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Abstract: In this study, the refinements of Maclaurin’s and Newton’s inequalities are given. These refinements are
obtained by applying the results on optimality conditions of abstract convex functions. When doing this, we obtain
lower bounds for the solutions of some special rational equations.
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1. Introduction
Elementary symmetric polynomials are one of the special topics in mathematics. They were first introduced
in Newton’s studies [5]. Each elementary symmetric polynomial Ek(x) is the sum of the products of all k

combinations of the components of x = ( x1, x2, . . . , xn), i.e. for k ≥ 1

Ek (x) =
∑

J⊆{1,··· ,n}
|J|=k

∏
j∈J

xj

where |J | is the cardinality of J . We assume E0 (x) = 1 and Ek (x) = 0 if k > n . They attract special interest
in algebra in relation to Viete’s theorem

P (λ) =

n∏
i=1

(λ− xi) =

n∑
i=0

(−1)nλn−iEi (x) .

Also, they are used in the representation theory of symmetric groups and general linear groups over finite fields
[13].

Newton and Maclaurin gave the first inequalities about the elementary symmetric polynomials. Their in-
equalities establish the relation between the averages of elementary symmetric polynomials, namely, normalized
symmetric functions,

dk(x) =
Ek (x)(

n
k

) .

Newton showed in [7] that for positive real numbers x1, x2, . . . , xn and any natural numbers k, n with 0 < k < n,

dk−1(x)dk+1(x) ≤ d2k(x).
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Afterwards, Maclaurin gave the following namesake inequality in [6]:
Let x1, x2, ..., xn be positive real numbers and k be positive integer with k < n . Then

n
√
dn(x) ≤ · · · ≤ k

√
dk(x) ≤ · · · ≤ d1(x).

The equality occurs in both inequalities if and only if all xi s are equal [3, 21]. The first and last terms in the
inequality are equal to the geometric and arithmetic means of x1, x2, . . . , xn, respectively. Studies on different
aspects of these inequalities can be found in [2, 17] and the references therein.

A generalization of the Newton inequality has been studied in [16] and its extensions have been given in
[8, 10]. Some generalizations of the Maclaurin inequalities are given in [3] and [9]. Although there are a lot of
extensions of these inequalities in many different contexts (see [4, 14, 15]), no refinement has been provided for
these inequalities.

In this article, we present a sharper version of these inequalities based on the results related to optimality
conditions of abstract convex functions. This approach has been used in [1, 18–20]. The framework of the
abstract convexity notion used in this work was introduced by Rubinov’s work in [11]. Simply put, an abstract
convex (or concave) function is defined as the supremum (or infimum) of a certain class of functions. Its
definition can be formalized in the following way.

Let F be the family of real-valued functions defined on a subset A of a Hilbert space X and f : A → R .
If there exists a subfamily B of F such that for all x ∈ A,

f(x) = inf
h∈B

h(x),

then f is said to be an abstract concave function with respect to F . An abstract convex function is defined in
the same way except that the supremum is taken.

In [11], it is shown that if an upper semicontinuous finite function f defined on a subset A of a Hilbert
space X is bounded from above by a function in the form of h(x) = α ‖x‖2 + 〈l, x〉 + β, for x ∈ X where
α > 0, l ∈ X, β ∈ R , then f is abstract convex with respect to quadratic functions. In [12], the following
proposition provides a sufficient condition for a differentiable function to be abstract convex with respect to
quadratic functions.

Proposition 1.1 [12]Let A be a convex subset of X and f be a differentiable mapping on an open set including
A . Consider that ∇f(x) is Lipschitz continuous on A , i.e.

s := sup
x,y∈A,x̸=y

‖∇f(x)−∇f(y)‖
‖x− y‖

< ∞.

Let a ≥ s and ft(x) = f(t) + 〈∇f(t), x− t〉+ a‖x− t‖2, x ∈ X for t ∈ A . Then

f(x) = min
t∈Ω

ft(x), x ∈ A.

In addition to the proposition above, it is also stated in [12] that a function f : X → R with the property
‖∇f(x)−∇f(y)‖ ≤ a ‖x− y‖ for all x, y ∈ X satisfies the following inequality:

1

4a
‖∇f(x)‖2 ≤ f(x)− f(x∗) (1.1)
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for all x ∈ X where x∗ is a global minimum point of f over X .
The following theorem localizes the Lipschitz requirement on ∇f(x) for (1.1) and enables us to determine

a accordingly.

