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1. Introduction
In this article, we prove some new inequalities for Berezin symbols of operators by using classical Grüss type
inequalities.

1.1. The Berezin symbol

Recall that the reproducing kernel Hilbert space (briefly, RKHS) is the Hilbert space H = H (Ω) of complex-
valued functions on some set Ω such that :

(i) the evaluation functionals

φλ (f) := f (λ) , λ ∈ Ω,

are continuous on H.

(ii) for every λ ∈ Ω there exists a function fλ ∈ H such that fλ (λ) ̸= 0.

Then, according to the Riesz representation theorem, for each λ ∈ Ω there exists a unique function
kλ ∈ H such that f (λ) = ⟨f, kλ⟩ for all f ∈ H . The family {kλ : λ ∈ Ω} is called the normalized reproducing

kernel of the space H and family
{
k̂λ = kλ

∥kλ∥H
: λ ∈ Ω

}
is called the normalized reproducing kernel of the

space H (see Aronzajn [1]). For example, the Hardy space H2 (D) over the unit disc D = {z ∈ C : |z| < 1} ,
the Bergman space L2

α (D) , the Dirichlet space D2 (D) of analytic functions on D and the Fock space F (C) of
entire functions are RKHSs. For any bounded linear operator A : H → H (i.e. for any A ∈ B (H) , the Banach

algebra of all bounded linear operators on H), its Berezin symbol Ã is defined by (see Berezin [2, 3])

Ã (λ) :=
〈
Ak̂λ, k̂λ

〉
, λ ∈ Ω.
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It is elementary to verify that Ã is the bounded complex-valued function on Ω , namely, supλ∈Ω

∣∣∣Ã (λ)
∣∣∣ ≤ ∥A∥ .

The Berezin number of the operator A is defined by (see, Karaev [11])

ber (A) := sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣ .

So, ber (A) ≤ ∥A∥ for all A ∈ B (H) . Recall that the numerical radius w (A) of operator A is the following
number:

w (A) : {sup |⟨Ax, x⟩| : x ∈ H and ∥x∥H = 1} .

Clearly, ber (A) ≤ w (A) ≤ ∥A∥ .
We also define the following so-called Berezin norm of operators A ∈ B (H) :

∥A∥Ber := sup
λ∈Ω

∥∥∥Ak̂λ

∥∥∥ .
It is easy to see that ∥A∥Ber actually determines a new operator norm in B (H (Ω)) (since the set of reproducing
kernels {kλ : λ ∈ Ω} span the space H (Ω)). It is also trivial that ber (A) ≤ ∥A∥Ber ≤ ∥A∥ . The present paper
is motivated mostly by [15]. In this paper, we also prove some new inequalities between ∥A∥Ber and ber (A) ;

moreover, we give upper estimates for the quantity
∥∥∥Ak̂λ − Ã (λ) k̂λ

∥∥∥ which is important in some questions of

operator theory [9].

1.2. Grüss and Grüss type inequalities

Following Dragomir [4], recall that in 1950, M. Biernacki et al. ([13], Chapter X ) established the following
discrete version of the Grüss integral inequality [4] :

Let a = (a1, ..., an) , b = (b1, ..., bn) be two n -tuples of real numbers such that

r ≤ aij ≤ R and s ≤ bi ≤ S for i = 1, ..., n.

Then, one has ∣∣∣∣∣ 1n
n∑

i=1

aibi −
1

n

n∑
i=1

ai
1

n

n∑
i=1

bi

∣∣∣∣∣ ≤ 1

n

[n
2

](
1− 1

n

[n
2

])
(R− r) (S − s) , (1)

where [x] denotes the integer part of x , x ∈ R . Inequality (1) in abstract structures, has been generalized by
Dragomir in the following theorem.

Theorem 1.1 ([5]) Let (H, ⟨.⟩) be an inner product space over K (K = R, C) and e ∈ H , ∥e∥ = 1 . If
φ, γ,Φ,Γ are real or complex numbers and x, y are vectors in H such that the conditions

Re ⟨Φe− x, x− φe⟩ ≥ 0 and Re ⟨Γe− f, y − γe⟩ ≥ 0

hold, then we have the inequality

|⟨x, y⟩ − ⟨x, e⟩ ⟨e, y⟩| ≤ 1

4
|Φ− φ| |Γ− γ| .
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The constant 1
4 is best possible in the sense that it cannot be replaced by a smaller constant.

