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Abstract: In this paper, we study Clairaut invariant Riemannian maps from Kéhler manifolds to Riemannian manifolds,
and from Riemannian manifolds to Ké&hler manifolds. We find necessary and sufficient conditions for the curves on
the total spaces and base spaces of invariant Riemannian maps to be geodesic. Further, we obtain necessary and
sufficient conditions for invariant Riemannian maps from Ké&hler manifolds to Riemannian manifolds to be Clairaut
invariant Riemannian maps. Moreover, we obtain a necessary and sufficient condition for invariant Riemannian maps
from Riemannian manifolds to Kédhler manifolds to be Clairaut invariant Riemannian maps. We also give nontrivial

examples of Clairaut invariant Riemannian maps whose total manifolds or base manifolds are Kédhler manifolds.
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1. Introduction
In 1992, Fischer introduced Riemannian map between Riemannian manifolds in [6] as a generalization of the
notion of an isometric immersion and Riemannian submersion. The geometry of Riemannian submersions
have been discussed in [5]. We note that a remarkable property of Riemannian maps is that a Riemannian
map satisfies the generalized eikonal equation ||F.||* = rankF, which is a bridge between geometric optics
and physical optics [6]. The eikonal equation of geometrical optics was solved by using Cauchy’s method of
characteristics. In [6] Fischer also proposed an approach to build a quantum model and he pointed out the success
of such a program of building a quantum model of nature using Riemannian maps would provide an interesting
relationship between Riemannian maps, harmonic maps and Lagrangian field theory on the mathematical side,
and Maxwell’s equation, Shrédinger’s equation and their proposed generalization on the physical side.

In [20], as an analogue of holomorphic submanifolds, Watson defined almost Hermitian submersions

between almost Hermitian manifolds and he showed that the base manifold and each fiber have the same kind
of structure as the total space, in most cases and also obtained some fundamental properties of this map.

In [9], B. Sahin introduced holomorphic Riemannian maps as a generalization of holomorphic submersions
and holomorphic submanifolds and in [12], B. Sahin studied Riemannian submersions from almost Hermitian
manifolds. The notion of invariant Riemannian maps has been introduced by B. Sahin in [10] as a generalization
of invariant immersion of almost Hermitian manifolds and holomorphic Riemannian submersions. In [10], B.
Sahin introduced invariant and antiinvariant Riemannian maps to Ké&hler manifolds. The notion of invariant

Riemannian maps to Kéhler manifolds is a generalization of submanifolds of Kéhler manifolds. It can be see
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that every holomorphic Riemannian map is an invariant Riemannian map but an invariant Riemannian map
may not be holomorphic Riemannian map. Further, holomorphic, antiinvariant and semiinvariant Riemannian
maps with Ké&hler structure were studied in [1-3, 10, 11, 15, 17-19].

In elementary differential geometry, if 6 is the angle between the velocity vector of a geodesic and a
meridian, and r is the distance to the axis of a surface of revolution, then Clairaut’s relation states that rsinf
is constant. In 1972 ([5], p. 29), Bishop defined Clairaut Riemannian submersion with connected fibers and
gave a necessary and sufficient condition for Riemannian submersion to be Clairaut Riemannian submersion,
also in [7], B. Sahin studied Clairaut submersions. Further in [16], B. Sahin and H. M. Tagtan studied Clariaut
submersions from almost Hermitian manifolds. In [13], B. Sahin introduced Clairaut Riemannian maps, in
which he obtained necessary and sufficient conditions for Riemannian map to be Clairaut Riemannian map. In
[22], present authors studied Clairaut antiinvariant Riemannian maps from Kéhler manifolds and investigated
some geometric properties. In [21], we defined Clairaut Riemannian maps by using geodesic curves [4] on base
spaces and obtained necessary and sufficient conditions for Riemannian maps to be Clairaut Riemannian maps.
Also we obtained interesting result that such Clairaut Riemannian maps are umbilical maps.

In this paper we study Clairaut invariant Riemannian maps from Ké&hler manifolds, and to Ka&hler
manifolds. In Section 2, we give some basic information about Riemannian map which is needed for this
paper. In Section 3, we obtain necessary and sufficient conditions for invariant Riemannian maps to be Clairaut
invariant Riemannian maps whose total manifolds are Kéhler manifolds and investigate geometric properties
of such maps with a nontrivial example. Finally, in Section 4, we obtain a necessary and sufficient condition
for invariant Riemannian maps to be Clairaut invariant Riemannian maps whose base manifolds are K&hler

manifolds and give a nontrivial example of such maps.

2. Preliminaries
In this section, we recall the notion of Riemannian maps between Riemannian manifolds and give a brief review
of basic facts of Riemannian maps.