Theorem 1.2 [12]Let ‖.‖ , ‖.‖◦ be Euclidian and any norm on Rn , respectively. Let Ω ⊂ Rn be a set with
nonempty interior and let f ∈ C1 (Ω) . Suppose that f has global minimum at x∗ ∈ int(Ω) over Ω and the
mapping x 7−→ ∇f(x) is Lipschitz continuous on Ω with the Lipschitz constant s . Let

m := max {‖∇f(x)‖◦ : x ∈ B◦(x
∗, r)}

where
B◦(x

∗, r) = {x : ‖x− x∗‖◦ ≤ r} ⊂ int(Ω).

Let a, q be positive real numbers such that B◦(x
∗, r+ q) ⊂ Ω and a ≥ max

(
s,

m

2q

)
. Then, for x ∈ B◦(x

∗, r),

1

4a
‖∇f(x)‖2 ≤ f(x)− f(x∗). (1.2)

Before giving the main result, we define the following notation on vectors: for x ∈ Rn

x[k] = x− xkek and x[j,k] = x− xjej − xkek

where ej and ek are jth and kth standard unit vectors, respectively.
The notation above allows us to state the following facts about the partial derivatives of elementary

symmetric functions:
∂Ep(x)

∂xk
= Ep−1(x

[k]) and ∂Ep(x)

∂xj∂xk
= Ep−2(x

[j,k]) .

2. Main results
Theorem 2.1 Let µ > r > 0 and let p, q be natural numbers such that n

2 + 1 ≥ q and q > p ≥ 2 . Suppose
that a ∈ (r, µ) is the solution of the following equation

2
√
4n2 − 3n

(µ+ x)2q−2

(µ− x)2q−1
=

1

x− r

(
µ+ r

µ− r

)q−1

. (2.1)

Then the following inequality holds for all x ∈ Rn
++ satisfying ‖x− (µ, . . . , µ)‖∞ ≤ r :

E
1
q
q (x)(
n
q

) 1
q

+
a− r

4

(
µ− r

µ+ r

)q−1 n∑
k=1

φ2
k(x) ≤

E
1
p
p (x)(
n
p

) 1
p

where

φk(x) =
E

1/p−1
p (x)Ep−1

(
x[k]
)

p
(
n
p

) 1
p

−
E

1/q−1
q (x)Eq−1

(
x[k]
)

q
(
n
q

) 1
q

.
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Proof Let x = (x1, · · · , xn) ∈ Rn
++ and let us define the following functions for x ∈ Rn

++ :

f(x) =
E

1
p
p (x)(
n
p

) 1
p

−
E

1
q

q (x)(
n
q

) 1
q

.

It is clear that for any positive real number µ, x∗ = µ∗ = (µ, . . . , µ) ∈ Rn is a global minimum point of f. So
we can apply Theorem 1.2 on a set containing a neighborhood of x∗ . First, we find the Lipschitz constant on
the following set

Vµ,d = B∞(µ,d) = {x ∈ Rn : ‖x− µ‖∞ ≤ d, d ∈ R++}

= {x ∈ Rn : µ− d ≤ xi ≤ µ+ d, i = 1, ..., n} .

A direct calculation on f gives

∇f(x) =

E1/p−1
p (x)Ep−1

(
x[1]
)

p
(
n
p

) 1
p

−
E

1/q−1
q (x)Eq−1

(
x[1]
)

q
(
n
q

) 1
q

, · · · ,
E

1/p−1
p (x)Ep−1

(
x[n]
)

p
(
n
p

) 1
p

−
E

1/q−1
q (x)Eq−1

(
x[n]
)

q
(
n
q

) 1
q

 ,

so

‖∇f(x)‖2 =

n∑
k=1

φ2
k(x),

where

φk(x) =
E

1/p−1
p (x)Ep−1

(
x[k]
)

p
(
n
p

) 1
p

−
E

1/q−1
q (x)Eq−1

(
x[k]
)

q
(
n
q

) 1
q

.

