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Abstract: The construction of (minimal) linear codes from functions over finite fields has been greatly studied in the
literature, since determining the parameters of codes based on functions is rather easy due to the nice structures of
functions. In this paper, we derive 3 -weight and 4 -weight linear codes from weakly regular plateaued functions in the
recent construction method of linear codes over the odd characteristic finite fields. The Hamming weights and weight
distributions for codes are, respectively, determined by using the Walsh transform values and Walsh distributions of the
employed functions. We also derive projective 3 -weight punctured codes with good parameters from the constructed
codes. These punctured codes may be almost optimal due to the Griesmer bound, and they can be employed to design
association schemes. We lastly show that all constructed codes are minimal, which approves that they can be employed
to design high democratic secret sharing schemes.

Key words: Linear code; minimal code; weight distribution; weakly regular plateaued function

1. Introduction
There are many construction methods for linear codes, one of which is derived from functions over finite fields.
Constructing linear codes from functions is a popular research topic in the literature although considerable
progress has been done in this direction. A great number of linear codes have been obtained from cryptographic
functions such as quadratic functions [7, 8, 11, 12, 27, 31], (weakly regular) bent functions [7, 8, 21, 26, 28, 31],
(almost) perfect nonlinear functions [4, 16, 29] and (weakly regular) plateaued functions [22, 23, 25]. Two generic
(say, first and second) construction methods of linear codes from functions can be isolated from the others in the
literature. Several linear codes with excellent parameters have been derived from cryptographic functions based
on the first generic construction method (see for example in [4, 8, 21, 22]) and the second generic construction
method (see for example in [8, 12, 23, 26, 27, 31]). Indeed, Ding et al. [9, 10] have initially derived the Hamming
weights in any linear codes based on the second generic construction from the Walsh spectrum of the employed
functions, with the help of Gaussian sums. Similarly, Mesnager has proposed in [21] the computation method
of the Hamming weights in any linear codes based on the first generic construction using the Walsh transform
values of the employed functions. Hence, they are the main essential works in terms of tools and methodology
in view of computing the Hamming weights of linear codes based on functions over finite fields. It is worth
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noting that a very good survey [18] written by Li and Mesnager is devoted to the construction methods of linear
codes from cryptographic functions over finite fields. Moreover, Mesnager has written the new chapter in [20]
that covers the recent advances in the constructions of linear codes from functions over finite fields.

Recently, weakly regular plateaued (especially, bent) functions have been employed to design (minimal)
linear codes with a few weights over the odd characteristic finite fields (see [21–23, 25, 26, 28]). We now in this
paper employ weakly regular plateaued functions in the recent construction method of linear codes proposed in
[17, 28], and then we obtain several classes of minimal linear codes with new parameters from these functions
over the odd characteristic finite fields. The contribution of this paper increases our knowledge of linear codes
based on functions over finite fields. It allows to have a relatively large family of linear codes having good
parameters (for example, punctured ones are almost optimal codes) and satisfying the minimality property
(useful for nice applications) because we employ a new and large family of cryptographic functions: the so-
called weakly regular plateaued functions. This paper comes after some known papers [17, 23, 25, 28] available
in the literature with the same goal and spirit, but the ingredient here has not been investigated before, and
this paper also contributes to completing and improving further known results.

The rest of this paper is organized as follows. In Section 2, we set the main notation and give some
properties of weakly regular plateaued functions. In Section 3, we introduce the parameters of 3 -weight and
4 -weight linear codes derived from these functions over finite fields. We also propose some punctured codes
for the constructed codes. We hereby obtain projective 3 -weight codes with flexible parameters. We finally
highlight that our codes are minimal codes. Section 4 completes the paper.

2. Preliminaries
For a set T , its size is shown by #T , and T ⋆ = T \{0} . The magnitude of a complex number z ∈ C is denoted
by |z| . The finite field with q elements is represented by Fq , where q = pn for a positive integer n and an

odd prime p . The trace of α ∈ Fq over Fp is defined as Trn(α) = α + αp + αp2

+ · · · + αpn−1 . The set of all
non-squares and squares in F⋆

p are represented by NSQ and SQ , respectively. The quadratic character of F⋆
p

is η0 , and, for simplicity, we write p∗ = η0(−1)p , which is frequently used in the sequel.
A cyclotomic field Q(ξp) can be obtained from the rational field Q by joining the complex primitive p-th

root of unity ξp . The field Q(ξp) is the splitting field of the polynomial xp − 1 , and so the field Q(ξp)/Q is a
Galois extension of degree p− 1 . Here, a field basis for an extension Q(ξp)/Q is the subset {1, ξp, ξ2p, . . . , ξp−2

p }
of the cyclotomic field Q(ξp) . The Galois group Gal(Q(ξp)/Q) is described as the set {σc : c ∈ F⋆

p} , where
σc is the automorphism of Q(ξp) defined as σc(ξp) = ξcp . The cyclotomic field Q(ξp) has a unique quadratic
subfield Q(

√
p∗) , and its Galois group Gal(Q(

√
p∗)/Q) = {1, σγ} for some γ ∈ NSQ . For a, c ∈ F⋆

p , we clearly

have σc(ξ
a
p ) = ξcap and σc(

√
p∗

n
) = η0

n(c)
√
p∗

n . The following lemma is used in the subsequent proofs.

Lemma 2.1 [19] Under the above notation, we have

i.)
∑

c∈F⋆
p
η0(c) = 0 , ii.)

∑
c∈F⋆

p
ξcap = −1 for every a ∈ F⋆

p , iii.)
∑

c∈F⋆
p
η0(c)ξ

c
p =

√
p∗ .

2.1. Linear codes
A linear [n, k, d] code C over Fp is a subspace with k -dimension of vector space Fn

p . Here, n is the length of C ,
k is its dimension, and d is its minimum Hamming distance. For a vector v = (v1, . . . , vn) ∈ Fn

p , its Hamming
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weight WH(v) is the size of its support described as supp(v) = {1 ≤ i ≤ n : vi ̸= 0}. We remark that d is the
smallest Hamming weight of the nonzero codewords of C . The dual code of C is defined to be the set

C⊥ = {(u1, . . . , un) ∈ Fn
p : u1v1 + · · ·+ unvn = 0 for all (v1, . . . , vn) ∈ C},

which is represented by [n, n−k, d⊥] over Fp , where d⊥ is the minimum Hamming distance of C⊥ . The weight
distribution of C is given by (1, A1, . . . , An) and its weight enumerator is the polynomial 1+A1y+ · · ·+Any

n ,
where Aω is the number of nonzero codewords with weight ω in C . As a result, we say that C is an l -weight
linear code if the number of nonzero Aω in {Ai}i≥1 is equal to l , where l is an integer with 1 ≤ l ≤ n . The
first two Pless power moments are given as

n∑
i=0

Ai = pk and
n∑

i=0

iAi = n(p− 1)pk−1 −A⊥
1 p

k−1,

where A⊥
1 is the number of codewords with weight 1 in C⊥ . For the proposed codes in this paper, A⊥

1 = 0 ,
since their defining sets do not cover the element (0, 0) .

