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Abstract: In multiplicative fractional calculus, the well-known Dirac system in fractional calculus is redefined. The aim
of this study is to analyze some spectral properties such as self-adjointness of the operator, structure of all eigenvalues,
orthogonality of distinct eigenfunctions, etc. for this system. Moreover, Green’s function in multiplicative case is
reconstructed for this system.
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1. Introduction
This study is organized as follows:

In the present section, we’ll introduce a multiplicative conformable fractional (CF) Dirac (α− ∗Dirac)
system. Then, we research some studies closely related to the present system,

In Section 2, we’ll give some basic definitions and properties of the multiplicative calculus, the CF calculus
theory, and multiplicative CF calculus,

In Section 3, we’ll calculate asymptotic estimates of the ∗ eigenfunctions of α− ∗Dirac system,
In Section 4, we’ll investigate some spectral properties as self-adjointness of operator, the structure of all

eigenvalues, orthogonality of distinct eigenfunctions for α− ∗Dirac system,
In Section 5, we’ll reconstruct the Green’s function of this system.

Consider the following α− ∗Dirac system

(B ⊙ τy(t))⊕ (Q(t)⊙ y(t)) = eλ ⊙ y(t), t ∈ [a, b], (1.1)

with the conditions
U1(y) := (ec1 ⊙ y(a))⊕ (ec2 ⊙ τy(a)) = 1, (1.2)

U2(y) :=
(
ed1 ⊙ y(b)

)
⊕

(
ed2 ⊙ τy(b)

)
= 1, (1.3)

where λ is a spectral parameter; q(t) , r(t) are real-valued continuous and multiplicative CF integrable functions

∗Correspondence: emrah231983@gmail.com
2010 AMS Mathematics Subject Classification: 11N05, 26A33, 34A08, 34L05, 34L40.

This work is licensed under a Creative Commons Attribution 4.0 International License.
973

https://orcid.org/0000-0001-7842-6309
https://orcid.org/0000-0002-7664-1467
https://orcid.org/0000-0002-7822-9193


GÖKTAŞ et al./Turk J Math

on [a, b] ;
(
c21 + c22

) (
d21 + d22

)
̸= 0 , ci, di ∈ R (i = 1, 2) and

B =

[
1 e
e−1 1

]
, Q(t) =

[
eq(t) 1
1 er(t)

]
.

Throughout this study, τ · denotes ∗Tα· = d∗α·
d∗αt

(the multiplicative CF derivative of order α ∈ (0, 1] on t) for

brevity.
For the above system,

y(t, λ) =
[
y1(t, λ) y2(t, λ)

]T

is the ∗ eigenfunction of the system (1.1)-(1.3) corresponding to the ∗ eigenvalue λ , where T denotes transpose
of the matrix and yj , j = 1, 2 are continuous and positive functions. If we simplify this system by using the
properties of multiplicative CF calculus [2], following multiplicative system is obtained:

Dα [y] = eλ ⊙ y =
[
yλ1 y−λ2

]T
, (1.4)

with the conditions
U1(y) = yc11 (a) yc22 (a) = 1,

U2(y) = yd11 (b) yd22 (b) = 1,
(1.5)

where

Dα [y] =

{
τy2 y

q(t)
1 ,

τy1 y
−r(t)
2 .

Let’s start with the necessity of developing and applying multiplicative (geometric) fractional calculus
by reminding the importance of the polar coordinates while cartesian coordinates already exist. Furthermore,
the theory of multiplicative fractional calculus is a combination of both fractional and multiplicative theories.
Therefore, it is necessary to examine these two theories separately.

Firstly, let’s consider the fractional calculus theory. Fractional calculus encountered in different fields
of engineering and science extensively with a variety of applications[13, 34, 37, 39, 42] defines a generalization
of classical calculus. Almost all fractional derivatives such as Grünwald–Letnikov, Riemann–Liouville, Caputo
and Jumarie, Marchaud and Riesz used in the literature fail to satisfy some fundamental properties. Thus, we
prefer CF derivative in the present study. It can be found fundamental properties and main results in [1, 33]
and other results in[7, 15, 16, 36–38, 40, 45] on conformable fractional derivative.

Secondly, let’s consider the multiplicative calculus theory. Multiplicative calculus was firstly presented as
an alternative to usual calculus by Grossman and Katz [25, 26]. This is also entitled simultaneously Geometric
calculus which is one of sub-branches of non-Newtonian calculus. Afterwards, the basic features of multiplicative
calculus were explained by many authors, and important results were obtained [10, 11, 17, 43]. This calculus
changes the roles of known operations such as multiplication instead of addition, division instead of subtraction
due to the properties of the logarithm. It develops additive calculations circuitously. Although it has a relatively
restrictive (includes only positive functions) applications compared to calculus of Newton and Leibnitz. Some
difficult problems in usual calculus may be arranged incredibly easily here. In the usual calculus, each feature
may be redefined in multiplicative calculus by specific rules.
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Many phenomena where the logarithmic scale appears are given by means of multiplicative derivatives.
Therefore, considering multiplicative calculus in place of usual calculus lets better physical appraisal for these
events. This calculus yields better outcomes than the usual case in numerous fields as applied mathematics[24,
46–50] biology[9]; chaos theory[5, 6]; demography, earthquakes[14]; engineering[12]; economics[18, 21]; business[41]
and medicine[22].

