, z ∈ C ,

n∑
s=0

vrkn−s,m(x)Hm
s (ky, kz)

1

s!

=
∑

n1+n2+···+nk=n

Hv
(r)
n1+1,m(x, y, z)Hv

(r)
n2+1,m(x, y, z) · · ·Hv

(r)
nk+1,m(x, y, z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
. (3.14)

Proof Using (1.9) and (3.12), we can write

[(
2− p(x)t

1− p(x)t− q(x)tm

)r

eyt+ztm
]k

=

( ∞∑
n=0

Hv(r)n,m(x, y, z)
tn

n!

)k

(
2− p(x)t

1− p(x)t− q(x)tm

)kr

ekyt+kztm =

( ∞∑
n=0

Hv(r)n,m(x, y, z)
tn

n!

)k

∞∑
n=0

vrkn,m(x)tn
∞∑
s=0

Hm
s (ky, kz)

ts

s!

=

∞∑
n=0

∑
n1+n2+···+nk=n

Hv
(r)
n1+1,m(x, y, z)Hv

(r)
n2+1,m(x, y, z) · · ·Hv

(r)
nk+1,m(x, y, z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
tn

∞∑
n=0

n∑
s=0

vrkn−s,m(x)Hm
s (ky, kz)

tn

s!

=

∞∑
n=0

∑
n1+n2+···+nk=n

Hv
(r)
n1+1,m(x, y, z)Hv

(r)
n2+1,m(x, y, z) · · ·Hv

(r)
nk+1,m(x, y, z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
tn.

Comparing the coefficients of tn on both sides, we get (3.14). 2

Remark 3.8. On setting y = z = 0 in Theorem 3.4, the result reduces to
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Corollary 3.8. For k ∈ N and x ∈ C ,

vrkn,m(x) =
∑

n1+n2+···+nk=n

v
(r)
n1+1,m(x)v

(r)
n2+1,m(x) · · · v(r)nk+1,m(x)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
. (3.15)

Theorem 3.5. For r ∈ N and x, y, z ∈ C ,

∑
n1+n2+···+nk=n

Hvn1+1,m(x, y, z)Hvn2+1,m(x, y, z) · · ·Hvnk+1,m(x, y, z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!

=

n∑
i=0

(
r
n− i

)
2r−n+i(−p(x))n−i

Hv
(r)
i+1,m(x, ry, rz)

1

i!
. (3.16)

Proof From (3.12) can be written as

[(
2− p(x)t

1− p(x)t− q(x)tm

)
eyt+ztm

]r
=

( ∞∑
n=0

Hvn,m(x, y, z)
tn

n!

)r

(2− p(x)t)r(1− p(x)t− q(x)tm)−reryt+rztm =

( ∞∑
n=0

Hvn,m(x, y, z)
tn

n!

)r

r∑
n=0

(
r
n

)
2r−n(−p(x))ntn

∞∑
i=0

Hv
(r)
i+1,m(x, ry, rz)

ti

i!

=

∞∑
n=0

∑
n1+n2+···+nk=n

Hvn1+1,m(x, y, z)Hvn2+1,m(x, y, z) · · ·Hvnk+1,m(x, y, z)

(n1 + 1)!(n2 + 1)! · · · (nk + 1)!
tn.

Comparing the coefficients of tn on both sides, we get (3.16). 2

Remark 3.9. On setting y = z = 0 in Theorem 3.5, the result reduces to
Corollary 3.9. For k ∈ N and x ∈ C ,

∑
n1+n2+···+nk=n

vn1,m(x)vn2,m(x) · · · vnk,m(x) =

n∑
i=0

(
r
n− i

)
2r−n+i(−p(x))n−iu

(r)
i+1,m(x). (3.17)

4. Conclusion
In concluding this discussion on a class of generalized Humbert–Hermite polynomials, Hermite–Gegenbaurer
(or ultraspherical) polynomials and Hermite–Chebyshev polynomials, we want to offer here a few further con-
siderations on the topic, and present some modifications by generalizing (2.1) and (3.12).