Let F: (M™,gp) — (N™, gn) be a smooth map between Riemannian manifolds such that 0 < rankF <
min{m,n}, where dim(M) = m and dim(N) = n. Then we denote the kernel space of F, by v, = kerF,,

at p € M and consider the orthogonal complementary space H, = (kerF*p)J- to kerF., in T,M . Then the
tangent space T, M of M at p has the decomposition T,M = (kerF.,) ® (kerF,,)* = v, ®H,. We denote the
range of F, by rangeF, at p € M and consider the orthogonal complementary space (rangeF*p)J- to rangely,
in the tangent space T, N of N at F(p) € N. Since rankF < min{m,n}, we have (rangeF,)* # {0}. Thus
the tangent space Tp)N of N at F(p) € N has the decomposition Tr(, N = (rangeF.,) ® (rangeF,,)*.
Now, the map F : (M™,gpn) — (N™, gn) is called Riemannian map at p € M if the horizontal restriction F*hp :
(kerF.p)* — (rangeF.,) is a linear isometry between the inner product spaces ((kerFip)®, gnr(p)lkerr.,)x)

and (rangeFip, gN(py)|(ranger.,)); Where F(p) = p1. In other words, F, satisfies the equation

for all X,Y vector field tangent to I'(kerF.,)*. It follows that isometric immersions and Riemannian submer-

sions are particular Riemannian maps with kerF, = {0} and (rangeF.)* = {0}.
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The O’Neill tensors A and T defined in [5] as

ApF = HVY v F + vVM L HE, (2.2)

TeF = HVMvF + vVMHE, (2.3)

for all vector fields E, F on M, where VM is the Levi-Civita connection of gj; and v, H denote the projections
to vertical subbundle and horizontal subbundle, respectively. For any E € T'(TM), T and A are skew-
symmetric operators on (I'(T'M), gas) reversing the horizontal and the vertical distributions. It is also easy to
see that T is vertical, Ty = T, g and A is horizontal, Ap = Ay r. We note that the tensor field T' satisfies
TyW =TwU, for all U, W € T'(kerF.).

Now, from (2.2) and (2.3), we have

VYW =Ty W + Vy W, (2.4)
VMV = AxV +0vVALY, (2.5)
VHY = AxY + 1V, (2.6)

for all X,Y € ['(kerF,)* and V,W e I'(kerF.), where VyW = vVMW .

Also, a Riemannian map is a Riemannian map with totally umbilical fibers if [11]
TUV = gM(U, V)H, (2.7)

for all U,V € I'(kerF,), where H is the mean curvature vector field of fibers.
Let F : (M,gym) — (N,gn) be a smooth map between Riemannian manifolds (M, gp) and (N, gn).
Then the differential F,, of F' can be viewed as a section of bundle Hom(TM,F~'TN) — M, where F~1TN is

the pullback bundle whose fibers at p € M is (F~'TN), = Tp)N, p € M. The bundle Hom(TM,F~'TN)

N
has a connection V induced from the Levi-Civita connection VM and the pullback connection V. Then the

second fundamental form of F is given by [§]

N
(VE)(X1,Y1) = VE .Y, - F.(V 1)), (2.8)

N
for all X1,Y; € I(T'M), where Vfﬁ F.YioF = Vg*xl F.Y;. It is known that the second fundamental form is
symmetric. In [10] B. Sahin proved that (VF.)(X,Y) has no component in rangeF,, for all X,Y € I'(kerF,)*.

More precisely, we have

(VF,)(X,Y) € T(rangeF,)™*. (2.9)
For any vector field X; on M and any section V' of (rangeF,)*, we have Vi1V, which is the orthogonal
)L

projection of V%V on (rangeF,)*, where V¥ is linear connection on (rangeF,)* such that VF1Lgy = 0.

Now, for a Riemannian map F we define Sy as ([14], p. 188)

VY <V ==-SyF.X +VEY, (2.10)
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where V¥ is the Levi-Civita connection on N, Sy F,. X is the tangential component (a vector field along F) of
V¥ xV. Thus at p € M, we have V¥ (V(p) € Tp)N, Sy F.X € Fop,(T,M) and ViV (p) € (Fop(T,M))*.
It is easy to see that Sy F,X is bilinear in V', and F, X at p depends only on V,, and F,,X,.

Lemma 2.1 [15] Let F: (M, gn) — (N, gn) be a Riemannian map between Riemannian manifolds. Then F

1s umbilical Riemannian map if and only if
(VE)(X,Y) = gu(X,Y) Ha, (2.11)
for X,Y € T'(kerF,)* and Hy is, nowhere zero, vector field on (rangeF,)*.

Let (M, gnr) be an almost Hermitian manifold [23], then M admits a tensor J of type (1, 1) on M such that
J? = —T and
g (J X1, JY1) = gu (X1, V1), (2.12)

for all X;,Y; € (TM). An almost Hermitian manifold M is called Ké&hler manifold if
(V¥ Y =0, (2.13)

for all X;,Y; € T(TM), where VM is a Levi-Civita connection on M.