Finally, we refer to study [2] that encourages us and from which the main concepts of the multiplicative
fractional calculus are set. Here, it has been defined Caputo, Riemann, Letnikov, and conformable multiplicative
fractional derivatives and multiplicative fractional integrals and have been studied some of their properties.

In recent years, since it appears in solving many problems of natural, engineering, physics, and the
social sciences in a natural manner, Dirac system theory as an attractive field of research has been received
considerable attention [3, 8, 19, 20, 23, 30, 32, 35, 44]. When we take into account the form of the system (1.1)-
(1.3), α− ∗Dirac system is obtained by replacing the multiplicative CF derivative with the fractional derivative.
This method has been similarly applied by replacing the fractional derivative with the derivatives such as usual,
delta, etc. by many authors [4, 27, 38].

2. Preliminaries
Here, we give some basic definitions and features of CF calculus, multiplicative and multiplicative CF theories
that we’ll use for the rest of present study.

First of all, let’s focus on some of arithmetic operations we used throughout the study. The arithmetic
operations occurred by exp-functions are known as multiplicative algebraic operations. Let’s denote some
features of these operations with below arithmetic table, where p, r ∈ R+ :

p⊕ r = p r, p⊖ r =
p

r
, p⊙ r = pln r = rln p, p2G = p⊙ p = pln p.

Above operations construct several algebraic structures. If ⊕ : E × E → E is an operation for E ̸= ∅
and E ⊂ R+, (E,⊕) is a ∗group. Analogously, (E,⊕,⊙) defines a ring in multiplicative sense [31].

Definition 2.1 [1, 33] Let f : [a,∞) → R . Then, left and right CF derivatives of f order α ∈ (0, 1] are
defined by:

T aαf(t) := lim
h→0

f(t+ h(t− a)1−α)− f(t)

h
,

b
αTf(t) := − lim

h→0

f(t+ h(b− t)1−α)− f(t)

h
,

respectively.

When a = 0 , the left CF derivative can be written as Tα . If f is usual differentiable, then Tαf(t) = t1−αf ′(t) .

Definition 2.2 [1, 33] Let f : [a,∞) → R . Then, left and right CF integrals of f order α ∈ (0, 1] are defined
by:

Iaαf(t) :=

t∫
a

f(x)dα(x, a) =

t∫
a

(x− a)α−1f(x)dx,
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bIαf(t) :=

b∫
t

f(x)dα(b, x) =

b∫
t

(b− x)α−1f(x)dx,

respectively for t > 0 . Where, the last integrals to the right of these equalities are the usual Riemann integrals.

When a = 0 , the left CF integral can be written as Iα and dα(x, a) = dαx .

Definition 2.3 [2] Let f : R → R+ . Then, forward and backward multiplicative derivatives of f(t) are defined
by:

d∗

dt∗
f(t) = f∗(t) := lim

h→0

(
f(t+ h)

f(t)

) 1
h

,

d∗
dt∗

f(t) = f∗(t) := lim
h→0

(
f(t)

f(t− h)

) 1
h

,

respectively.

It can be easily shown that

f∗(n)(t) = f∗
(n)(t) = exp

(
dn

dxn
ln f(t)

)
.

Definition 2.4 [2] Let f : [a, b] → R+ . Then, forward and backward multiplicative integrals of f(t) are defined
by:

b∫
a

f(t)dt =

b∫
a

f(t)dt = exp

 b∫
a

ln f(t)dt

 .

Definition 2.5 [2] Let f : [a, b] → R+ . Then, left and right side multiplicative CF derivatives of f order
α ∈ (0, 1] are defined by:

∗T aαf(t) := lim
h→0

(
f(t+ h(t− a)1−α)

f(t)

) 1
h

,

b
αT

∗f(t) := lim
h→0

(
f(t+ h(b− t)1−α)

f(t)

)− 1
h

,

respectively.

Proposition 2.6 [2] Let f : [a, b] → R+ and α ∈ (0, 1] . Then,

(i) ∗T aαf(t) = exp {T aα ln f(t)} = exp

{
T aαf(t)

f(t)

}
, (2.1)

(ii) b
αT

∗f(t) = exp
{
b
αT ln f(t)

}
= exp

{
b
αTf(t)

f(t)

}
.
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Definition 2.7 [2] Let f : [a, b] → R+ . Then, left and right side multiplicative CF integrals of f order
α ∈ (0, 1] are defined by:

(∗Iaαf)(t) : =

t∫
a

f(x)d∗α(x,a) = exp


t∫
a

ln f(x)dα(x, a)


=

t∫
a

f(x)
(x−a)α−1

dx = exp


t∫
a

(x− a)α−1 ln f(x)dx

 ,

(2.2)

(bαI
∗f)(t) : =

b∫
t

f(x)d∗α(b,x) = exp


b∫
t

ln f(x)dα(b, x)


=

b∫
t

f(x)
(b−x)α−1

dx = exp


b∫
t

(b− x)α−1 ln f(x)dx

 ,

respectively for t > 0 , where last integrals to the right of these equalities are usual Riemann integrals.