Let A be a self-adjoint linear operator on a complex Hilbert space (H; ⟨·, ·⟩) , that is A∗ = A . The Gelfand
map established a ∗ -isometrically isomorphism Φ between the set C (Sp (A)) of all continuous functions defined
on the spectrum of A , denoted Sp (A) , and the C∗ -algebra C∗ (A) generated by A and the identity operator
IH on H as follows (see for instance ([10], p. 3):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C, we have:
(i) Φ(αf + βg) = αΦ(f) + βΦ(g) ;

(ii) Φ(fg) = Φ (f)Φ (g) and Φ
(
f
)
= Φ(f)

∗ ;
(iii) ∥Φ(f)∥ = ∥f∥ := supt∈Sp(A) |f (t)| ;

(iv) Φ(f0) = IH and Φ(f1) = A , where f0 (t) = 1 and f1 (t) = t for t ∈ Sp (A) .
With this notation we define

f (A) := Φ (f) for all f ∈ C (Sp (A))

and we call it the continuous functional calculus for a self-adjoint operator A .
If A is a self-adjoint operator and f is a real valued continuous function on Sp (A) , then f (t) ≥ 0 for

any t ∈ Sp (A) implies that f (A) ≥ 0 , i.e., f (A) is a positive operator on H , that is ⟨f (A)x, x⟩ ≥ 0 for all
x ∈ H . Moreover, if both f and g are real valued functions on Sp (A) , then the following important property
holds :

f (t) ≥ g (t) for all t ∈ Sp (A) =⇒ f (A) ≥ g (A) (2)

in the operator order of B (H) .

2. Quasi Grüss type inequalities for Berezin symbols
In the present section, we prove some new vector Grüss type inequalities for the Berezin symbol of continuous
functions of self-adjoint operators in Hilbert spaces. We need some facts concerning the spectral representation
of such functions.

Let A be a self-adjoint operator on the complex Hilbert space (H, ⟨·, ·⟩) with the spectrum Sp (A)

included in the interval [m,M ] for some real numbers m < M and let {Eλ}λ be its spectral family. Then, for
any continuous function f : [m,M ] → C , the following spectral representation in terms of the Riemann-Stieltjes
integral:

f (A) =

M∫
m−0

f (λ) dEλ,

which in terms of vectors can be written as

⟨f (A)x, y⟩ =
M∫

m−0

f (λ) d ⟨Eλx, y⟩ (3)

for all x, y ∈ H is well known. The function gx,y (λ) := ⟨Eλx, y⟩ is of bounded variation on the interval [m,M ]

and
gx,y (m− 0) = 0 and gx,y (M) = ⟨x, y⟩
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for all x, y ∈ H . It is also well known that gx (λ) := ⟨Eλx, x⟩ is monotonic nondecreasing and right continuous
on [m,M ] .

In this section, we provide various bounds for the magnitude of the difference

˜V ∗f (A) (µ)− Ṽ ∗ (µ) f̃ (A) (µ) ,

where V ∈ B (H) is an isometry, under different assumptions on the continuous function and the self-adjoint
operator A : H (Ω) → H (Ω) .

Note that, if H (Ω) = H2 (D) (the Hardy space on the unit disc D), then for every analytic Toeplitz
operator Tφ, Tφf = φf , φ ∈ H∞ (D) (the space of all bounded analytic functions on D) and any bounded
linear operator A on H2 (D) , it is easy to see that

T̃φA (µ) = T̃φ (µ) Ã (µ) for all µ ∈ D,

that is T̃φA = T̃φÃ . However, in general, the Berezin symbol is not multiplicative, i.e. ÃB ̸= ÃB̃ (see Kılıç
[12]). In the following theorem we show in particular that for some class of operators A and B, the Berezin
symbol is asymptotically multiplicative.

Theorem 2.1 Let A be a self-adjoint operator in the RKHS H = H (Ω) with the spectrum Sp (A) ⊆ [m,M ]

for some real numbers m < M , and let {Eλ}λ be its spectral family. Let V : H → H be an isometry. Assume

that µ ∈ Ω is such that there exists γ,Γ ∈ C with either Re
〈
Γk̂µ − V k̂µ, V k̂µ − γk̂µ

〉
≥ 0 or, equivalently

∥∥∥∥V k̂µ − γ + Γ

2
k̂µ

∥∥∥∥ ≤ 1

2
|Γ− γ| .