Since we need later, let us search for an upper bound for ‖∇φk(x)‖ on x ∈ Vµ,d. Below we find the upper

bounds for
∣∣∣∂φk

∂xk
(x)
∣∣∣ , and

∣∣∣∂φk

∂xj
(x)
∣∣∣ for j 6= k .

∣∣∣∣∂φk

∂xk
(x)

∣∣∣∣ ≤
∣∣∣∣∣∣

1
p−1

p
(
n
p

) 1
p

E1/p−2
p (x)E2

p−1

(
x[k]
)∣∣∣∣∣∣+

∣∣∣∣∣∣
1
q−1

q
(
n
q

) 1
q

E1/q−2
q (x)E2

q−1

(
x[k]
)∣∣∣∣∣∣ .

∣∣∣∣∂φk

∂xj
(x)

∣∣∣∣ ≤
∣∣∣∣∣∣

1
p−1

p
(
n
p

) 1
p

E1/p−2
p (x)Ep−1

(
x[j]
)
Ep−1

(
x[k]
)
+

1

p
(
n
p

) 1
p

E1/p−1
p (x)Ep−2

(
x[j,k]

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
1
q−1

q
(
n
q

) 1
q

E1/q−2
q (x)Eq−1

(
x[j]
)
Eq−1

(
x[k]
)
+

1

q
(
n
q

) 1
q

E1/q−1
q (x)Eq−2

(
x[j,k]

)∣∣∣∣∣∣ .
For x ∈ Vµ,d , the following inequalities are valid:(

n
p

)
(µ− d)p ≤ Ep (x) ≤

(
n
p

)
(µ+ d)p,(

n
p−1

)
(µ− d)p−1 ≤ Ep−1

(
x[j]
)
≤
(

n
p−1

)
(µ+ d)p−1, (2.2)(

n
p−2

)
(µ− d)p−2 ≤ Ep−2

(
x[j,k]

)
≤
(

n
p−2

)
(µ+ d)p−2.
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Thus, using the inequalities (2.2) and n
2 + 1 ≥ q > p , for k and j 6= k we have∣∣∣∣∂φk

∂xk
(x)

∣∣∣∣ ≤ 1− 1
p

p
(
n
p

) 1
p

(
n
p

) 1
p−2

(µ− d)1−2p
(

n
p−1

)2
(µ+ d)2p−2 +

1− 1
q

q
(
n
q

) 1
q

(
n
q

) 1
q−2

(µ− d)1−2q
(

n
q−1

)2
(µ+ d)2q−2

=
∑

z∈{p,q}

(z − 1)

(n− z + 1)2
(µ− d)1−2z(µ+ d)2z−2

≤ µ− d

(µ+ d)2

(
µ+ d

µ− d

)2p

+
µ− d

(µ+ d)2

(
µ+ d

µ− d

)2q

≤ 2
µ− d

(µ+ d)2

(
µ+ d

µ− d

)2q

,

∣∣∣∣∂φk

∂xj
(x)

∣∣∣∣ ≤ 1
p−1

p
(
n
p

) 1
p

(
n
p

) 1
p−2

(µ− d)1−2p
(

n
p−1

)2
(µ+ d)2p−2 +

1

p
(
n
p

) 1
p

(
n
p

) 1
p−1

(µ− d)1−p
(

n
p−2

)
(µ+ d)p−2

+

1
q−1

q
(
n
q

) 1
q

(
n
q

) 1
q−2

(µ− d)1−2q
(

n
q−1

)2
(µ+ d)2q−2 +

1

q
(
n
q

) 1
q

(
n
q

) 1
q−1

(µ− d)1−q
(

n
q−2

)
(µ+ d)q−2

=
∑

z∈{p,q}

(
(z − 1)

(n− z + 1)2
(µ− d)1−2z(µ+ d)2z−2 +

z(z − 1)

(n− z + 2)(n− z + 1)
(µ− d)1−z(µ+ d)z−2

)

≤ 2
µ− d

(µ+ d)2

(
µ+ d

µ− d

)2q

+ 2
µ− d

(µ+ d)2

(
µ+ d

µ− d

)q

≤ 4
µ− d

(µ+ d)2

(
µ+ d

µ− d

)2q

,

so

‖∇φi(x)‖ ≤ 2
µ− d

(µ+ d)2

(
µ+ d

µ− d

)2q √
4n− 3. (2.3)

Let x, z ∈ Vµ,d . The mean value theorem implies that there exist numbers θi ∈ (0, 1) , i = 1, ..., n such that

φk(x)− φk(z) = ∇φk(x+ θk(z − x))(x− z).