When a = 0 , the left multiplicative CF integral can be written as ∗Iα , and d∗α(x, a) = d∗αx .

Proposition 2.8 [2] Let f : [a, b] → R+ and α ∈ (0, 1] . Then,

(i) (∗T aα
∗Iaαf)(t) = f(t), if f is continuous,

(ii) (bαT
∗ b
αI

∗f)(t) = f(t), if f is continuous,

(iii) (∗Iaα
∗T aαf)(t) =

f(t)

f(a)
, (2.3)

(iv) (bαI
∗ b
αT

∗f)(t) =
f(t)

f(b)
.

Theorem 2.9 Let f, g : [0, b] → R+ be left multiplicative CF differentiable of order α ∈ (0, 1] and h be CF
differentiable order α ∈ (0, 1] at t . Then,

(i) τ (cf) (t) = τf(t),

(ii) τ (fg) (t) = τf(t) τg(t),

(iii) τ

(
f

g

)
(t) =

τf(t)

τg(t)
,

(iv) τ
(
fh

)
(t) = {τf(t)}h(t) f(t)Tαh(t), (2.4)

(v) τ (f ◦ h) (t) = {(τf) (h(t))}Tαh(t)h(t)
α−1

,

(vi) τ (f + g) (t) = [τf(t)]
f(t)

f(t)+g(t) [τg(t)]
g(t)

f(t)+g(t) ,

where c is a positive constant.
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Proof From [1, 33], all of the rules can be easily proved. For example, from (2.1) and

Tα(fg)(t) = g(t)Tαf(t) + f(t)Tαg(t),

we obtain

τ (fg) (t) = exp

{
Tα(fg)(t)

(fg)(t)

}
= exp

{
g(t)Tαf(t) + f(t)Tαg(t)

f(t)g(t)

}
= exp

{
Tαf(t)

f(t)

}
exp

{
Tαg(t)

g(t)

}
= τf(t) τg(t).

In addition, (2.1) and

Tα(f ◦ h)(t) = Tαf(h(t))Tαh(t)h(t)
α−1

,

yields

τ (f ◦ h) (t) = exp

{
Tα(f ◦ h)(t)
(f ◦ h)(t)

}
= exp

{
Tαf(h(t))Tαh(t)h(t)

α−1

f(h(t))

}

=

{
exp

{
Tαf(h(t))

f(h(t))

}}{Tαh(t)h(t)
α−1}

= {(τf) (h(t))}Tαh(t)h(t)
α−1

.

2

Theorem 2.10 Let f, g : [0, b] → R+ be left multiplicative CF integrable of order α ∈ (0, 1] at t . Then,

(i)
b∫

0

[f(t)]
k
d∗αt

=

 b∫
0

f(t)d∗αt

k ,
(ii)

b∫
0

[f(t)g(t)]d∗αt =

b∫
0

f(t)d∗αt

b∫
0

g(t)d∗αt,

(iii)
b∫

0

[
f(t)

g(t)

]
d∗αt

=

b∫
0

f(t)d∗αt

b∫
0

g(t)d∗αt

(iv)
b∫

0

f(t)d∗αt =

c∫
0

f(t)d∗αt

b∫
c

f(t)d∗αt,

(v)
b∫

0

[τf(t)]
g(t)
d∗αt

=
f(b)g(b)

f(0)g(0)


b∫

0

f(t)
Tαg(t)
d∗αt


−1

, (2.5)

where k ∈ R and c ∈ [a, b] is a positive constant. The last formula is called α− ∗ integration by parts formula.

Proof We only prove (ii) and (v). The proofs of (i), (iii) and (iv) are similar.

978



GÖKTAŞ et al./Turk J Math

From (2.2) and the features of multiplicative derivative, we get

b∫
0

[f(t)g(t)]d∗αt
=

b∫
0

[f(t)g(t)]
tα−1

dt

=

b∫
0

[f(t)]
tα−1

dt

b∫
0

[g(t)]
tα−1

dt =

b∫
0

f(t)d∗αt

b∫
0

g(t)d∗αt.

On the other hand, after applying multiplicative CF integral to both sides of the equality (2.4) and
considering (ii), we arrive at

b∫
0

[τfg(t)]d∗αt
=

b∫
0

[τf(t)]
g(t)
d∗αt

b∫
0

f(t)
Tαg(t)
d∗αt

.

Finally, since
b∫
0

[τfg(t)]d∗αt =
f(b)g(b)

f(0)g(0)
by (2.3), we complete the proof. 2

Definition 2.11 Let f : [0, b] → R+ and α ∈ (0, 1] .