(i) If f : [m,M ] → C is a continuous function of bounded variation on [m,M ] , then we have the inequality

∣∣∣ ˜V ∗f (A) (µ)− Ṽ ∗ (µ) f̃ (A) (µ)
∣∣∣

≤ max
λ∈[m,M ]

∣∣∣Ṽ ∗Eλ (µ)− Ṽ ∗ (µ) Ẽλ (µ)
∣∣∣ M∨
m
(f)

≤ max
λ∈[m,M ]

(
Ẽλ (µ) ˜(IH − Eλ) (µ)

) 1
2

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2 M
∨
m
(f)

≤ 1

2

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2 M
∨
m
(f) ≤ 1

4
|Γ− γ|

M
∨
m
(f) , (4)

where
M
∨
m
(f) denotes the total variation of f on [m,M ] .

(ii) If f : [m,M ] → C is a Lipschitzian function with the constant L > 0 on [m,M ] , then we have the
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inequality

∣∣∣ ˜V ∗f (A) (µ)− Ṽ ∗ (µ) f̃ (A) (µ)
∣∣∣

≤ L

M∫
m−0

∣∣∣Ṽ ∗Eλ (µ)− Ṽ ∗ (µ) Ẽλ (µ)
∣∣∣ dλ

≤ L

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2
M∫

m−0

(
Ẽλ (µ)

(
1− Ẽλ (µ)

))1/2

dλ

≤ L

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2 (
M − Ã (µ)

) 1
2
(
Ã (µ)−m

) 1
2

≤ 1

2
(M −m)L

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2

≤ 1

4
|Γ− γ| (M −m)L. (5)

(iii) If f : [m,M ] → R is a continuous monotonic nondecreasing function on [m,M ] , then we have the inequality

∣∣∣ ˜V ∗f (A) (µ)− Ṽ ∗ (µ) f̃ (A) (µ)
∣∣∣

≤
M∫

m−0

∣∣∣Ṽ ∗Eλ (µ)− Ṽ ∗ (µ) Ẽλ (µ)
∣∣∣ df (λ)

≤
(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2
M∫

m−0

(
Ẽλ (µ)

(
1− Ẽλ (µ)

)) 1
2

df (λ)

≤
(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2 (
f (M)− f̃ (A) (µ)

) 1
2
(
f̃ (A) (µ)− f (m)

) 1
2

≤ 1

2
[f (M)− f (m)]

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2

≤ 1

4
|Γ− γ| [f (M)− f (m)] .

Proof (i) By the Schwarz inequality in H we have for any u, v, e ∈ H with ∥e∥ = 1 that

|⟨u, v⟩ − ⟨u, e⟩ ⟨e, v⟩| ≤
(
∥u∥2 − |⟨u, e⟩|2

) 1
2
(
∥v∥2 − |⟨v, e⟩|2

) 1
2

. (6)

By putting e = k̂µ , u = Eλk̂µ and v = V k̂µ , we have from (6) that

∣∣∣〈Eλk̂µ, V k̂µ

〉
−
〈
Eλk̂µ, k̂µ

〉〈
k̂µ, V k̂µ

〉∣∣∣
≤

(∥∥∥Eλk̂µ

∥∥∥2 − ∣∣∣〈Eλk̂µ, k̂µ

〉∣∣∣2) 1
2
(
1−

∣∣∣〈V k̂µ, k̂µ

〉∣∣∣2) 1
2

(7)
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for every λ ∈ [m,M ] . Since E2
λ = Eλ and Eλ ≥ 0 , we have that

∥∥∥Eλk̂µ

∥∥∥2 − ∣∣∣〈Eλk̂µ, k̂µ

〉∣∣∣2 =
〈
Eλk̂µ, k̂µ

〉
−

〈
Eλk̂µ, k̂µ

〉2

=
〈
Eλk̂µ, k̂µ

〉〈
(IH − Eλ) k̂µ, k̂µ

〉
≤ 1

4

for all λ ∈ [m,M ] and µ ∈ Ω . Also, by making use of the Grüss type inequality in inner product spaces
obtained by Dragomir in [5], we obtain that

(∥∥∥V k̂µ

∥∥∥2 − ∣∣∣〈V k̂µ, k̂µ

〉∣∣∣2) 1
2

≤ 1

2
|Γ− γ| ,

therefore, since V is an isometry, we have

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2

≤ 1

2
|Γ− γ| . (8)