Also applying the Cauchy-Schwarz inequality, we obtain

‖∇f(x)−∇f(z)‖ =

(
n∑

k=1

[φk(x)− φk(z)]
2

) 1
2

=

(
n∑

k=1

[∇φk(x+ θk(z − x))(x− z)]
2

) 1
2

≤

(
n∑

k=1

‖∇φk(x+ θk(z − x))‖2
) 1

2

‖x− z‖

≤ 2
√
4n2 − 3n

µ− d

(µ+ d)2

(
µ+ d

µ− d

)2q

‖z − x‖ .
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Using (2.3), we get
‖∇f(x)−∇f(z)‖ ≤ a1(µ, d) ‖x− z‖ , x, z ∈ Vµ,d

where

a1(µ, d) = 2
√
4n2 − 3n

µ− d

(µ+ d)2

(
µ+ d

µ− d

)2q

.

This shows the existence of a Lipschitz constant K for ∇f on Vµ,d such that K ≤ a1(µ, d). In order to apply
Theorem 1.2, we assume Ω = Vµ,d where d < µ , the point x∗ = µ as the global minimum point of the function
f and ‖.‖◦ = ‖.‖∞ . Taking r ∈ (0, d) with q = d−r , we estimate M = max {‖∇f(x)‖∞ : x ∈ Vµ,r} as follows:

M = max
x∈Vµ,r

{‖∇f(x)‖∞} = max
1≤k≤n

 max
x∈Vµ,r

∣∣∣∣∣∣E
1/p−1
p (x)Ep−1

(
x[k]
)

p
(
n
p

) 1
p

−
E

1/q−1
q (x)Eq−1

(
x[k]
)

q
(
n
q

) 1
q

∣∣∣∣∣∣


≤ max
1≤k≤n

{(
n

p−1

)
p
(
n
p

) (µ+ r

µ− r

)p−1

+

(
n

q−1

)
q
(
n
q

) (µ+ r

µ− r

)q−1
}

=
1

(n− p+ 1)

(
µ+ r

µ− r

)p−1

+
1

(n− q + 1)

(
µ+ r

µ− r

)q−1

≤ 2

(
µ+ r

µ− r

)q−1

:= M0.

Let

a2(µ, d, r) =
M0

2(d− r)

and
a(µ, d, r) = max {a1(µ, d), a2(µ, d, r)} .

Since a(µ, d, r) is continuous with respect to d on (r, µ) and lim
d→µ−

a(µ, d, r) = lim
d→r+

a(µ, d, r) = +∞ , the

function d 7−→ a(µ, d, r) has minimum value on this interval. For convenience, we define aµ,r as the following:

aµ,r = min
r<d<µ

a(µ, d, r).

Since a1(µ, d) and a2(µ, d, r) are increasing and decreasing functions on (r, µ) , respectively, there exists only
one value of d minimizing a(µ, d, r) on (r, µ) . This real number, call a, is the solution of the following equation

2
√
4n2 − 3n

µ− d

(µ+ d)2

(
µ+ d

µ− d

)2q

=
1

d− r

(
µ+ r

µ− r

)q−1

.

So we have

min
r<d<µ

a(µ, d, r) =
1

a− r

(
µ+ r

µ− r

)q−1

.

Applying (1.2), we conclude that

E
1/q
q (x)(
n
q

) 1
q

+
1

4aµ,r

n∑
k=1

φ2
k(x) ≤

E
1/p
p (x)(
n
p

) 1
p

for x ∈ Vµ,r.
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2

Note that Theorem 2.1 has two major drawbacks. First, Theorem 2.1 entails the solution of the equation
(2.1) or at least a lower bound for the solution to apply the inequality. Secondly, the inequality is applicable to
a limited set of x values that depend on µ and r . These drawbacks are handled below.

We deal with the first drawback with the following lemma, which provides a lower bound for the solution
of the equation (2.1).