∗L2
α[0, b] =

f :

b∫
0

[f(t)⊙ f(t)]d∗αt <∞


is an ∗ inner product space with

<,>∗:
∗L2

α[0, b]× ∗L2
α[0, b] → R+,

< f, h >∗=

b∫
0

[f(t)⊙ h(t)]d∗αt ,

where f, h ∈ ∗L2
α[0, b] are positive functions.

Definition 2.12 For an arbitrary multiplicative square matrix B =
[
ebij

]
n×n , let {λi}ki=1 be set of distinct

∗ eigenvalues of B . The ∗ characteristic polynomial of B , denoted ∆(λ) , can be written in the factorized form

∆(λ) = det
(
B ⊖

{
eλi ⊙ I

})
= e(λ1−λ)m1 ⊙ e(λ2−λ)m2 ⊙ · · · ⊙ e(λk−λ)mk

with m1 +m2 + · · · +mk = m . When ∆(λ) = 1 , the exponent mi , corresponding to each eigenvalue λi , is
called the algebraic ∗multiplicity of λi . Moreover, dimension of the null space of B ⊖

{
eλi ⊙ I

}
is called the

geometric ∗multiplicity of λi . If mi = 1 for some i ∈ 1, k , then λi is said to be a simple eigenvalue of B (see
[29] for examples).

Remark 2.13 Let λ0 be a root of the ∗ characteristic polynomial ∆(λ) . We say that is a root of the algebraic
∗multiplicity l if ∆(λ0) = 1 , ∗Tα∆(λ0) = 1 , ∗(2)Tα∆(λ0) = 1 , . . . ,∗(l−1)Tα∆(λ0) = 1 but ∗(l)Tα∆(λ0) ̸= 1 .
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3. Asymptotic estimates of ∗Eigenfunctions

Theorem 3.1 ∗ eigenfunctions of the system (1.1)-(1.3) have below asymptotic estimates

y1(t, λ) = [y1(0)]
cos(λ tα

α ) [y2(0)]
− sin(λ tα

α )
t∫

0

[(
y
q(s)
1

)sin{λ( tα

α − sα

α )} (
y
r(s)
2

)cos{λ( tα

α − sα

α )}
]
d∗αs

, (3.1)

y2(t, λ) = [y1(0)]
sin(λ tα

α ) [y2(0)]
cos(λ tα

α )
t∫

0

[(
y
q(s)
1

)− cos{λ( tα

α − sα

α )} (
y
r(s)
2

)sin{λ( tα

α − sα

α )}
]
d∗αs

, (3.2)

where y(t, λ) =
[
y1(t, λ) y2(t, λ)

]T
.

Proof By the given α− ∗Dirac system,

t∫
0

[(
y
q(s)
1

)sin{λ( tα

α − sα

α )} (
y
r(s)
2

)cos{λ( tα

α − sα

α )}
]
d∗αs

=

t∫
0

[(
yλ1 {τy2}−1

)sin{λ( tα

α − sα

α )} (
yλ2 τy1

)cos{λ( tα

α − sα

α )}
]
d∗αs

=

t∫
0

[τy2]
− sin{λ( tα

α − sα

α )}
d∗αs

t∫
0

[τy1]
cos{λ( tα

α − sα

α )}
d∗αs

t∫
0

[
y
λsin{λ( tα

α − sα

α )}
1

]
d∗αs

t∫
0

[
y
λcos{λ( tα

α − sα

α )}
2

]
d∗αs

.

(3.3)

If α− ∗ integration by parts formula (2.5) is applied to first two multiplier in the right side of last equality, it
yields that

t∫
0

[τy2]
− sin{λ( tα

α − sα

α )}
d∗αs

= [y2(0)]
sin(λ tα

α )


t∫

0

y2
Tα(sin{λ( tα

α − sα

α )})
d∗αs

 , (3.4)

t∫
0

[τy1]
cos{λ( tα

α − sα

α )}
d∗αs

= y1(t) [y1(0)]
− cos(λ tα

α )


t∫

0

y1
Tα(cos{λ( tα

α − sα

α )})
d∗αs


−1

. (3.5)

By considering (3.4) and (3.5) with the properties Tαf(s) = s1−αf ′(s) in (3.3), we get

t∫
0

[(
y
q(s)
1

)sin{λ( tα

α − sα

α )} (
y
r(s)
2

)cos{λ( tα

α − sα

α )}
]
d∗αs

= [y2(0)]
sin(λ tα

α ) y1(t) [y1(0)]
− cos(λ tα

α ) .

The asymptotic estimates (3.1) is obtained. Similarly, the asymptotic estimates (3.2) can be obtained in the
same way. It completes the proof. 2
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4. Some spectral properties of α− ∗Dirac system
In here, we examine some properties of α− ∗Dirac system such as reality, simplicity, orthogonality and self-
adjointness.