Now, combining (7) and (8) we deduce the following inequality.∣∣∣〈Eλk̂µ, V k̂µ

〉
−
〈
Eλk̂µ, k̂µ

〉〈
k̂µ, V k̂µ

〉∣∣∣
≤

(〈
Eλk̂µ, k̂µ

〉〈
(IH − Eλ) k̂µ, k̂µ

〉) 1
2

(∥∥∥V k̂µ

∥∥∥2 − ∣∣∣〈V k̂µ, k̂µ

〉∣∣∣2) 1
2

≤ 1

2

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2

≤ 1

4
|Γ− γ| ,

hence, ∣∣∣Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)
∣∣∣

≤
(
Ẽλ (µ)

(
1− Ẽλ (µ)

)) 1
2

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2 1

2

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2

≤ 1

4
|Γ− γ| (9)

for any λ ∈ [m,M ] .
It is well known that if p : [a, b] → C is a continuous function, v : [a, b] → C is of bounded variation,

then the Riemann-Stieltjes integral
b∫

a

p (t) dv (t) exists and the following inequality holds

∣∣∣∣∣∣
b∫

a

p (t) dv (t)

∣∣∣∣∣∣ ≤ max
t∈[a,b]

|p (t)|
M
∨
m
(v) ,
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where
M
∨
m
(v) denotes the total variation of v on [a, b] . Utilizing this property of the Riemann-Stieltjes integral

and the inequality (9) , we have

∣∣∣∣∣∣
M∫

m−0

[〈
Eλk̂µ, V k̂µ

〉
−

〈
Eλk̂µ, k̂µ

〉〈
k̂µ, V k̂µ

〉]
df (λ)

∣∣∣∣∣∣
≤ max

λ∈[m,M ]

∣∣∣Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)
∣∣∣ M∨
m
(f)

≤ max
λ∈[m,M ]

(
Ẽλ (µ)

(
1− Ẽλ (µ)

)) 1
2

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2 M
∨
m
(f)

≤ 1

2

(
1−

∣∣∣Ṽ (µ)
∣∣∣2) 1

2 M
∨
m
(f) ≤ 1

4
|Γ− γ|

M
∨
m
(f) (10)

for µ ∈ Ω and V as in the assumptions of the theorem. Now, integrating by parts in the Riemann-Stieltjes
integral and making use of the spectral representation (3) , we have

M∫
m−0

[
Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)

]
df (λ)

=
[
Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)

]
f (λ) |Mm−0

−
M∫

m−0

f (λ) d
[
Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)

]

= Ṽ ∗ (µ)

M∫
m−0

f (λ) dẼλ (µ)−
M∫

m−0

f (λ) dẼλ (µ)

= Ṽ ∗ (µ) f̃ (A) (µ)− ˜V ∗f (A) (µ) (11)

which together with (10) produces the desired result (4) .

(ii) Recall that if p : [a, b] → C is a Riemann integrable function and v : [a, b] → C is Lipschitzian
with the constant L > 0 , i.e., |f (s)− f (t)| ≤ L |s− t| for any t, s ∈ [a, b] , then the Riemann-Stieltjes integral
b∫

a

p (t) dv (t) exists and the following inequality holds

∣∣∣∣∣∣
b∫

a

p (t) dv (t)

∣∣∣∣∣∣ ≤ L

b∫
a

|p (t)| dt.
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Therefore, applying this property of the Riemann-Stieltjes integral we see from (9) that

∣∣∣∣∣∣
M∫

m−0

[
Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)

]
df (λ)

∣∣∣∣∣∣
≤ L

M∫
m−0

∣∣∣Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)
∣∣∣

≤ L

(
1−

∣∣∣Ṽ ∗ (µ)
∣∣∣2) 1

2
M∫

m−0

(
Ẽλ (µ)

(
1− Ẽλ (µ)

)) 1
2

dλ. (12)

So, if we use the Cauchy-Bunyakovsky-Schwarz integral inequality and the spectral representation (3) , we finally
have

M∫
m−0

(
Ẽλ (µ)

(
1− Ẽλ (µ)

)) 1
2

dλ

≤

 M∫
m−0

Ẽλ (µ) dλ


1
2
 M∫
m−0

(
1− Ẽλ (µ)

)
dλ


1
2

=

Ẽλ (µ)λ |Mm−0 −
M∫

m−0

λdẼλ (µ)


1
2

.