2.2. Weakly regular plateaued functions

Let f : Fq → Fp be a p -ary function. The Walsh transform of f is a complex valued function defined as

Wf (β) =
∑
x∈Fq

ξp
f(x)−Trn(βx), β ∈ Fq.

A function f is called balanced over Fp if f gets all elements of Fp with the same number of pre-images; or
else, f is said to be unbalanced. Note that f is balanced iff Wf (0) = 0 . A function f is said to be a bent
function if |Wf (β)|2 = pn for every β ∈ Fq (see [24] for Boolean bent and [15] for p -ary bent). In addition,
f is said to be s-plateaued if |Wf (β)|2 ∈ {0, pn+s} for every β ∈ Fq , with 0 ≤ s ≤ n , (see [30] for Boolean
plateaued and [5] for p -ary plateaued). For an s -plateaued function f , its Walsh support is described as the set
Sf = {β ∈ Fq : |Wf (β)|2 = pn+s}. From the Parseval identity, we have #Sf = pn−s , and the explicit Walsh
distribution of a plateaued function is given as follows.

Lemma 2.2 Let f be an s-plateaued function. For β ∈ Fq , |Wf (β)|2 takes the values pn+s and 0 for the
times pn−s and pn − pn−s , respectively.

Mesnager et al. [22] have described the notion of (non)-weakly regular plateaued functions. An s -plateaued f

is called weakly regular if we have Wf (β) ∈
{
0, up

n+s
2 ξ

f⋆(β)
p

}
, where u ∈ {±1,±i} and f⋆ is a p -ary function

over Fq with f⋆(β) = 0 for every β ∈ Fq \ Sf ; otherwise, f is called non-weakly regular. We remark that a
weakly regular 0 -plateaued is the weakly regular bent function.

The following lemma is very useful to compute the Hamming weights of proposed codes.

Lemma 2.3 [22] Let f be a weakly regular s-plateaued function. Then, for every β ∈ Sf , we have that

Wf (β) = ϵ
√
p∗

n+s
ξ
f⋆(β)
p , where ϵ = ±1 is the sign of Wf and f⋆ is a p-ary function over Sf .
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The following two lemmas are needed to determine the weight distributions of proposed codes.

Lemma 2.4 [23] Let f be a weakly regular s-plateaued function. For x ∈ Fq ,

∑
β∈Sf

ξf
⋆(β)+Trn(βx)

p = ϵηn0 (−1)
√
p∗

n−s
ξf(x)p ,

where ϵ = ±1 is the sign of Wf and f⋆ is a p-ary function over Sf .

Lemma 2.5 [23] Let f be a weakly regular s-plateaued function with 0 ≤ s < n and Wf (β) = ϵf
√
p∗

n+s
ξ
f⋆(β)
p

for every β ∈ Sf . For j ∈ Fp , define Nf⋆(j) = #{β ∈ Sf : f⋆(β) = j}. Then, we have for n− s even

Nf⋆(j) =

{
pn−s−1 + ϵηn+1

0 (−1)(p− 1)
√
p∗

n−s−2
, if j = 0,

pn−s−1 − ϵηn+1
0 (−1)

√
p∗

n−s−2
, if not,

and for n− s odd,

Nf⋆(j) =


pn−s−1, if j = 0,

pn−s−1 + ϵηn0 (−1)
√
p∗

n−s−1
, if j ∈ SQ,

pn−s−1 − ϵηn0 (−1)
√
p∗

n−s−1
, if j ∈ NSQ.

Very recently, two subclasses of weakly regular plateaued functions over the odd characteristic finite fields have
been introduced. Let f : Fq → Fp be a weakly regular sf -plateaued function that satisfy two homogeneous
conditions:

• f(0) = 0 , and

• f(ax) = akf f(x) for all x ∈ Fq and a ∈ F⋆
p , where kf is an even positive integer with gcd(kf−1, p−1) = 1 .

The set of such weakly regular plateaued unbalanced and balanced functions has been, respectively, denoted by
WRP in [23] and WRPB in [25]. In this paper, to construct linear codes with flexible parameters, we use these
subclasses of plateaued functions in the recent construction method of [28].

We end this section with proposing the following results that are used in the subsequent proofs.

Proposition 2.6 [23, 25] Let f ∈ WRP or f ∈ WRPB. Then, f⋆(0) = 0 and f⋆(aβ) = alf f⋆(β) for all
a ∈ F⋆

p and β ∈ Sf , where lf is an even positive integer with gcd(lf − 1, p− 1) = 1 .

Lemma 2.7 [23, 25] Let f ∈ WRP or f ∈ WRPB. Then for every β ∈ Sf (respectively, β ∈ Fq \ Sf ) , we
have zβ ∈ Sf (respectively, zβ ∈ Fq \ Sf ) for every z ∈ F⋆

p .

3. Linear codes derived from weakly regular plateaued functions over Fp

In this section, weakly regular plateaued functions are employed to obtain minimal linear codes in the second
generic construction method.
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3.1. The construction method of linear codes from functions
For a long time, cryptographic functions have been extensively used to design linear codes with few weights
in coding theory. Constructing linear codes from functions including quadratic, almost bent, (almost) perfect
nonlinear, (weakly regular) bent and plateaued functions is a highly interesting research topic in the literature.
Remarkably, determining the parameters of the codes derived from these functions is rather easy due to the
nice structure of these functions although it is generally a difficult problem in coding theory.

Two construction methods of linear codes from functions are generic in the sense that several classes of
known codes could be obtained from these construction methods. We below define two generic construction
methods of linear codes from functions. For a polynomial F (x) on Fq , the first generic construction of linear
codes is given by

C(F ) = {(Trn(aF (x) + bx))x∈F⋆
q
: a, b ∈ Fq}

with length (q − 1) and dimension at most 2n . For a subset D = {d1, . . . , dm} ⊆ Fq , the second generic
construction based on D is defined as

CD = {(Trn(ad1), . . . ,Trn(adm)) : a ∈ Fq} (3.1)

with length m and dimension at most n . The set D is called the defining set of CD , and the quality of
its parameters depends on the choice of D . The construction method of the form (3.1) has been initially
studied by Ding et al. [9, 10], and many linear codes have been proposed in [7–12]. Furthermore, new linear
codes have been obtained from some cryptographic functions in this construction method (see e.g. [23, 25–
27, 31]). Recently, motivated by the method of the form (3.1), Li et al. [17] have defined for a subset
D = {(x1, y1), . . . , (xm, ym)} ⊆ F2

q the following linear code

CD = {c(a,b) = (Trn(ax1 + by1), . . . ,Tr
n(axm + bym)) : a, b ∈ Fq}, (3.2)

whose length is m and dimension is at most 2n . They have constructed some linear codes by using the set
D = {(x, y) ∈ F2

q \ {(0, 0)} : Trn(xk + yl) = 0}, where k, l ∈ {1, 2, pn/2 + 1} . Later, Jian et al. [14] have

constructed further linear codes of the form (3.2) by using D = {(x, y) ∈ F2
q \ {(0, 0)} : Trn(xk + yp

u+1) = 0},
where k ∈ {1, 2} . Very recently, Wu et al. [28] have constructed new linear codes of the form (3.2) based on
the set

D = {(x, y) ∈ (F2
q)

⋆ : f(x) + g(y) = 0} ⊂ F2
q, (3.3)

where f and g are two weakly regular bent functions from Fq to Fp . Motivated by the works [14, 17, 28], we,
in this paper, construct minimal linear codes of the form (3.2) based on the set D of the form (3.3) for weakly
regular plateaued functions.