Lemma 4.1 (α− ∗Lagrange Identity) Let u, v ∈ ∗L2
α[0, b] . Then

(Dα [u]⊙ v)⊖ (u⊙ Dα [v]) = τ {[u, v]t} ,

where u = u(t, λ) =
[
u1(t, λ) u2(t, λ)

]T , v = v(t, λ) =
[
v1(t, λ) v2(t, λ)

]T and

[u, v]t = (u2 ⊙ v1)⊖ (u1 ⊙ v2) . (4.1)

Proof From (1.4), we arrive at

(Dα [u]⊙ v)⊖ (u⊙ Dα [v]) =
{(
τu2 u

q(t)
1 ⊙ v1

)
⊕
(
τu1 u

−r(t)
2 ⊙ v2

)}
⊖
{(
τv2 v

q(t)
1 ⊙ u1

)
⊕

(
τv1 v

−r(t)
2 ⊙ u2

)}
= {(τu2 ⊙ v1)⊖ (τu1 ⊙ v2)} ⊕ {(τv1 ⊙ u2)⊖ (τv2 ⊙ u1)}

= τ {(u2 ⊙ v1)⊖ (u1 ⊙ v2)}

which proves the result. 2

Lemma 4.2 (α− ∗Green’s Formula) Let u, v ∈ ∗L2
α[0, b] . Then

b∫
0

[(Dα [u]⊙ v)⊖ (u⊙ Dα [v])]d∗αt = [u, v]t

∣∣∣∣b
0

, (4.2)

where u = u(t, λ) =
[
u1(t, λ) u2(t, λ)

]T , v = v(t, λ) =
[
v1(t, λ) v2(t, λ)

]T .

Proof The proof is easily proved by multiplicative CF integral on [0, b] for both sides of α− ∗Lagrange Identity
formula. 2

Theorem 4.3 α− ∗Dirac operator Dα in (1.1) is formally self-adjoint on ∗L2
α[0, b] .

Proof From the boundary conditions (1.2), we arrive at

[u, v]b = (u2(b)⊙ v1(b))⊖ (u1(b)⊙ v2(b)) =

(
u

−d1
d2

1 (b)⊙ v1(b)

)
⊖
(
v

−d1
d2

1 (b)⊙ u1(b)

)
= 1.

Similarly, from (1.3), we have [u, v]0 = 1 . So, by (4.2), we obtain

b∫
0

[(Dα [u]⊙ v)⊖ (u⊙ Dα [v])]d∗αt = 1

or
< Dα [u] , v >∗=< u,Dα [v] >∗, (4.3)

which proves the theorem. 2
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Theorem 4.4 All eigenvalues of α− ∗Dirac system (1.1)-(1.3) are real.

Proof Let λ be an eigenvalue with an eigenfunction u = u(t, λ) . Then,

< Dα [u] , u >∗=< eλ ⊙ u, u >∗= eλ⊙ < u, u >∗ (4.4)

and

< u,Dα [u] >∗=< u, eλ ⊙ u >∗= eλ̄⊙ < u, u >∗ . (4.5)

From (4.3)-(4.5), we arrive at

eλ⊙ < u, u >∗= eλ̄⊙ < u, u >∗ or < u, u >λ−λ̄∗ = 1.

Since u(t) ̸= 1 , we get λ = λ̄ . It completes the proof. 2

Theorem 4.5 ∗ eigenfunctions u = u(t, λ) =
[
u1(t) u2(t)

]T and v = v(t, µ) =
[
v1(t) v2(t)

]T corre-
sponding to the distinct eigenvalues λ and µ are orthogonal, i.e.

b∫
0

[
uT (t, λ)⊙ v(t, µ)

]
d∗αt

= 1.

Proof If Dα [u] = eλ⊙u and Dα [v] = eλ⊙ v from (1.4) is taken into account in the equality (4.3), we arrive
at

< eλ ⊙ u, v >∗=< u, eλ ⊙ v >∗ or < u, v >λ−µ∗ = 1.

Since λ ̸= µ , < u, v >∗= 1 . Namely, we obtain that u(t) and v(t) are orthogonal. 2

Let u = u(t, λ) =
[
u1(t) u2(t)

]T and v = v(t, µ) =
[
v1(t) v2(t)

]T . Then, we define α− ∗Wronskian
of u(t) and v(t) by the formula (4.1).

Theorem 4.6 α− ∗Wronskian of any solution for equation (1.1) is independent of t .

Proof Let u(t) and v(t) be two solutions the equation (1.1). From (4.2) and Dα [u] = eλ ⊙ u and
Dα [v̄] = eλ̄ ⊙ v̄ , we arrive at

t∫
0

[
uT (x, λ)⊙ v(x, µ)

]λ−λ̄
d∗αt

=
u [u, v̄]t
u [u, v̄]0

.

On the other hand, since λ = λ̄ (from Theorem 4.4) and [u, v̄]0 = 1 , then ∗Wα (u, v) (t) = [u, v]t = 1 , i.e.,
α− ∗Wronskian is independent of t . 2

Theorem 4.7 Any two solutions of equation (1.1) are multiplicative linearly dependent iff their α− ∗Wronskian
is one.
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Proof Let u(t) and v(t) be two multiplicative linearly dependent solutions the equation (1.1). Then, there
exists a constant c ̸= 1 where u(t) = v(t)c [48]. Hence,

∗Wα (u, v) (t) = [u, v]t = (u2(t)⊙ v1(t))⊖ (u1(t)⊙ v2(t)) = (v2(t)
c ⊙ v1(t))⊖ (v1(t)

c ⊙ v2(t)) = 1.