(1− Ẽλ (µ)
)
λ |Mm−0 −

M∫
m−0

λd
(
1− Ẽλ (µ)

)
=

(
M − Ã (µ)

)1/2 (
Ã (µ)−m

)1/2

. (13)

Now, by utilizing (13) , (12) , and (11) , we have the first three inequalities in (5) . The fourth inequality follows
from the fact that

(
M − Ã (µ)

)(
Ã (µ)−m

)
≤ 1

4

[(
M − Ã (µ)

)
+

(
Ã (µ)−m

)]2
=

1

4
(M −m)

2
.

The last part is obtained from (8) .
(iii) Further, from the theory of Riemann-Stieltjes integral, it is also well known that if p : [a, b] → C is

of bounded variation and v : [a, b] → R is continuous and monotonic nondecreasing, then the Riemann-Stieltjes
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integrals
b∫

a

p (t) dv (t) and
b∫

a

|p (t)| dv (t) exist and

∣∣∣∣∣∣
b∫

a

p (t) dv (t)

∣∣∣∣∣∣ ≤
b∫

a

|p (t)| dv (t) .

By considering this property and the inequality (9) , we have that∣∣∣∣∣∣
M∫

m−0

[
Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)

]
df (λ)

∣∣∣∣∣∣
≤

M∫
m−0

∣∣∣Ṽ ∗Eλ (µ)− Ẽλ (µ) Ṽ ∗ (µ)
∣∣∣ f (λ)

≤
(
1−

∣∣∣Ṽ (µ)
∣∣∣2)1/2 M∫

m−0

(
Ẽλ (µ)

(
1− Ẽλ (µ)

))1/2

df (λ) .

Finally, applying again the Cauchy-Bungakovsky-Schwarz integral inequality for the Riemann-Stieltjes integral
with monotonic integrators and the spectral representation (3) , we have

M∫
m−0

(
Ẽλ (µ)

(
1− Ẽλ (µ)

))1/2

df (λ)

≤

[
M∫

m−0

Ẽλ (µ) df (λ)

]1/2

.

[
M∫

m−0

(
1− Ẽλ (µ)

)
df (λ)

]1/2

=

[
Ẽλ (µ) f (λ) |Mm−0 −

M∫
m−0

f (λ) dẼλ (µ)

]1/2

.

.

[(
1− Ẽλ (µ)

)
f (λ) |Mm−0 −

M∫
m−0

f (λ) d
(
1− Ẽλ (µ)

)]1/2

=
(
f (M)− f̃ (A) (µ)

)1/2 (
f̃ (A) (µ)− f (m)

)1/2

≤ 1

2
[f (M)− f (m)]

and the proof is complete. 2

Remark 2.2 By considering the proof of the previous theorem, it can be easily deduced that instead of an
isometry, any bounded linear operator on H (Ω) can be used. We considered an isometry purely for simplicity.

Recall that the RKHS H = H (Ω) is called standard in the sense of Nordgren and Rosenthal [14] if k̂λ

weakly converges to zero whenever λ tends to the boundary point of Ω.

999



TAPDIGOĞLU et al./Turk J Math

Proposition 2.3 Let A,B be two self-adjoint operators on the standard RKHS H = H (Ω) with spectra Sp (A) ,

Sp (B) ⊂ [m,M ] for some real numbers m < M and let {Eλ}λ be the spectral family of A. Assume that
g : [m,M ] → R is a continuous function and denote

n := min
t∈[m,M ]

g (t) and N := max
t∈[m,M ]

g (t) . (14)

If f : [m,M ] → C is a continuous function of bounded variation on [m,M ] and g (B) is a compact operator
on H , then

lim
µ→∂Ω

∣∣∣∣ ˜g (B)
∗
f (A) (µ)− f̃ (A) (µ) g̃ (B) (µ)

∣∣∣∣ = 0. (15)

Proof It follows from (14) that n ≤
〈
g (B) k̂µ, k̂µ

〉
≤ N which implies that

〈
g (B) k̂µ − nk̂µ,Mk̂µ − g (B) k̂µ

〉
≥

0 for all µ ∈ Ω. So, applying Theorem 2.1 for y = Bk̂µ, Γ = N and r = n, we deduce that∣∣∣∣ ˜g (B)
∗
f (A) (µ)− f̃ (A) (µ) g̃ (B) (µ)