Let f and g be two p -ary functions from Fq to Fp and let D be the set of the form (3.3). From the
definition of the code CD of the form (3.2), we define

ND(a, b) = #{(x, y) ∈ (F2
q)

⋆ : f(x) + g(y) = 0 and Trn(ax+ by) = 0}.

Then, the Hamming weight of the nonzero codeword c(a,b) is given by WH(c(a,b)) = #D −ND(a, b) for every
(a, b) ∈ (F2

q)
⋆ , and we clearly have WH(c(0,0)) = 0 .

957



SINAK/Turk J Math

3.2. Three-weight linear codes derived from Trn(x) + g(y)

In this subsection, we construct the linear code CDg
of the form (3.2) based on the set

Dg = {(x, y) ∈ (F2
q)

⋆ : Trn(x) + g(y) = 0}, (3.4)

when g is an sg -plateaued function in the set WRPB, with 1 ≤ sg < n . From the orthogonality of exponential
sums, we can derive its size #Dg = p2n−1 − 1 , which is the length of the code CDg

. To find the Hamming
weights in CDg

, for (a, b) ∈ (F2
q)

⋆ we define

NDg
(a, b) = #{(x, y) ∈ Dg : Tr

n(ax+ by) = 0}. (3.5)

We can derive the following lemma from the proof of [28, Lemma 5].

Lemma 3.1 Let NDg
(a, b) be defined as in (3.5) for (a, b) ∈ (F2

q)
⋆ . Then, we have

NDg
(a, b) =

{
p2n−2 − 1, if a ∈ Fq \ F⋆

p,

p2n−2 − 1 + A(a,b)
p2 , if a ∈ F⋆

p,

for which the value A(a, b) can be expressed as

A(a, b) = pn
∑

z1∈F⋆
p

σz1

∑
y∈Fq

ξg(y)−Trn(a−1by)
p

 (3.6)

where a−1 is the multiplicative inverse of a ∈ F⋆
p .

The following lemma calculates the value A(a, b) by using the Walsh spectrum of the employed plateaued
function.

Lemma 3.2 Let g ∈ WRPB with 1 ≤ sg ≤ n . Let A(a, b) be defined as in (3.6) for a ∈ F⋆
p and b ∈ Fq . Then,

for every a−1b ∈ Fq \ Sg we have A(a, b) = 0 , and for every a−1b ∈ Sg we have for n+ sg even

A(a, b) =

{
ϵg(p− 1)pn

√
p∗

n+sg , if g⋆(a−1b) = 0,

−ϵgp
n
√
p∗

n+sg , if not,

and for n+ sg odd

A(a, b) =


0, if g⋆(a−1b) = 0,

ϵgp
n
√
p∗

n+sg+1
, if g⋆(a−1b) ∈ SQ,

−ϵgp
n
√
p∗

n+sg+1
, if g⋆(a−1b) ∈ NSQ.

Proof The first case is trivial. For the second case: for every a−1b ∈ Sg , we have by Lemma 2.3

A(a, b) = pn
∑

z1∈F⋆
p

σz1

(
ϵg
√
p∗

n+sgξg
⋆(a−1b)

p

)
= ϵgp

n
√
p∗

n+sg
∑

z1∈F⋆
p

η
n+sg
0 (z1)ξ

z1g
⋆(a−1b)

p ,

The proof is, hence, completed from Lemma 2.1. 2

The following lemma helps to determine the weights of codewords in CDg
.
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Lemma 3.3 Let g ∈ WRPB with 1 ≤ sg ≤ n , and Sg be its Walsh support. Let NDg (a, b) be defined as in
(3.5) for (a, b) ∈ (F2

q)
⋆ . Then, we have NDg

(a, b) = p2n−2 − 1 if a ∈ Fq \ F⋆
p or if a−1b /∈ Sg where a ∈ F⋆

p.

When a−1b ∈ Sg where a ∈ F⋆
p , we have for n+ sg even

NDg (a, b) =

{
p2n−2 − 1 + ϵg(p− 1)pn−2

√
p∗

n+sg , if g⋆(a−1b) = 0,

p2n−2 − 1− ϵgp
n−2

√
p∗

n+sg , if not,

and for n+ sg odd

NDg (a, b) =


p2n−2 − 1, if g⋆(a−1b) = 0,

p2n−2 − 1 + ϵgp
n−2

√
p∗

n+sg+1
, if g⋆(a−1b) ∈ SQ,

p2n−2 − 1− ϵgp
n−2

√
p∗

n+sg+1
, if g⋆(a−1b) ∈ NSQ.

Proof The proof follows from the combination of Lemmas 3.1 and 3.2. 2

The following theorem proposes the code CDg
of the form (3.2) based on the set Dg of the form (3.4).

Theorem 3.4 Let g ∈ WRPB with 1 ≤ sg < n . Then, the code CDg of the form (3.2) with parameters
[p2n−1 − 1, 2n] is the 3-weight linear code over Fp . The weight distributions are listed in Tables 1 and 2 when
n+ sg is even and odd, respectively.

Table 1. The code CDg in Theorem 3.4 when n+ sg is even.

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2n−2 p2n − (p− 1)pn−sg − 1

(p− 1)(p2n−2 − ϵgp
n−2

√
p∗

n+sg ) (p− 1)(pn−sg−1 + ϵgη
n+1
0 (−1)(p− 1)

√
p∗

n−sg−2
)

(p− 1)p2n−2 + ϵgp
n−2

√
p∗

n+sg (p− 1)2(pn−sg−1 − ϵgη
n+1
0 (−1)

√
p∗

n−sg−2
)

Table 2. The code CDg in Theorem 3.4 when n+ sg is odd.

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2n−2 p2n − (p− 1)2pn−sg−1 − 1

(p− 1)p2n−2 − ϵgp
n−2

√
p∗

n+sg+1 (p−1)2

2 (pn−sg−1 + ϵgη
n
0 (−1)

√
p∗

n−sg−1
)

(p− 1)p2n−2 + ϵgp
n−2

√
p∗

n+sg+1 (p−1)2

2 (pn−sg−1 − ϵgη
n
0 (−1)

√
p∗

n−sg−1
)

Proof From the definition of CDg
, its length is #Dg = p2n−1 − 1 , and for every (a, b) ∈ (F2

q)
⋆ , its Hamming

weight WH(c(a,b)) = p2n−1 − 1 − NDg
(a, b) , where NDg

(a, b) is computed in Lemma 3.3. More clearly, if
a ∈ Fq \ F⋆

p or if a−1b /∈ Sg for a ∈ F⋆
p, then we have WH(c(a,b)) = (p − 1)p2n−2 whose weight distribution is

p2n− (p−1)pn−sg −1 from Lemma 2.2. Additionally, for every a−1b ∈ Sg where a ∈ F⋆
p , the weight WH(c(a,b))

follows from Lemma 3.3, and its weight distribution is derived from Lemma 2.5. This completes the proof. 2
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Remark 3.5 In Theorem 3.4, the code CDg is the 2-weight code when sg = n− 1 .