Lemma 2.2 Let µ > r > 0 and let p, q be natural numbers such that n
2 + 1 ≥ q and q > p ≥ 2 . If A ∈ (r, µ)

is the solution of the equation

(µ+ x)2q−2(x− r)

(µ− x)2q−1
=

1

2
√
4n2 − 3n

(
µ+ r

µ− r

)q−1

,

then A > r +B where

B =


(

1
2
√
4n2−3n

(
µ+r
µ−r

)q−1
2µ
µ−r + µ+r

µ−r

)−(2q−2)
(µ−r)2

2(µ+r) , if 1
2
√
4n2−3n

(
µ+r
µ−r

)q−1

> 1

1
2
√
4n2−3n

(
µ+r
µ−r

)q−1 (
3µ+r
µ−r

)−(2q−2)
(µ−r)2

2(µ+r) , if 1
2
√
4n2−3n

(
µ+r
µ−r

)q−1

< 1

.

Proof

Letting A = r + ϵ and substituting K =
1

2
√
4n2 − 3n

(
µ+ r

µ− r

)q−1

transforms the equation into

(µ+ r + ϵ)2q−2

(µ− r − ϵ)2q−2

ϵ

(µ− r − ϵ)
= K.

Letting µ+ r + ϵ

µ− r − ϵ
= L transforms the equation into

L2q−2

(
µ− r

2µ
L− µ+ r

2µ

)
= K.

After necessary algeraic manipulations, we get

L− µ+ r

µ− r
=

2µ

µ− r
KL−(2q−2). (2.4)

Using the fact that L > 1 on the right hand side yields

L <
2µ

µ− r
K +

µ+ r

µ− r
.

Hence this implies L−(2q−2) >

(
2µ

µ− r
K +

µ+ r

µ− r

)−(2q−2)

and

2µ

µ− r
KL−(2q−2) >

2µ

µ− r
K

(
2µ

µ− r
K +

µ+ r

µ− r

)−(2q−2)

.
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Using (2.4) on the left hand side of the preceding inequality gives

L− µ+ r

µ− r
>

2µ

µ− r
K

(
2µ

µ− r
K +

µ+ r

µ− r

)−(2q−2)

.

After letting U =

(
2µ

µ− r
K +

µ+ r

µ− r

)−(2q−2)

, the above inequality can be written as

L >
2µ

µ− r
KU +

µ+ r

µ− r
.

Now we use the following fact to get back to ϵ. Its proof directly follows from the definition of L .
Claim: If L > M for some M > 0 , then

ϵ >

(
M(µ− r)− (µ+ r)

M + 1

)
µ− r

µ+ r
. (2.5)

Letting M =
2µ

µ− r
KU +

µ+ r

µ− r
in the inequality (2.5) and using the fact that U < 1 yields

ϵ >

(
2µKU

2µ
µ−rKU + µ+r

µ−r + 1

)
µ− r

µ+ r
=

(
KU

KU + 1

)
(µ− r)2

µ+ r
>

(
KU

K + 1

)
(µ− r)2

µ+ r
>

(
KU

2max{K, 1}

)
(µ− r)2

µ+ r
.

Thus, there are two cases:

If K ≥ 1 then ϵ >
U

2

(µ− r)2

µ+ r
.

If K < 1 then U >

(
3µ+ r

µ− r

)−(2q−2)

which implies ϵ >
K
(

3µ+r
µ−r

)−(2q−2)

2

(µ− r)2

µ+ r
. Consequently, B follows

from these cases. 2

Remark 2.3 Note that it is possible to extend the inequality in Theorem 2.1 to all x ∈ R++ by taking
µ = max{x} and r = max{x} −min{x} .

This modification along with Lemma 2.2 gives a general inequality below, which is a refinement of MacLaurin’s
inequality.

Corollary 2.4 Let p, q be natural numbers such that n
2 + 1 ≥ q and q > p ≥ 2 . For any x ∈ Rn

++ , let

t = max{x}
min{x} and

θ(t) =


(

t((2t−1)q−1+2t−1)√
4n2−3n

)−(2q−2)

, if t > (2
√
4n2−3n)

1
q−1 −1

2

1
2
√
4n2−3n

(
2t−1

(4t+1)2

)q−1

, if t < (2
√
4n2−3n)

1
q−1 −1

2 .