The formalism and the definition associated with Milne–Thomson type polynomials and special numbers
proposed here may offer significant advantages due to the abundance of their applications in many branches
of mathematics such as in p -adic analytic number theory, umbral calculus, special functions and mathematical
analysis, numerical analysis, combinatorics and other related areas.
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In [56], Simsek defined the three-variable polynomials y6(n;x, y, z; a, b, ν) as follows:

(b+ f(t, a))zext+yh(t,ν) =

∞∑
n=0

y6(n;x, y, z; a, b, ν)
tn

n!
, (4.1)

where f(t, a) is a member of family of analytic functions or meromorphic functions, a and b are any real
numbers, ν is positive integer. When x = 0 , y = z = 1 , Equation (4.1)

y6(n; 0, 1, 1; a, b, ν) = y6(n; a, b, ν),

which is defined by means of the following generating function:

(b+ f(t, a))zeh(t,ν) =

∞∑
n=0

y6(n; a, b, ν)
tn

n!
, (see [56]).

When b = 0 , in the numbers y6(n; a, b, ν) reduce to the Milne–Thomson numbers of order a , φ
(a)
n :

y6(n; a, 0, ν) = φ(a)
n .

Some special cases of these numbers give well-known numbers such as the Milne–Thomson numbers, the
Hermite numbers, the Bernoulli and Euler numbers, the Lah numbers, and other numbers. For example, setting
f(t, a) = 1

q(a)tk−p(a)t+1
, b = 0 , x is replaced by 2x and y = 1 and h(t, ν) = −tν in (4.1), we get

(
1

1− p(a)t+ q(a)tk

)z

e2xt−tν =

∞∑
n=0

y6(n; 2x, 1, z; a, 0, ν)
tn

n!
, (4.2)

where k is any positive integer. That is,

y6(n; 2x, 1, z; a, 0, ν)

n!
= HG(z,ν)

n (z, a),

which is a special case of (2.1).
A similar type of the three-variable polynomials associated with Milne–Thomson type polynomials which

can generalize (3.12) is possible to investigate. These polynomials presented by means of generating functions
may be useful in developing extensive researches on various families of special polynomials such as the Bernoulli
polynomials, Euler polynomials, Genocchi polynomials and Catalan polynomials and numbers, which will be
investigated in a forthcoming article.

Acknowledgment
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to
improve the quality of the manuscript.

References

[1] Andrews LC. Special functions for engineers and mathematicians, Macmillan Co., New York, 1985.

942



PATHAN and KHAN/Turk J Math

[2] Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,
Reprint of the 1972 edition, Dover Publications, Inc., New York, 1992.

[3] Agarwal R, Parihar HS. On certain generalized polynomial system associated with Humbert polynomials. Scientia.
Series A. Mathematical Sciences. New Series 2012; 23: 31-44.

[4] Batahan RS, Shehata A. Hermite-Chebyshev polynomials with their generalization form. Journal of Mathematical
Sciences: Advances and Applications 2014; 29: 47-59.

[5] Bell ET. Exponential polynomials. Annals of Mathematics Second Series 1934; 35: 258-277.

[6] Cheon G-S, Kim H, Shapiro LW. A generalization of Lucas polynomials sequence. Discrete Applied Mathematics
2009; 157: 920-927.

[7] Comtet L. Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.

[8] Dave CK. Another generalization of Gegenbauer polynomials. The Journal of the Indian Academy of Mathematics
1978; 2: 42-45.

[9] Dattoli G, Chiccoli C, Lorenzutta S, Maimo G, Torre A. Generalized Bessel functions and generalized Hermite
polynomials. Journal of Mathematical Analysis and Applications 1993; 178: 509-516.

[10] Dattoli G, Maimo G, Torre A, Cesarano C. Generalized Hermite polynomials and super-Gaussian forms. Journal
of Mathematical Analysis and Applications 1996; 233: 597-609.

[11] Dattoli G, Lorenzutta S, Cesarano C. Finite sums and generalized forms of Bernoulli polynomials. Rendiconti di
Mathematica 1999; 19: 385-391.

[12] Dattoli G, Torre A, Lorenzutta S. Operational identities and properties of ordinary and generalized special functions.
Journal of Mathematical Analysis and Applications 1999; 236: 399-414.