Remark 3.6 The code CDg
proposed in Theorem 3.4 has been independently obtained in [6, Theorem 1] when

g ∈ WRP with 0 ≤ sg < n .

3.3. Three-weight and four-weight linear codes derived from weakly regular plateaued functions

In this subsection, we construct the linear code CD of the form (3.2) based on the set

D = {(x, y) ∈ (F2
q)

⋆ : f(x) + g(y) = 0}, (3.7)

where f and g are weakly regular sf -plateaued and sg -plateaued functions from Fq to Fp , respectively, for
0 ≤ sf , sg < n . Recall that throughout this paper Sf and Sg denote the Walsh supports of f and g , and let
lf , lg be defined as in Proposition 2.6. To calculate the Hamming weight of the nonzero codeword c(a,b) in CD
for every (a, b) ∈ (F2

q)
⋆ , we define

ND(a, b) = #{(x, y) ∈ D : Trn(ax+ by) = 0}. (3.8)

We now introduce several lemmas by using the exponential sums and Walsh spectrum of a weakly regular
plateaued function. We start with finding the size of the set D .

Lemma 3.7 Let D be defined as in (3.7). If f, g ∈ WRPB, then #D = p2n−1 − 1 . If f, g ∈ WRP, then

#D =

{
p2n−1 − 1, if 2n+ sf + sg is odd,
p2n−1 − 1 + ϵf ϵg

p−1
p

√
p∗

2n+sf+sg , otherwise.

Proof From the orthogonality of exponential sums, we have

#D + 1 = 1
p

∑
x,y∈Fq

∑
z∈Fp

ξz(f(x)+g(y))
p = p2n−1 +

1

p

∑
z∈F⋆

p

σz

∑
x∈Fq

ξf(x)p

∑
y∈Fq

ξg(y)p

 .

When f, g ∈ WRPB , we clearly get #D = p2n−1 − 1 . On the other hand, when f, g ∈ WRP , from Lemma 2.3
we write Wf (0) = ϵf

√
p∗

n+sf and Wg(0) = ϵg
√
p∗

n+sg , where ϵf , ϵg ∈ {±1} , since we know f⋆(0) = g⋆(0) = 0

from Proposition 2.6. We then have

#D + 1 = p2n−1 +
1

p

∑
z∈F⋆

p

σz(ϵf ϵg
√
p∗

2n+sf+sg ) = p2n−1 + ϵf ϵg
1

p

√
p∗

2n+sf+sg
∑
z∈F⋆

p

η
2n+sf+sg
0 (z)).

Hence, the proof is completed from Lemma 2.1. 2

The following lemmas are needed to find the Hamming weights and weight distributions of proposed
codes.

Lemma 3.8 Let f, g ∈ WRP. For (a, b) ∈ (F2
q)

⋆ , define

B(a, b) =
∑

z1,z2∈F⋆
p

∑
x,y∈Fq

ξz1(f(x)+g(y))−z2Tr
n(ax+by)

p .
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Then, for (a, b) /∈ Sf × Sg we have B(a, b) = 0 , and for (a, b) ∈ Sf × Sg , we have the following cases. When
2n+ sf + sg is odd and lf = lg , we have

B(a, b) =

 0, if f⋆(a) = b = 0 or a = g⋆(b) = 0 or f⋆(a) + g⋆(b) = 0 for ab ̸= 0,
K, if f⋆(a) ∈ SQ for b = 0 or g⋆(b) ∈ SQ for a = 0 or f⋆(a) + g⋆(b) ∈ SQ for ab ̸= 0,
−K, if f⋆(a) ∈ NSQ for b = 0 or g⋆(b) ∈ NSQ for a = 0 or f⋆(a) + g⋆(b) ∈ NSQ for ab ̸= 0,

where K = ϵf ϵg(p− 1)
√
p∗

2n+sf+sg+1
. When 2n+ sf + sg is even, we have for lf = lg

B(a, b) =

{
(p− 1)L, if a = g⋆(b) = 0 or f⋆(a) = b = 0 or f⋆(a) + g⋆(b) = 0 for ab ̸= 0,
−L, otherwise,

and for lf ̸= lg

B(a, b) =


(p− 1)L, if a = g⋆(b) = 0 or f⋆(a) = b = 0 or f⋆(a) = g⋆(b) = 0 for ab ̸= 0,
(p+1)L
p−1 , if − f⋆(a)

g⋆(b) ∈ SQ,

−L, otherwise,

where L = ϵf ϵg(p− 1)
√
p∗

2n+sf+sg .

Proof From the definition of B(a, b) , we have

B(a, b) =
∑

z1,z2∈F⋆
p

∑
x∈Fq

ξz1(f(x)−Trn(z2ax))
p

∑
y∈Fq

ξz1(g(y)−Trn(z2by))
p =

∑
z1∈F⋆

p

σz1(
∑

z2∈F⋆
p

Wf (z2a)Wg(z2b)),

where we use the fact that z2
z1

passes all over F⋆
p for a fixed z1 while z2 passes through F⋆

p in the first equality.

• If (a, b) /∈ Sf × Sg , equiv., (z2a, z2b) /∈ Sf × Sg for every z2 ∈ F⋆
p (see Lemma 2.7), then B(a, b) = 0 .

• If (a, b) ∈ Sf ×Sg , equiv., (z2a, z2b) ∈ Sf ×Sg for every z2 ∈ F⋆
p , there are two cases: ab = 0 and ab ̸= 0 .

– In the case of ab = 0 , suppose a = 0 and b ̸= 0 , without loss of generality. We then have

B(a, b) =
∑

z1∈F⋆
p

σz1

 ∑
z2∈F⋆

p

ϵf
√
p∗

n+sf ϵg
√
p∗

n+sgξg
⋆(z2b)

p


=

∑
z1∈F⋆

p

σz1

 ∑
z2∈F⋆

p

ϵf ϵg
√
p∗

2n+sf+sgξ
z
lg
2 g⋆(b)

p


= ϵf ϵg

√
p∗

2n+sf+sg
∑

z1∈F⋆
p

η
2n+sf+sg
0 (z1)

∑
z2∈F⋆

p

ξ
z1z

lg
2 g⋆(b)

p ,

where we use Lemmas 2.3, 2.7 and Proposition 2.6 in the first and second equality, respectively.
Thus, with the help of Lemma 2.1, we get for 2n+ sf + sg odd

B(a, b) =

 0, if g⋆(b) = 0,
K, if g⋆(b) ∈ SQ,
−K, if g⋆(b) ∈ NSQ,
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and for 2n+ sf + sg even

B(a, b) =

{
(p− 1)L, if g⋆(b) = 0,
−L, if not.

Similarly, for b = 0 and a ̸= 0 , the analogous computations yield the same results above with respect
to the parameter a .