Conversely, ∗Wα (u, v) (t) = (u, v) (t) = 1 , and therefore, u(t) = v(t)c , i.e., u(t) and v(t) be two multiplicative
linearly dependent. 2

Lemma 4.8 All ∗ eigenvalues of α− ∗Dirac system (1.1)-(1.3) are simple from the geometric point of view.

Proof Let µ be an eigenvalue for ∗ eigenfunctions u(t) and v(t) .
By the condition (1.2), we get ∗Wα (u, v) (0) = [u, v]0 = 1 , then the set {u(t), v(t)} is linearly dependent.

Consequently, one ∗ eigenfunction corresponds to one ∗ eigenvalue. 2

Theorem 4.9 All ∗ eigenvalues of α− ∗Dirac system (1.1)-(1.3) are simple.

Proof Since φ(t) = φ(t, λ) satisfies boundary conditions (1.2), to determine ∗ eigenvalues of the system,
φ1(t, λ) , φ2(t, λ) should be substituted in boundary condition (1.3), and its roots should be determined. Put

V (λ) = φd11 (b)φd22 (b).

Then,
ηV (λ) = ηφd11 (b) ηφd22 (b),

where η· denotes ∂∗
α·

∂∗
αλ

(partial multiplicative conformable derivative of order α ∈ (0, 1] on λ) for brevity.

Let λ̃ be a double ∗ eigenvalue, and φ̃(t) = φ̃(t, λ̃) be one of the corresponding ∗ eigenfunctions. Then,

V (λ̃) = 1, ηV (λ̃) = 1

should be fulfilled simultaneously, i.e.,
φ̃d11 (b) φ̃d22 (b) = 1,

ηφ̃d11 (b) ηφ̃d22 (b) = 1.

Since
(
d21 + d22

)
̸= 0 , it follows from the last two equalities that

ln φ̃1(b) ln ηφ̃2(b)− ln φ̃2(b) ln ηφ̃1(b) = 0. (4.6)

By the multiplicative CF differentiating with respect to λ both sides of the system (1.4), we have

τ(ηy2) (ηy1)
q(t)−λ = yλ

1−α

1 ,

τ(ηy1) (ηy2)
λ−r(t) = y−λ

1−α

2 .
(4.7)

After using the natural logarithm of the equations in the system (1.4), multiplying by ln ηy1 , − ln ηy2 ,
respectively, we arrive at

ln τy2 ln ηy1 + (q(t)− λ) ln y1 ln ηy1 = 0,
− ln τy1 ln ηy2 + (r(t)− λ) ln y2 ln ηy2 = 0.

(4.8)
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On the other hand, after using the natural logarithm of the equations in the system (4.7), multiplying
by − ln y1 , ln y2 , respectively, we arrive at

− ln y1 ln τ(ηy2)− (q(t)− λ) ln y1 ln ηy1 = −λ1−αln2 y1,
ln y2 ln τ(ηy1) + (λ− r(t)) ln y2 ln ηy2 = −λ1−αln2 y2.

(4.9)

After the equalities (4.8) and (4.9) are added side by side, from (2.1), we obtain

Tα (ln y1 ln ηy2 − ln y2 ln ηy1) = λ1−α
(
ln2 y1 + ln2 y2

)
, (4.10)

where Tαf is defined by left CF derivative of f order α ∈ (0, 1] .
By the left CF integration with respect to t on [0, b] to both sides of the equality (4.10), we have

λ1−α
b∫

0

[
ln2 y1 + ln2 y2

]
dαt = {ln y1 ln ηy2 − ln y2 ln ηy1}bt=0 . (4.11)

By using the equality (4.6) and
ηφ̃1(0, λ̃) = ηφ̃2(0, λ̃) = 1

from Theorem (3.1) when λ = λ̃ on the equality (4.11), we get

b∫
0

[
ln2 φ̃1 + ln2 φ̃2

]
dαt = 0.

Consequently, φ̃1(t, λ̃) = φ̃2(t, λ̃) = 1 or φ̃(t, λ̃) = 1 . This is a contradiction. It completes the proof. 2

Let

φ1 := φ1(t, λ) =

[
φ11(t, λ)
φ12(t, λ)

]
, φ2 := φ2(t, λ) =

[
φ21(t, λ)
φ22(t, λ)

]
,

be linearly independent solutions of (1.1) which satisfies initial conditions

φi,j(0, λ) = δ∗ij i, j = 1, 2 λ ∈ C,

where δ∗ij =
{
e, i = j
1, i ̸= j

is the ∗Kronecker delta. Then, each solution of (1.1) has the form

y(t, λ) = φξ11 φξ22 ,

where ξ1 and ξ2 do not depend on t . If we can obtain a non-trivial solution of linear system

U1(φ1)
ξ1 U1(φ2)

ξ2 = 1,
U2(φ1)

ξ1 U2(φ2)
ξ2 = 1,

or
ξ1 lnU1(φ1) + ξ2 lnU1(φ2) = 0,
ξ1 lnU2(φ1) + ξ2 lnU2(φ2) = 0,
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y(t, λ) is called an ∗ eigenfunction of the equation (1.1), where U1 and U2 defined by (1.5). Hence, λ ∈ R is
an ∗ eigenvalue iff

∗∆α(λ) =

∣∣∣∣lnU1(φ1) lnU1(φ2)
lnU2(φ1) lnU2(φ2)

∣∣∣∣ = 0.