∣∣∣∣
≤ 1

2

(∥∥∥g (B) k̂µ

∥∥∥2 − ∣∣∣g̃ (B) (µ)
∣∣∣2)1/2

M
∨
m
(f)

for all µ ∈ Ω. Since g (B) is a compact operator on the standard RKHS H, we have that
∥∥∥g (B) k̂µ

∥∥∥ → 0 and∥∥∥g̃ (B) (µ)
∥∥∥ → 0 as µ → ∂Ω, which implies the desired result (15) . 2

3. Reverses of Schwarz inequality and applications

A subset M (Ω) in H (Ω) is called the multiplier for the space H (Ω) if M (Ω)H (Ω) ⊂ H (Ω) , i.e., fg ∈ H (Ω)

for all f ∈ M (Ω) and g ∈ H (Ω) . Let f ∈ M (Ω) be fixed. Then, it follows from the closed graph theorem
that the multiplication operator Mf defined on H (Ω) by Mfg = fg, g ∈ H (Ω) is a bounded linear operator.

Operator Mf is characterized by the property that M∗
f k̂λ = f (λ)k̂λ, λ ∈ Ω. It is elementary to see that

f (λ) = M̃∗
f (λ) . However, this property is not satisfied for any operator A in B (H (Ω)) , and therefore it

is natural and important to estimate the difference
∥∥∥Ak̂λ − Ã (λ) k̂λ

∥∥∥ . It is well known that for any Toeplitz

operator Tφ, φ ∈ L∞ (∂D) , on the Hardy space H2 (D)
∥∥∥Tφk̂λ − T̃φ (λ) k̂λ

∥∥∥ vanishes on the boundary ∂D

whenever λ radially tends to the point eit ∈ ∂D for almost all t ∈ [0, 2π] (see Engliš [9]). However, this is not
true in general for Bergman space Toeplitz operators (see ([9], Question 1)).

Following Otachel [15], note that Dragomir (see [6], Theorem 1.6) obtained the following reverses of the
Schwarz inequality in the Hilbert space H

∥x∥2 ∥y∥2 − |⟨x, y⟩|2 ≤ |Γ− γ|2

4
∥y∥4 , x, y ∈ H, (16)

and

∥x∥ ∥y∥ ≤ |Γ + γ|
2
√
Re (Γγ)

|⟨x, y⟩| , x, y ∈ H, (17)

1000



TAPDIGOĞLU et al./Turk J Math

if scalars Γ, γ satisfy
Re ⟨Γy − x, x− γy⟩ ≥ 0 (18)

or, equivalently, ∥∥∥∥x− Γ + γ

2
y

∥∥∥∥ ≤ 1

2
|Γ− γ| ∥y∥ . (19)

In case of (17) , it should be additionally assumed Re (Γγ) > 0. Equivalently, one can reformulate (17) to

∥x∥2 ∥y∥2 − |⟨x, y⟩|2 ≤
∣∣∣∣Γ− γ

Γ + γ

∣∣∣∣2 ∥x∥2 ∥y∥2
≤ |Γ− γ|2

4Re (Γγ)
|⟨x, y⟩|2 , x, y ∈ H. (20)

Note that Grüss type inequalities are variants of Schwar’s inequality for specific Hermitian forms. They provide
upper bounds for the quantity ∣∣∣⟨x, y⟩ − (

(⟨x, v⟩ ⟨v, y⟩) / ∥v∥2
)∣∣∣ .

It is known ([7], Theorem 10) that for vectors x, y and v ̸= 0

∣∣∣∣∣⟨x, y⟩ − ⟨x, v⟩ ⟨v, y⟩
∥v∥2

∣∣∣∣∣ ≤
√(

∥x∥2 ∥v∥2 − |⟨x, v⟩|2
)(

∥y∥2 ∥v∥2 − |⟨y, v⟩|2
)

∥v∥2
. (21)

In this way, reverse Schwarz inequalities automatically form Grüss type inequalities. The related Grüss
type inequalities for (16) and (20) are as follows (see ([6], Th. 15, 22) and ([8], Th. 4.1− 4.2)∣∣∣∣∣⟨x, y⟩ − ⟨x, v⟩ ⟨v, x⟩

∥v∥2

∣∣∣∣∣ ≤ 1

4
|Φ− φ| |Γ− γ| ∥v∥2 , (22)