– In the case of ab ̸= 0 , we get

B(a, b) =
∑

z1∈F⋆
p

σz1

 ∑
z2∈F⋆

p

ϵf
√
p∗

n+sf ξf
⋆(z2a)

p ϵg
√
p∗

n+sgξg
⋆(z2b)

p


=

∑
z1∈F⋆

p

σz1

 ∑
z2∈F⋆

p

ϵf ϵg
√
p∗

2n+sf+sgξ
z
lf
2 f⋆(a)+z

lg
2 g⋆(b)

p


= ϵf ϵg

√
p∗

2n+sf+sg
∑

z1∈F⋆
p

η
2n+sf+sg
0 (z1)

∑
z2∈F⋆

p

ξ
z1(z

lf
2 f⋆(a)+z

lg
2 g⋆(b))

p ,

where we use Lemmas 2.3, 2.7 and Proposition 2.6 in the first and second equality, respectively.
We can compute the value B(a, b) by using Lemma 2.1 and some properties of the cyclotomic field.
When 2n+ sf + sg is odd, we get for lf = lg

B(a, b) =

 0, if f⋆(a) + g⋆(b) = 0,
K, if f⋆(a) + g⋆(b) ∈ SQ,
−K, if f⋆(a) + g⋆(b) ∈ NSQ.

When 2n+ sf + sg is even, we get for lf = lg

B(a, b) =

{
(p− 1)L, if f⋆(a) + g⋆(b) = 0,
−L, otherwise,

and for lf ̸= lg

B(a, b) =


(p− 1)L, if f⋆(a) = g⋆(b) = 0,
(p+1)L
p−1 , if − f⋆(a)

g⋆(b) ∈ SQ,

−L, otherwise.

2

Lemma 3.9 Let f, g ∈ WRPB with 1 ≤ sf , sg < n . For (a, b) ∈ (F2
q)

⋆ , let B(a, b) be defined as in Lemma
3.8. For (a, b) /∈ Sf × Sg , we have B(a, b) = 0 , and for (a, b) ∈ Sf × Sg we have the following cases. When
2n+ sf + sg is odd and lf = lg ,

B(a, b) =

 0, if f⋆(a) + g⋆(b) = 0,
K, if f⋆(a) + g⋆(b) ∈ SQ,
−K, if f⋆(a) + g⋆(b) ∈ NSQ,

where K = ϵf ϵg(p− 1)
√
p∗

2n+sf+sg+1 . When 2n+ sf + sg is even, we have for lf = lg

B(a, b) =

{
(p− 1)L, if f⋆(a) + g⋆(b) = 0,
−L, otherwise,
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and for lf ̸= lg

B(a, b) =


(p− 1)L, if f⋆(a) = g⋆(b) = 0,
(p+1)L
p−1 , if − f⋆(a)

g⋆(b) ∈ SQ,

−L, otherwise,

where L = ϵf ϵg(p− 1)
√
p∗

2n+sf+sg .

Proof The proof is very similar to that of Lemma 3.8. 2

Lemma 3.10 Let f, g ∈ WRP. Let ND(a, b) be defined as in (3.8) for (a, b) ∈ (F2
q)

⋆ .

• Suppose that 2n+ sf + sg is odd and lf = lg . For every (a, b) /∈ Sf ×Sg , we have ND(a, b) = p2n−2 − 1 ,
and for every (a, b) ∈ Sf × Sg ,

ND(a, b) =


p2n−2 − 1, if f⋆(a) + g⋆(b) = 0,

p2n−2 − 1 + ϵf ϵg
1
p2 (p− 1)

√
p∗

2n+sf+sg+1
, if f⋆(a) + g⋆(b) ∈ SQ,

p2n−2 − 1− ϵf ϵg
1
p2 (p− 1)

√
p∗

2n+sf+sg+1
, if f⋆(a) + g⋆(b) ∈ NSQ.

• Suppose that 2n+ sf + sg is even. For every (a, b) /∈ Sf ×Sg , we have ND(a, b) = p2n−2− 1+ ϵf ϵg
1
p2 (p−

1)
√
p∗

2n+sf+sg . For every (a, b) ∈ Sf × Sg , we have for lf = lg

ND(a, b) =

{
p2n−2 − 1 + ϵf ϵg

1
p (p− 1)

√
p∗

2n+sf+sg , if f⋆(a) + g⋆(b) = 0,

p2n−2 − 1, otherwise,

and for lf ̸= lg

ND(a, b) =


p2n−2 − 1 + ϵf ϵg

1
p (p− 1)

√
p∗

2n+sf+sg , if f⋆(a) = g⋆(b) = 0,

p2n−2 − 1 + ϵf ϵg
2
p

√
p∗

2n+sf+sg , if − f⋆(a)
g⋆(b) ∈ SQ,

p2n−2 − 1, otherwise.

Proof By the definition of ND(a, b) and using the orthogonality of exponential sums, we get

ND(a, b) + 1 = p−2
∑

x,y∈Fq

∑
z1∈Fp

ξz1(f(x)+g(y))
p

∑
z2∈Fp

ξ−z2Trn(ax+by)
p = p2n−2 +

1

p2
(A+B(a, b)),

where

A =
∑

z1∈F⋆
p

∑
x,y∈Fq

ξz1(f(x)+g(y))
p and B(a, b) =

∑
z1,z2∈F⋆

p

∑
x,y∈Fq

ξz1(f(x)+g(y))−z2Tr
n(ax+by)

p .

We clearly have A = p(#D + 1) − p2n in the light of Lemma 3.7. The proof is then completed from Lemmas
3.7 and 3.8. 2

From Lemma 3.9, the following lemma can be proven with the same technique used in Lemma 3.10.
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Lemma 3.11 Let f, g ∈ WRPB and let ND(a, b) be defined as in (3.8) for (a, b) ∈ (F2
q)

⋆ . Assume that
2n+ sf + sg is even. Then we have ND(a, b) = p2n−2 − 1 for every (a, b) /∈ Sf × Sg , and for every
(a, b) ∈ Sf × Sg , we have for lf = lg

ND(a, b) =

{
p2n−2 − 1 + ϵf ϵg

1
p2 (p− 1)2

√
p∗

2n+sf+sg , if f⋆(a) + g⋆(b) = 0,

p2n−2 − 1− ϵf ϵg
1
p2 (p− 1)

√
p∗

2n+sf+sg , otherwise,

and for lf ̸= lg

ND(a, b) =


p2n−2 − 1 + ϵf ϵg

1
p2 (p− 1)2

√
p∗

2n+sf+sg , if f⋆(a) = g⋆(b) = 0,

p2n−2 − 1 + ϵf ϵg
1
p2 (p+ 1)

√
p∗

2n+sf+sg , if − f⋆(a)
g⋆(b) ∈ SQ,

p2n−2 − 1− ϵf ϵg
1
p2 (p− 1)

√
p∗

2n+sf+sg otherwise.

We provide the following lemma in order to determine the weight distributions of proposed codes.