∗∆α(λ) is called the characteristic determinant associated with α− ∗Dirac system defined by (1.1)-(1.3).

Corollary 4.10 ∗ eigenvalues of (1.1)-(1.3) are zeros of ∗∆α(λ) . Since φ1(t, λ) and φ2(t, λ) are entire in λ

for each fixed x ∈ [0, b] , ∗∆α(λ) is an entire function in λ . Hence, ∗ eigenvalues of the system (1.1)-(1.3) are
at most countable with no finite limit points.

5. α− ∗Green’s function
In this section, α− ∗Green’s function will be constructed for α− ∗Dirac system which is not homogeneous and
some of its properties will be given. We consider the system

τy2 y
q(t)−λ
1 = ef1(t), (5.1)

τy1 y
λ−r(t)
2 = ef2(t), (5.2)

with the conditions
U1(y) = yc11 (0) yc22 (0) = 1, (5.3)

U2(y) = yd11 (b) yd22 (b) = 1, (5.4)

where λ is a spectral parameter; q(t) , r(t) real-valued continuous and multiplicative CF integrable functions

on [0, b] ;
(
c21 + c22

) (
d21 + d22

)
̸= 0 ; f(t) =

[
ef1(t) ef2(t)

]T .

Theorem 5.1 Let’s admit that λ is not an ∗ eigenvalue of (1.1)-(1.3) and y (·, λ) satisfies system (5.1),(5.2)
and conditions (5.3), (5.4). Then,

y (t, λ) =

b∫
0

(
∗Gα(t, x, λ)⊙ ef(x)

)
d∗αx

, x ∈ [0, b] (5.5)

where ef(t) ∈ ∗L2
α[0, b] and ∗Gα(t, x, λ) is α− ∗Green’s function for (5.1)-(5.4) defined by

∗Gα(t, x, λ) = e
−1

∗∆α(λ) ⊙

{
θ2(t, λ)⊙ [θ1(x, λ)]

T
, 0 ≤ x ≤ t

θ1(t, λ)⊙ [θ2(x, λ)]
T
, t < x ≤ b

. (5.6)

Conversely, y (·, λ) is defined by the system (5.1),(5.2) and the conditions (5.3), (5.4). Furthermore, ∗Gα(t, x, λ)

is unique. Here, θ1 and θ2 are linearly independent solutions of the system (5.1),(5.2) and the conditions (5.3),
(5.4).
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Proof By notion of α− ∗Green’s function, we get

∗Gα(t, x, λ)⊙ ef(x) =




{
θ11(x)

f1(x) θ12(x)
f2(x)

}ln θ21(t)
−1

∗∆α(λ)

{
θ11(x)

f1(x) θ12(x)
f2(x)

}ln θ22(t)
−1

∗∆α(λ)

 , 0 ≤ x ≤ t


{
θ21(x)

f1(x) θ22(x)
f2(x)

}ln θ11(t)
−1

∗∆α(λ)

{
θ21(x)

f1(x) θ22(x)
f2(x)

}ln θ12(t)
−1

∗∆α(λ)

 , t < x ≤ b

. (5.7)

From (5.5), applying multiplicative CF integration to (5.7) with respect to x on [0, b] , it follows that

y1(t, λ) =


t∫

0

[
θ11(x)

f1(x) θ12(x)
f2(x)

]
d∗αx


− ln θ21(t)
∗∆α(λ)


b∫
t

[
θ21(x)

f1(x) θ22(x)
f2(x)

]
d∗αx


− ln θ11(t)
∗∆α(λ)

, (5.8)

y2(t, λ) =


t∫

0

[
θ11(x)

f1(x) θ12(x)
f2(x)

]
d∗αx


− ln θ22(t)
∗∆α(λ)


b∫
t

[
θ21(x)

f1(x) θ22(x)
f2(x)

]
d∗αx


− ln θ12(t)
∗∆α(λ)

. (5.9)

Now, by differentiating both sides of the equation (5.8) in multiplicative CF sence with respect to t , we
have

τy1(t, λ) =


t∫

0

[
θ11(x)

f1(x) θ12(x)
f2(x)

]
d∗αx


−Tαln θ21(t)

∗∆α(λ)


b∫
t

[
θ21(x)

f1(x) θ22(x)
f2(x)

]
d∗αx


−Tα ln θ11(t)

∗∆α(λ)