Then the following inequality holds for all x ∈ Rn
++ :

E
1
q
q (x)(
n
q

) 1
q

+
θ(t)min{x}

4

(
1

2t− 1

)q n∑
k=1

φ2
k(x) ≤

E
1
p
p (x)(
n
p

) 1
p

706



TINAZTEPE and TINAZTEPE/Turk J Math

where

φk(x) =
E

1/p−1
p (x)Ep−1

(
x[k]
)

p
(
n
p

) 1
p

−
E

1/q−1
q (x)Eq−1

(
x[k]
)

q
(
n
q

) 1
q

.

By following the same path in the proof of Theorem 2.1, the following theorem can be obtained, which
leads to a refinement of Newton’s inequality.

Theorem 2.5 Let µ > r > 0 and p, q be natural numbers such that n > p+ 1 . Suppose that a ∈ (r, µ) is the
solution of the equation

4
√
4n2 − 3n(x+ µ)2p−1 =

3p

n

(µ+ r)2p−1

(x− r)
. (2.6)

Then the following inequality holds for all x ∈ Rn
++ such that ‖x− (µ, . . . , µ)‖∞ ≤ r :

Ep−1 (x)(
n

p−1

) · Ep+1 (x)(
n

p+1

) +
n

12p

a− r

(µ+ r)2p−1

n∑
k=1

φ2
k(x) ≤

[
Ep (x)(

n
p

) ]2
for x ∈ Vµ,r

where

φk(x) =
2Ep (x)Ep−1

(
x[k]
)(

n
p

)2 −
Ep−2

(
x[k]
)
Ep+1 (x) + Ep−1 (x)Ep

(
x[k]
)(

n
p−1

)(
n

p+1

) .

It is clear that Theorem 2.5 has the same drawbacks as Theorem 2.1. We overcome these drawbacks in
the same way as in Theorem 2.1. The following lemma provides a lower bound for the solution of the equation
(2.6).

Lemma 2.6 Let µ > r > 0 and p, q be natural numbers such that n > p + 1 . Suppose that A ∈ (r, µ) is the
solution of the equation

4
√
4n2 − 3n(x+ µ)2p−1 =

3p

n

(µ+ r)2p−1

(x− r)
.

Then A satisfies the following inequality:

A > r +
3p

4n
√
4n2 − 3n

(
µ+ r

µ+ r + 3p

4n
√
4n2−3n

)2p−1

.

Proof Let A = r + ϵ for some ϵ > 0. After substituting it in the equation, we rewrite the equation in the
following way:

ϵ =
3p

4n
√
4n2 − 3n

(
µ+ r

µ+ r + ϵ

)2p−1

.

Thus, it is clear that ϵ <
3p

4n
√
4n2 − 3n

and this implies that

(
1

µ+ r + 3p

4n
√
4n2−3n

)2p−1

<

(
1

µ+ r + ϵ

)2p−1

.
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After multiplying appropriate terms, we obtain

3p

4n
√
4n2 − 3n

(
µ+ r

µ+ r + 3p

4n
√
4n2−3n

)2p−1

<
3p

4n
√
4n2 − 3n

(
µ+ r

µ+ r + ϵ

)2p−1

.

The result follows from the fact that the expression on the right-hand side is equal to ϵ .
2

Remark 2.7 Taking µ = max{x} and r = max{x} − min{x} for any x ∈ R++ in Theorem 2.5, one can
extend the inequality to all x ∈ R++ .

Applying this remark to Lemma 2.6 yields the following refinement of Newton’s inequality.

Corollary 2.8 Let p, q be natural numbers such that n > p + 1 . Then the following inequality holds for all
x ∈ Rn

++ :

Ep−1 (x)(
n

p−1

) · Ep+1 (x)(
n

p+1

) +
1

16n
√
4n2 − 3n

(
1

2max{x}+min{x}+ 3p

4n
√
4n2−3n

)2p−1 n∑
k=1

φ2
k(x) ≤

[
Ep (x)(

n
p

) ]2

where

φk(x) =
2Ep (x)Ep−1

(
x[k]
)(

n
p

)2 −
Ep−2

(
x[k]
)
Ep+1 (x) + Ep−1 (x)Ep

(
x[k]
)(

n
p−1

)(
n

p+1

)
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