Lemma 3.12 Let f, g ∈ WRP or f, g ∈ WRPB. For a, b ∈ Fq and t ∈ Fp , define Sfg(t) = #{(a, b) ∈
Sf × Sg : f⋆(a) + g⋆(b) = t}. Then, we have for 2n− sf − sg odd

Sfg(t) =

{
p2n−sf−sg−1, if t = 0,

p2n−sf−sg−1 + ϵf ϵgη0(−t) 1p
√
p∗

2n−sf−sg+1
, if t ̸= 0,

and for 2n− sf − sg even

Sfg(t) =

{
p2n−sf−sg−1 + ϵf ϵg

p−1
p

√
p∗

2n−sf−sg , if t = 0,

p2n−sf−sg−1 − ϵf ϵg
1
p

√
p∗

2n−sf−sg , if t ̸= 0.

Proof From the orthogonality of exponential sums, we have

Sfg(t) = 1
p

∑
a∈Sf

∑
b∈Sg

∑
z∈Fp

ξz(f
⋆(a)+g⋆(b))−zt

p

= 1
p (p

2n−sf−sg +
∑
z∈F⋆

p

ξ−zt
p σz(

∑
a∈Sf

ξf
⋆(a)

p

∑
b∈Sg

ξg
⋆(b)

p ))

= p2n−sf−sg−1 + ϵf ϵg
1
p

√
p∗

2n−sf−sg
∑
z∈F⋆

p

η
2n−sf−sg
0 (z)ξ−zt

p ,

where Lemma 2.4 is used in the last equality. The proof is, hence, completed by Lemma 2.1. 2

We now construct the code CD of the form (3.2) from weakly regular plateaued unbalanced functions.

Theorem 3.13 Let f, g ∈ WRP with lf = lg , where lf , lg are defined as in Proposition 2.6. Let D be defined
as in (3.7). Suppose that n+ sf is odd and n+ sg is even with 0 ≤ sf , sg < n . Then, the code CD of the from
(3.2) with parameters [p2n−1 − 1, 2n, (p− 1)(p2n−2 −√

p2n+sf+sg−3)] is the 3-weight linear code whose weight
distribution is listed in Table 3. For simplicity, we denote m = 2n+ sf + sg and r = 2n− sf − sg in Table 3.

Proof From the definition of CD , its length equals the size of D , and the weight of each codeword is
WH(c(a,b)) = #D − ND(a, b) for every (a, b) ∈ (F2

q)
⋆ , where ND(a, b) is defined as in (3.8). By Lemma 3.7,
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Table 3. The code CD in Theorem 3.13 when n+ sf is odd and n+ sg is even.

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2n−2 p2n − pr + pr−1 − 1

(p− 1)(p2n−2 − ϵf ϵg
√
p∗

m−3
) (p−1)

2 (pr−1 + ϵf ϵgη0(−1) 1p
√
p∗

r+1
)

(p− 1)(p2n−2 + ϵf ϵg
√
p∗

m−3
) (p−1)

2 (pr−1 − ϵf ϵgη0(−1) 1p
√
p∗

r+1
)

we have #D = p2n−1 − 1 , and so the Hamming weights can be derived from Lemma 3.10. To put it more
explicitly, for every (a, b) /∈ Sf × Sg , we have WH(c(a,b)) = (p − 1)p2n−2, and the number of such codewords
equals p2n − p2n−sf−sg by Lemma 2.2. Additionally, by Lemma 3.10, for every (a, b) ∈ Sf × Sg , we get

WH(c(a,b)) =


(p− 1)p2n−2, Sfg(0)− 1 times,
(p− 1)p2n−2 − ϵf ϵg(p− 1)

√
p∗

2n+sf+sg−3
, (p−1

2 )Sfg(i) times,
(p− 1)p2n−2 + ϵf ϵg(p− 1)

√
p∗

2n+sf+sg−3
, (p−1

2 )Sfg(j) times,

where the values Sfg(0) , Sfg(i) and Sfg(j) are computed in Lemma 3.12 for i ∈ SQ and j ∈ NSQ . This
completes the proof. 2

Remark 3.14 In Theorem 3.13, when we employ f, g ∈ WRPB in the set D for 1 ≤ sf , sg < n , we obtain
the same code CD .

The following examples for the code CD given in Theorem 3.13 are verified by MAGMA in [2].

Example 3.15 Let f, g : F32 → F3 be defined as f(x) = Tr2(ζx4 + ζ8x2) and g(x) = Tr2(x10), for a primitive
element ζ of F32 . Then f, g ∈ WRP with sf = 1, sg = 0 and ϵf = ϵg = 1 , and hence CD is the 3-weight
ternary [26, 4, 12] code with 1 + 12y12 + 62y18 + 6y24 .

Example 3.16 Let f, g : F33 → F3 be defined as f(x) = Tr3(x10) and g(x) = Tr3(ζx4 + ζ8x2) , for a primitive
element ζ of F33 . Then f, g ∈ WRP with sf = 0, sg = 1 and ϵf = ϵg = 1 , and hence CD is the 3-weight
minimal ternary [242, 6, 144] code with 1 + 90y144 + 566y162 + 72y180 . It is worth noting that this code is
better than the code [242, 6, 135]3 , which is obtained in [28, Example 6] only from quadratic weakly regular bent
f(x) = Tr3(x10) .

Theorem 3.17 Let f, g ∈ WRP and let lf , lg be defined as in Proposition 2.6. Let D be defined as in (3.7).
Suppose that 2n+ sf + sg is even with 0 ≤ sf , sg < n−1 . Then, the code CD of the form (3.2) with parameters

[p2n−1 − 1+ ϵf ϵg
1
p (p− 1)

√
p∗

2n+sf+sg , 2n] is the 3-weight and 4-weight linear code over Fp , respectively, when
lf = lg and lf ̸= lg for p > 3 . The weight distributions are given in Tables 4 and 5, where m = 2n+ sf + sg

and r = 2n− sf − sg .

Proof The length of the code CD follows from Lemma 3.7, and for every (a, b) ∈ (F2
q)

⋆ , the Hamming
weight WH(c(a,b)) = #D − ND(a, b) can be obtained from Lemmas 3.7 and 3.10. To be more precise, when
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Table 4. The code CD in Theorem 3.17 when m is even and lf = lg .

Hamming weight ω Multiplicity Aω

0 1

(p− 1)(p2n−2 + ϵf ϵg(p− 1)
√
p∗

m−4
) p2n − pr

(p− 1)p2n−2 pr−1 + ϵf ϵg
1
p (p− 1)

√
p∗

r − 1

(p− 1)(p2n−2 + ϵf ϵg
1
p

√
p∗

m
) (p− 1)(pr−1 − ϵf ϵg

1
p

√
p∗

r
)

Table 5. The code CD in Theorem 3.17 when p > 3 , m is even and lf ̸= lg .