∣∣∣∣∣⟨x, y⟩ − ⟨x, v⟩ ⟨v, x⟩
∥v∥2

∣∣∣∣∣ ≤
∣∣∣∣Φ− φ

Φ+ φ

∣∣∣∣ ∣∣∣∣Γ− γ

Γ + γ

∣∣∣∣ ∥x∥ ∥y∥
≤ 1

4

|Φ+ φ| |Γ + γ|√
Re (Φφ)Re (Γγ)

⟨x, v⟩ ⟨v, x⟩
∥v∥2

(23)

respectively, if Re ⟨Φv − x, x− φv⟩ ≥ 0 and Re ⟨Γv − y, y − γv⟩ ≥ 0 , where Φ, φ,Γ, γ∈ F (F = R or C) and
x, y, v ∈ H with v ̸= 0. For the last inequality, additionally, Re (Φφ) ,Re (Γγ) > 0.

Now, the following results are immediate from the above inequalities, in case H = H (Ω) .

Proposition 3.1 Let A : H (Ω) → H (Ω) be an operator. Then

∥∥∥Ak̂λ − Ã (λ) k̂λ

∥∥∥ ≤ 1

2
|Γ− γ| , (24)

for all λ ∈ Ω and all scalers Γ , γ satisfying condition (18) (or, equivalently, condition (19)).
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Proof Since Ak̂λ − Ã (λ) k̂λ⊥k̂λ for all λ ∈ Ω, it is elementary to get that

0 ≤
∥∥∥Ak̂λ

∥∥∥2 − ∣∣∣Ã (λ)
∣∣∣2 =

∥∥∥Ak̂λ − Ã (λ) k̂λ

∥∥∥2 , λ ∈ Ω,

that is ∥∥∥Ak̂λ − Ã (λ) k̂λ

∥∥∥ =

√∥∥∥Ak̂λ

∥∥∥2 − ∣∣∣Ã (λ)
∣∣∣2, λ ∈ Ω. (25)

Now, we put x = Ak̂λ and y = k̂λ in (16) and get that

∥∥∥Ak̂λ

∥∥∥2 − ∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣2 ≤ |Γ− γ|2

4

∥∥∥k̂λ∥∥∥4 =
|Γ− γ|2

4
,

hence, from this by using (25) we deduce inequality (24) , as desired. 2

Proposition 3.2 Let H = H (Ω) and A ∈ B (H (Ω)) . Then

sup
λ∈Ω

∥∥∥Ak̂λ − Ã (λ) k̂λ

∥∥∥ ≤
∣∣∣∣Γ− γ

Γ + γ

∣∣∣∣ ∥A∥Ber

and

∥A∥Ber ≤
|Γ + γ|

2
√
Re (Γγ)

ber (A)

for all scalers Γ , γ satisfying (20).

Proof In fact, let us put x = Ak̂λ and y = k̂λ in (20) . Then by dividing both sides of the inequalities in
(20) by ∥kλ∥2 (which is nonzero by the assumption on the RKHS), we have that

∥∥∥Ak̂λ

∥∥∥2 − ∣∣∣∣〈Ak̂λ,
kλ

∥kλ∥

〉∣∣∣∣2 ≤
∣∣∣∣Γ− γ

Γ + γ

∣∣∣∣2 ∥∥∥Ak̂λ

∥∥∥2
and ∣∣∣∣Γ− γ

Γ + γ

∣∣∣∣2 ∥∥∥Ak̂λ

∥∥∥2 ≤ |Γ− γ|2

4Re (Γγ)

∣∣∣∣〈Ak̂λ,
kλ
∥kλ∥

〉∣∣∣∣2
for all λ ∈ Ω. These imply that

sup
λ∈Ω

∥∥∥Ak̂λ − Ã (λ) k̂λ

∥∥∥ ≤
∣∣∣∣Γ− γ

Γ + γ

∣∣∣∣ sup
λ∈Ω

∥∥∥Ak̂λ

∥∥∥ =

∣∣∣∣Γ− γ

Γ + γ

∣∣∣∣ ∥A∥Ber

and

∥A∥Ber = sup
λ∈Ω

∥∥∥Ak̂λ

∥∥∥ ≤ 1

2

∣∣∣∣∣ Γ + γ√
Re (Γγ)

∣∣∣∣∣ supλ∈Ω

∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣
=

1

2

|Γ + γ|√
Re (Γγ)

ber (A) ,

which gives the desired result of the proposition. 2
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