[13] Dilcher K. A generalization of Fibonacci polynomials and a representation of Gagenbauer polynomials of integer
order. The Fibonacci Quarterly 1987; 25: 300-303.

[14] Djorjević GB. A generalization of Gegenbauer polynomial with two variables. (To appear in Indian Journal of Pure
and Applied Mathematics).

[15] Djorjević GB. Generalized Jacobsthal polynomials. The Fibonacci Quarterly 2000; 38: 239-243.

[16] Djorjević GB. Mixed convolutions of the Jacobsthal type. Applied Mathematics and Computation 2007; 186: 646-
651.

[17] Djorjević GB. Mixed Fermat convolutions. The Fibonacci Quarterly 1993; 31: 152-157.

[18] Djorjević GB. Polynomials related to generalized Chebyshev polynomials. Filomat 2009; 23: 279-290.

[19] Djorjević GB, Djordjevic SS. Convolutions of the generalized Morgan-Voyce polynomials. Applied Mathematics and
Computation 2015; 259: 106-115.

[20] Djorjević GB, Srivastava HM. Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers. Mathematical and
Computer Modelling 2005; 42: 1049-1056.

[21] Djorjević GB, Milovanović GV. Special classes of polynomials. University of Niš, Faculty of Technology, Leskovac,
2014.

[22] Dere R, Simsek D, Hermite base Bernoulli type polynomials on the umbral algebra. Russian Jornal of Mathematics
2015; 22(1): 1-5.

[23] Gould HW. Inverse series relation and other expansions involving Humbert polynomials. Duke Mathematical Journal
1965; 32: 697-711.

[24] Gould HW, Hooper AT. Operational formulas connected with two generalizations of Hermite polynomials. Duke
Mathematical Journal 1962; 29: 51-63.

[25] He T-X, Shiue PJ-S. On sequences of numbers and polynomials defined by linear recurrence relations of order 2,
International Journal of Mathematics and Mathematical Sciences 2009; Art ID 709386: 21pp.

943



PATHAN and KHAN/Turk J Math

[26] He T-X, Shiue PJ-S. Sequences of non-Gegenbauer-Humbert polynomials meet the generalized Gegenebauer-
Humbert polynomials. ISRN Algebra 2011; Art ID 268096, 18pp.

[27] Hoggatt VE. Convolution triangles for generalized Fibonacci numbers. The Fibonacci Quarterly 1970; 8: 158-171.

[28] Horadam AF. A synthesis of certain polynomial sequences, Applications of Fibonacci numbers, Vol. 6 (Pullman
WA, 1994), 215-229, Kluwer Acad. Publ., Dordrecht, 1996.

[29] Horadam AF. Chebyshev and Fermat polynomials for diagonal functions. The Fibonacci Quarterly 1979; 17: 328-
333.

[30] Horadam AF, Mahon JM. Convolutions for Pell polynomials, Fibonacci Numbers and their Applications (Patras),
Mathematical Applications 1984; 28: 55-80, Reidel, Dordrecht, 1986.

[31] Horadam AF, Mahon JM. Mixed Pell polynomials. The Fibonacci Quarterly 1987; 25: 291-299.

[32] Horadam AF, Pethe S. Polynomials associated with Gegenbauer polynomials. The Fibonacci Quarterly 1981; 19:
393-398.

[33] Horadam AF. Gegenbauer polynomials revisited. The Fibonacci Quarterly 1985; 23: 295-299.

[34] Horadam AF, Pethe S. Polynomials associated with Gegenbauer polynomials. The Fibonacci Quarterly 1981; 19:
393-398.

[35] Hsu LC. On Stirling-type pairs and extended Gegenbauer-Humbert-Fibonacci polynomials. Applications of Fi-
bonacci Numbers 1992; 5 (St. Andrews): 367-377, Kluwer Acad. Publ., Dordrecht, 1993.

[36] Hsu LC, Shiue PJ-S. Cycle indicators and special functions. Annals of Combinatorics 2001; 5: 179-196.