Hamming weight ω Multiplicity Aω

0 1

(p− 1)(p2n−2 + ϵf ϵg(p− 1)
√
p∗

m−4
) p2n − pr

(p− 1)p2n−2 Aω1

(p− 1)p2n−2 + ϵf ϵg
(p−3)

p

√
p∗

m
Aω2

(p− 1)(p2n−2 + ϵf ϵg
1
p

√
p∗

m
) pr − 1−Aω1 −Aω2

(a, b) /∈ Sf × Sg , we have WH(c(a,b)) = (p − 1)(p2n−2 + ϵf ϵg(p − 1)
√
p∗

2n+sf+sg−4
) whose weight distribution

is p2n − p2n−sf−sg from Lemma 2.2. In addition, when (a, b) ∈ Sf × Sg , there are two distinct cases. When
lf = lg ,

WH(c(a,b)) =

{
(p− 1)p2n−2, Sfg(0)− 1 times,
(p− 1)(p2n−2 + ϵf ϵg

1
p

√
p∗

2n+sf+sg ), (p− 1)Sfg(t) times,

where Sfg(0) and Sfg(t) for t ∈ F⋆
p are computed in Lemma 3.12. When lf ̸= lg ,

WH(c(a,b)) =


(p− 1)p2n−2, Aω1 times,
(p− 1)p2n−2 + ϵf ϵg

(p−3)
p

√
p∗

2n+sf+sg , Aω2
times,

(p− 1)(p2n−2 + ϵf ϵg
1
p

√
p∗

2n+sf+sg ), p2n−sf−sg − 1−Aω1
−Aω2

times,

where
Aω1

= #{(a, b) ∈ Sf × Sg : f⋆(a) = g⋆(b) = 0} − 1 = Nf⋆(0) ∗ Ng⋆(0)− 1,

Aω2
= #{(a, b) ∈ S⋆

f × S⋆
g : − f⋆(a)

g⋆(b) ∈ SQ} = (p−1)2

2 Nf⋆(i) ∗ Ng⋆(j), for i, j ∈ SQ.

Here, the numbers Nf⋆(i) and Ng⋆(j) depend on the parity of sf and sg , and the weight distributions follow
from Lemma 2.5. This completes the proof. 2

We give an example for the code CD obtained in Theorem 3.17, verified by MAGMA in [2].

Example 3.18 Let f, g : F35 → F3 be defined as f(x) = Tr5(ζx10+ζ20x4) and g(x) = Tr5(ζx10+2x4+x2) , for
a primitive element ζ of F35 . Then f, g ∈ WRP with sf = sg = 1 , lf = lg = 2 , ϵf = 1 and ϵg = −1 . Hence,
CD is the 3-weight minimal ternary [19196, 10, 12636] code with 1 + 4428y12636 + 52488y12798 + 2132y13122 .

Remark 3.19 In Theorem 3.17, when f and g are two weakly regular 0-plateaued (bent) functions, we obtain
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2-weight and 3-weight linear codes when lf = lg and lf ̸= lg , respectively, which were already presented in [28,
Theorem 4].

Remark 3.20 The very special case of Theorem 3.17 has been independently proposed in [6, Theorem 4]. To
be more precise, when we assume sf = sg in Theorem 3.17, we get the code CDfg

proposed in [6, Theorem 4].

We lastly construct the code CD of the form (3.2) from weakly regular plateaued balanced functions.

Theorem 3.21 Let f, g ∈ WRPB and let lf , lg be defined as in Proposition 2.6. Let D be defined as in (3.7).
Suppose that 2n+ sf + sg is even with 1 ≤ sf , sg < n−1 . Then, the code CD of the form (3.2) with parameters
[p2n−1 − 1, 2n] is the 3-weight and 4-weight linear code over Fp , respectively, when lf = lg and lf ̸= lg . The
weight distributions are listed in Tables 6 and 7, where m = 2n+ sf + sg and r = 2n− sf − sg .

Table 6. The code CD in Theorem 3.21 when m is even and lf = lg .

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2n−2 p2n − pr − 1

(p− 1)(p2n−2 − ϵf ϵg(p− 1)
√
p∗

m−4
) pr−1 + ϵf ϵg

1
p (p− 1)

√
p∗

r

(p− 1)(p2n−2 + ϵf ϵg
√
p∗

m−4
) (p− 1)(pr−1 − ϵf ϵg

1
p

√
p∗

r
)

Table 7. The code CD in Theorem 3.21 when m is even and lf ̸= lg .

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2n−2 p2n − pr − 1

(p− 1)(p2n−2 − ϵf ϵg(p− 1)
√
p∗

m−4
) Aω1

(p− 1)p2n−2 − ϵf ϵg(p+ 1)
√
p∗

m−4
Aω2

(p− 1)(p2n−2 + ϵf ϵg
√
p∗

m−4
) pr −Aω1

−Aω2

Proof For every (a, b) ∈ (F2
q)

⋆ , WH(c(a,b)) = #D − ND(a, b) can be obtained from Lemmas 3.7 and 3.11.
To be more precise, when (a, b) /∈ Sf × Sg , we have WH(c(a,b)) = p2n−2(p − 1) whose weight distribution is
p2n − p2n−sf−sg − 1 from Lemma 2.2. In addition, when (a, b) ∈ Sf × Sg , there are two distinct cases. For
lf = lg , we have

WH(c(a,b)) =

{
(p− 1)p2n−2 − ϵf ϵg(p− 1)2

√
p∗

2n+sf+sg−4
, if f⋆(a) + g⋆(b) = 0,

(p− 1)p2n−2 + ϵf ϵg(p− 1)
√
p∗

2n+sf+sg−4
, otherwise,

whose weight distribution can be determined from Lemma 3.12. For lf ̸= lg , we have

WH(c(a,b)) =


(p− 1)p2n−2 − ϵf ϵg(p− 1)2

√
p∗

2n+sf+sg−4
, Aω1 times,

(p− 1)p2n−2 − ϵf ϵg(p+ 1)
√
p∗

2n+sf+sg−4
, Aω2

times,
(p− 1)p2n−2 + ϵf ϵg(p− 1)

√
p∗

2n+sf+sg−4
p2n−sf−sg −Aω1

−Aω2
times,
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where we define that Aω1 = #{(a, b) ∈ Sf × Sg : f⋆(a) = g⋆(b) = 0} = Nf⋆(0) ∗ Ng⋆(0) and Aω2 = #{(a, b) ∈

Sf × Sg : − f⋆(a)
g⋆(b) ∈ SQ} = (p−1)2

2 Nf⋆(i) ∗ Ng⋆(j) for i, j ∈ SQ . In this case, the weight distribution follows

from Lemma 2.5. Hence, the proof is completed. 2

3.4. Three-weight punctured codes
In this subsection, we derive shorter linear codes from the constructed codes by using a special subset of the
defining set D . Such a code is said to be a punctured code of the original code. It is known that the minimum
distance and length of a punctured code are rather smaller than the original code, while its dimension is the
same as the original code.

We deal with the code CD of the form (3.2) for the defining set D of the form (3.7). In Theorems
3.13, 3.17 and 3.21, when lf = lg , the length of CD and Hamming weights in CD have a common factor
(p − 1) , which suggests that CD can be punctured into a shorter linear code over Fp . Let f, g ∈ WRP or
WRPB with kf = kg . For every x, y ∈ Fq , f(cx) + g(cy) = 0 iff f(x) + g(y) = 0 for every c ∈ F⋆

p because

f(cx)+g(cy) = ckf (f(x)+g(y)) . We can then choose a subset D of the set D such that
∪

c∈F⋆
p
cD is a partition

of D :
D = F⋆

pD = {c(x, y) : c ∈ F⋆
p and (x, y) ∈ D}.

Thus, CD can be punctured into a shorter one CD based on the defining set D . Since #D = (p − 1)#D , the
length and Hamming weights of the punctured code CD can be derived from that of CD by dividing by (p− 1) .