[∗Wα (θ1, θ2)]
f2(t)

∗∆α(λ)

=


t∫

0

[
θ11(x)

f1(x) θ12(x)
f2(x)

]
d∗αx


(λ−r(t))ln θ22(t)

∗∆α(λ)


b∫
t

[
θ21(x)

f1(x) θ22(x)
f2(x)

]
d∗αx


(λ−r(t)) ln θ12(t)

∗∆α(λ)

ef2(t)

= {y2(t, λ)}(r(t)−λ) ef2(t)

It is proved similarly that the validity of (5.1).
Now, let us prove uniqueness of α− ∗Green’s function for the given system. Let’s face it, there is another

α− ∗Green’s function ∗̃Gα(t, x, λ) for same system. Then, we get

y (t, λ) =

b∫
0

(
∗Gα(t, x, λ)⊙ ef(x)

)
d∗αx

,
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and

y (t, λ) =

b∫
0

(
∗̃Gα(t, x, λ)⊙ ef(x)

)
d∗αx

.

Thence, we get
b∫

0

({
∗Gα(t, x, λ)⊖ ∗̃Gα(t, x, λ)

}
⊙ ef(x)

)
d∗αx

= 1.

By setting f(t) = ln ∗Gα(t, x, λ)⊖ ∗̃Gα(t, x, λ), it yields

b∫
0

({
∗Gα(t, x, λ)⊖ ∗̃Gα(t, x, λ)

}
⊙
{
∗Gα(t, x, λ)⊖ ∗̃Gα(t, x, λ)

})
d∗αx

= 1,

or
∗Gα(t, x, λ)⊖ ∗̃Gα(t, x, λ) = 1 or ∗Gα(t, x, λ) = ∗̃Gα(t, x, λ).

This completes the proof. 2

Theorem 5.2 α− ∗Green’s function of (1.1)-(1.3) has below properties:
i) ∗Gα(t, x, λ) is continuous at (0, 0) .

ii) ∗Gα(t, x, λ) =
∗GTα(x, t, λ).

iii) ∗Gα(t, x, λ) satisfies the equation (1.1) and conditions (1.2)-(1.3) for all x ∈ R as a function of t .
iv) Let λ0 be an eigenvalue of ∗∆α (λ) . Then, λ0 is simple pole point of ∗Gα(t, x, λ) and

∗Gα(t, x, λ) =
[
ψ0(t)

−ψ0(x)
] 1

λ−λ0 ∗̃Gα(t, x, λ).

Here, ∗̃Gα(t, x, λ) is ∗ type holomorfic function of λ in the neighbourhood of λ0, ψ is normalized eigenfunction
related to λ0.

Proof i) Proof is obtained by continuity of θ1 (., λ) and θ2 (., λ) for all λ ∈ C .
ii) It can be easily proved if some basic features of multiplicative calculus are used.
iii) Let x ∈ [0, t] . Then,

∗Gα(t, x, λ) =

[∗Gα1(t, x, λ)

∗Gα2(t, x, λ)

]
=

{θ11(x) θ12(x)}ln θ21(t) −1
∗∆α(λ)

{θ11(x) θ12(x)}ln θ22(t)
−1

∗∆α(λ)


or

Dα
∗Gα(t, x, λ) = eλ ⊙ ∗Gα(t, x, λ).

Similarly, proof can be made for x ∈ [t, b] .

[ec1 ⊙ ∗Gα1(0, x, λ)]⊕ [ec2 ⊙ ∗Gα2(0, x, λ)] =
[
{θ11(x) θ12(x)}ln(θ

c1
21 (0)θ

c2
22 (0))

] −1
∗∆α(λ)

= 1
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and [
ed1 ⊙ ∗Gα1(b, x, λ)

]
⊕
[
ed2 ⊙ ∗Gα2(b, x, λ)

]
=

[
{θ11(x) θ12(x)}

ln
(
θ
d1
21 (b)θ

d2
22 (b)

)] −1
∗∆α(λ)

= 1

iv) Let λ0 be pole point of ∗Gα(t, x, λ) and R(t, x) be ∗ residue of ∗Gα(t, x, λ) at λ = λ0. By Corollary
4.10, we get

R(t, x) = ψ0(t, λ0)
−ψ0(x,λ0).

It completes the proof. 2

6. Conclusion
We established the multiplicative CF Dirac system. Actually, this system is a fractional generalization of
the multiplicative Dirac system[28] in case α = 1 . Firstly, we obtained the ∗ eigenfunctions of that system.
Later, we proved that ∗ eigenvalues are real and simple, and the ∗ eigenfunctions are orthogonal in ∗L2

α[0, b] .
We obtained Green’s function on the multiplicative case. We think that this system, which is extremely
important for quantum physics and effective in both classical and fractional cases, will make great contributions
to mathematical physics in multiplicative cases. In fact, this equation, which we examined in the multiplicative
case, corresponds to an equation that is much more difficult and tiring to analyze in classical and fractional
calculus. This situation increases the importance of the results we obtained and the different calculus we used.
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