[37] Humbert P. Some extensions of Pincherle’s polynomials. Proceedings of the Edinburgh Mathematical Society 1920;
39: 21-24.

[38] Jacobson N. Basic Algebra. I. Second edition, W.H. Freeman and Company, New York, 1985.

[39] Kruchinin DV, Kruchinin VV. Explicit formulas for some generalized polynomials. Applied Mathematics & Infor-
mation Sciences 2013; 7: 2083-2088.

[40] Kilar N, Simsek Y. Computational formulas and identities for new classes of Hermite based Milne-Thomson type
polynomials: Analysis of generating functions with Euler’s formula. Mathathematical Method amd Applied Sciences:
2021; 44: 6731-6762.

[41] Khan WA, Pathan MA. On a class of Humbert-Hermite polynomials. Novi Sad Journal of Mathematics 2021; 51:
1-11.

[42] Lee G, Asci M. Some properties of the (p, q) -Fibonacci and (p, q) -Lucas polynomials. Journal of Applied Mathe-
matics 2012; Art ID 264842, 18pp.

[43] Liu G. Formulas for convolution Fibonacci numbers and polynomials. The Fibonacci Quarterly 2002; 40: 352-357.

[44] Ma S-M. Identities involving generalized Fibonacci-type polynomials. Applied Mathematics and Computation 2011;
217: 9297-9301.

[45] Milovanović GV, Djordjević GB. On some properties of Humbert’s polynomials. The Fibonacci Quarterly 1987; 25:
356-360.

[46] Nalli A, Haukkanen P. On generalized Fibonacci and Lucas polynomials. Chaos, Solitons and Fractals 2009; 42:
3179-3186.

[47] Olver FWJ, Lozier DW, Boisvert RF, Clark(Eds.) CW. NIST Handbook of Mathematical Functions. Cambridge
University Press, Cambridge, 2010.

[48] Ozdemir G, Simsek Y, Milovanović GV. Generating functions for special polynomials and numbers includ-
ing Apostol-type and Humbert-type polynomials. Mediterranean Journal of Mathematics 2017; 14:17. doi:
10.1007/s00009-017-0918-6.

[49] Pathan MA, Khan MA. On polynomials associated with Humbert’s polynomials. Publications de l’Institut Mathé-
matique 1997; 62: 53-62.

944



PATHAN and KHAN/Turk J Math

[50] Pathan MA, Khan NU. A unified presentation of a class of generalized Humberts polynomials of two variables.
ROMAI Journal 2015; 11: 185-199.

[51] Pathan MA, Khan WA. On h(x) -Euler-Fibonacci and h(x) -Euler-Lucas numbers and polynomials. Acta Universi-
tatis Apulensis 2019; 28: 117-133.

[52] Ramírez JL. On convolved generalized Fibonacci and Lucas polynomials. Applied Mathematics and Computation
2014; 229: 208-213.

[53] Ramírez JL. Some properties of convolved k -Fibonacci numbers. ISRN Combine 2013; Art. ID 759641: 5pp. .

[54] Shrestha NB. Polynomial associated with Legendre polynomials. The Nepali Mathematical Sciences Report 1977;
2:1.

[55] Sinha S. K. On a polynomial associated with Gegenbauer polynomials. Proceedings of the National Academy of
Sciences, India 1989; 59: 439-455.

[56] Simsek Y. Formulas for Poisson-Charlier, Hermite, Milne-Thomson and other type polynomials by their generating
functions and p -adic integral approach RACSAM; 2019; 113: 931-948.

[57] Wang J. Some new results for the (p, q) -Fibonacci and Lucas polynomials. Advances in Difference Equations 2014;
2014:64, 15pp.

[58] Wang W, Wang H. Some results on convolved (p, q) -Fibonacci polynomials. Integral Transforms and Special
Functions 2015; 26: 340-356.

[59] Wang W, Wang H. Generalized Humbert polynomials via generalized Fibonacci polynomials. Applied Mathematics
and Computation 2017; 307: 204-216.

945


	Introduction
	Generalized Humbert–Hermite polynomials
	 On expansions of Hermite–Chebyshev and Hermite–Gegenbaurer polynomials
	Conclusion