We introduce the parameters of the punctured codes in the following corollaries.

Corollary 3.22 Let f, g ∈ WRP with lf = lg and kf = kg . Let CD be the 3-weight code proposed in Theorem
3.13. Then, its punctured code CD with parameters [(p2n−1 − 1)/(p − 1), 2n, p2n−2 − √

p2n+sf+sg−3] is the
3-weight linear code with weight distribution listed in Table 8.

Table 8. The code CD in Corollary 3.22 when m is odd and kf = kg .

Hamming weight ω Multiplicity Aω

0 1

p2n−2 p2n − pr + pr−1 − 1

p2n−2 − ϵf ϵg
√
p∗

m−3 (p−1)
2 (pr−1 + ϵf ϵgη0(−1) 1p

√
p∗

r+1
)

p2n−2 + ϵf ϵg
√
p∗

m−3 (p−1)
2 (pr−1 − ϵf ϵgη0(−1) 1p

√
p∗

r+1
)

As examples, we give the following punctured codes, which are almost optimal.

Example 3.23 The punctured code CD of the code given in Example 3.15 is the 3-weight ternary [13, 4, 6] code
with 1 + 12y6 + 62y9 + 6y12 . This punctured code is almost optimal ternary code because the best ternary code
with length 13 and dimension 4 has d = 7 according to the online Database of Grassl [13].

Example 3.24 The punctured code CD of the code given in Example 3.16 is the 3-weight ternary [121, 6, 72]

minimal code with 1 + 90y72 + 566y81 + 72y90 . Note that d = 78 for the best ternary code with length 121 and
dimension 6 in [13].
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Corollary 3.25 Let f, g ∈ WRP with kf = kg and lf = lg . Let CD be the 3-weight code proposed in Theorem

3.17. Then, its punctured code CD with parameters [(p2n−1−1)/(p−1)+ϵf ϵg
1
p

√
p∗

2n+sf+sg , 2n] is the 3-weight
linear code with weight distribution listed in Table 9.

Table 9. The code CD in Corollary 3.25 when m is even, kf = kg and lf = lg .

Hamming weight ω Multiplicity Aω

0 1

p2n−2 + ϵf ϵg(p− 1)
√
p∗

m−4
p2n − pr

p2n−2 pr−1 + ϵf ϵg
1
p (p− 1)

√
p∗

r − 1

p2n−2 + ϵf ϵg
1
p

√
p∗

m
(p− 1)(pr−1 − ϵf ϵg

1
p

√
p∗

r
)

Corollary 3.26 Let f, g ∈ WRPB with kf = kg and lf = lg . Let CD be the 3-weight code proposed in
Theorem 3.21. Then, its punctured code CD with parameters [(p2n−1 − 1)/(p − 1), 2n] is the 3-weight linear
code with weight distribution listed in Table 10.

Table 10. The code CD in Corollary 3.26 when m is even, kf = kg and lf = lg .

Hamming weight ω Multiplicity Aω

0 1

p2n−2 p2n − pr − 1

p2n−2 − ϵf ϵg(p− 1)
√
p∗

m−4
pr−1 + ϵf ϵg

1
p (p− 1)

√
p∗

r

p2n−2 + ϵf ϵg
√
p∗

m−4
(p− 1)(pr−1 − ϵf ϵg

1
p

√
p∗

r
)

3.5. Minimality of the constructed codes
In this subsection, we show that the constructed codes are minimal and investigate the minimum Hamming
distances of their dual codes.

A linear code C is minimal if every nonzero codeword v in C covers only the codewords jv for all j ∈ Fp .
The following lemma introduces the well-known sufficient condition on the minimal codes.

Lemma 3.27 (Ashikhmin-Barg) [1] Let C be a linear code over Fp and let wmin and wmax represent,
respectively, the minimum and maximum Hamming weights of C . Then, C is minimal if

p− 1

p
<

wmin

wmax
. (3.9)

By (3.9), our linear codes are minimal codes for almost all integers sf and sg with 0 ≤ sf , sg < n . The
following proposition gives the bounds on the integers sf and sg that make the associated codes are minimal.

Proposition 3.28 We have the following bounds on the parameters.
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i.) The code CD in Theorem 3.4 is minimal for 0 ≤ sg ≤ n − 4 if n + sg is even; otherwise, it is minimal
for 0 ≤ sg ≤ n− 3 and 4 ≤ n .

ii.) The code CD in Theorem 3.13 is minimal when 0 ≤ sf + sg ≤ 2n− 4 and 3 ≤ n .

iii.) The codes CD proposed in both Theorems 3.17 and 3.21 are minimal for 0 ≤ sf + sg ≤ 2n− 4 if we have

ϵf ϵgη
(2n+sf+sg)/2
0 (−1) = 1 ; otherwise, they are minimal for 0 ≤ sf + sg ≤ 2n− 6 .

Remark 3.29 Our punctured codes are minimal for almost all cases.

Since our codes are minimal, we can describe the access structures of the secret sharing schemes based on their
dual codes as described in [4, Theorem 17]. We first consider the minimum distances d⊥ of the dual codes of
our minimal codes.

For the codes CD constructed in Theorems 3.4, 3.13, 3.17 and 3.21, their dual codes C⊥
D have d⊥ = 2

due to the fact that two entries of each codeword in CD are linearly dependent iff the minimum distance d⊥ of
C⊥
D is equal to 2 . This suggests that these minimal codes can be used to design high democratic secret sharing

schemes with good access structures as introduced in [4, Theorem 17] (and developed in [10, Proposition 2]). On
the other hand, for the punctured codes CD given in Corollaries 3.22, 3.25 and 3.26, the minimum distances of
their dual codes are at least 3 since no two of the vectors are dependent. This means that the punctured codes
are projective minimal codes. The proposed projective 3 -weight codes can be employed to design association
schemes introduced in [3]. Additionally, they can be employed to design democratic secret sharing schemes as
introduced in [4, Theorem 17].

4. Conclusion
In this paper, motivated by the works of [14, 17, 28], to construct minimal codes, we consider weakly regular
plateaued functions in the recent construction method of linear codes. In conclusion, the main results of the
paper can be summarized as follows.

• We construct new infinite classes of 3 -weight and 4 -weight linear codes from the classes WRP and WRPB
of plateaued functions over Fp . To find the Hamming weights of nonzero codewords, we benefit from the
exponential sums and Walsh spectrum of the employed functions. To determine the weight distributions
of the proposed codes, we use the exponential sums and Walsh distributions of functions f, g as well as
the sizes of the pre-image sets of the associated functions f⋆ and g⋆ on the Walsh supports Sf and Sg .

• We derive 3 -weight punctured codes from the constructed codes, by deleting some special coordinates in
the defining set. Note that they contain almost optimal codes due to the Griesmer bound.

• We show that our obtained codes are minimal, which says that they can be used to design high democratic
secret sharing schemes with new parameters under the framework introduced in [10, Proposition 2].

• We lastly consider the minimum distances of the dual codes of our minimal codes. We conclude that the
proposed 3 -weight punctured codes are projective, and, hence, they can be used to design association
schemes in [3].
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