3. Clairaut invariant Riemannian maps from Kéahler manifolds

In this section, we introduce Clairaut invariant Riemannian maps from Ké&hler manifolds and investigate the
geometry of such maps with a nontrivial example. For arbitrary Clairaut invariant Riemannian maps, we present

the following definitions:

Definition 3.1 [9] Let F : (M, g, J) — (N,gn) be a Riemannian map from an almost Hermitian manifold
M to a Riemannian manifold N with almost complex structure J. We say that F is an invariant Riemannian
map at p € M if the J(kerF.,) = kerF.p. If F is an invariant Riemannian map for every p € M then
F' is called an invariant Riemannian map, i.e. the vertical distribution is invariant with respect to J, or
J(kerF,) = kerF,. In this case, we have the horizontal distribution (kerF.)* is also invariant with respect to
J,ie. J(kerF,)* = (kerF,)*.

The notion of Clairaut Riemannian map was defined by B. Sahin in [13]. According to the definition, a
Riemannian map F' : (M, gpn) — (N, gn) between Riemannian manifolds is called Clairaut Riemannian map
if there is a function r : M — R such that for every geodesic o on M, the function (r o a)sind is constant,

where, for all ¢, §(t) is the angle between &(t) and the horizontal space at «(t).

Theorem 3.2 [13] Let F : (M,gp) — (N,gn) be a Riemannian map with connected fibers, then F is

Clairaut Riemannian map with v = el if and only if each fiber is umbilical and has mean curvature vector field

H = —gradf , where f is a smooth function on M and gradf is the gradient of the function f with respect to
M -

Definition 3.3 An invariant Riemannian map from Kdihler manifold to a Riemannian manifold is called

Clairaut invariant Riemannian map if it satisfies the condition of Clairaut Riemannian map.
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The origin of the notion of Clairaut Riemannian maps comes from geodesic curves on a surface. Therefore
we are going to find necessary and sufficient conditions for the curves on the total spaces and the base spaces

to be geodesic.

Lemma 3.4 Let F: (M, gy, J) = (N,gn) be an invariant Riemannian map from a Kdhler manifold M to a
Riemannian manifold N. Let a: I — M be a regular curve and X (t),U(t) denote the horizontal and vertical

components of its tangent vector field. Then « is a geodesic curve on M if and only if

vwWMIU 4+ AxJX +TyJX =0, (3.1)

HVM X + AxJU + Ty JU = 0. (3.2)

Proof Let o : I — M be a regular curve on M. Then from (2.13), we get V¥a = —JVM Ji. Since
aft) = X(t) + U(t), for all t € I, so we can write Vi & = —JVY, ,J(X + U) and obtain

vM

a=—J(VEIX +VMIX +V¥IU + VM IU). (3.3)
Using (2.4), (2.5), (2.6) in (3.3), we get
VMa = —J(AxIX +TuJX +vV¥JIU +vVMJU + HVYIX + HVMIX + AxJU + Ty JU),

which implies

VMa = —J(AxJX + Ty JX + vVYJU + HVM X + Ax JU + Ty JU). (3.4)
Applying J both sides of (3.4) and take the vertical and horizontal components, we get
vIV¥a=AxJX + Ty JX + vV U,
HIVY 6 = Ax JU + Ty JU + HVI T X.

Now, « is a geodesic on M if and only if VJVé-V[d =0 and HJVQ/IQ = 0, which completes the proof. O

Theorem 3.5 Let F : (M,gn,J) — (N,gn) be an invariant Riemannian map from a Kdhler manifold M
to a Riemannian manifold N. Then F is a Clairaut invariant Riemannian map with r = el if and only if
IMat)(AxJU +TyJU, JX) —|—gMa(t)(VMf,X)gMa(t)(U(t), U(t)) =0, where a: I — M s a geodesic curve on

M with X(t), U(t) are horizontal and vertical components of &(t) and f is a smooth function on M .

Proof Let a:I — M be a geodesic on M with U(t) = va(t) and X(t) = Ha(t), 6(t) denote the angle in
[0, 7] between &(t) and X(¢). Assuming a = ||¢(¢)||?, then we get

Iara() (X (1), X (1)) = acos®0(t), (3-5)

9a10n (U, U(1)) = asin®0(t). (3.6)
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Now, differentiating (3.5), we get

%gMa(t) (X(),X(t) = —2acos€(t)sm9(t)%. (3.7
On the other hand using (2.12), we get
d d
%gMa(t)(X(t)aX(t)) = %gMa(t)(JXv JX) (38)
Since F' is Riemannian map, then using (2.1) in (3.8), we get
d
%gMa(t) (X(t)v X(t)) = 2gN(F*(vyJX)a F*(‘]X)) (39)
Using (2.8) in (3.9), we obtain
d N
%gMoe(t)(X(t)v X(t)) = 2gN(V§F*(JX) - (VF*)(OZ, JX)a F*(JX)) (310)
By putting & = X + U in (3.10) and then using (2.9), we get
d N
%gMa(t) (X(t)7 X(t)) = 2gN<v§(F*(JX) - (VF*)(U7 JX)a F*(JX))
Using (2.8) and (2.9) in above equation, we get
d
e (X (1), X() = 205 (P (VY JX) + F (V] TX), F.(TX)),
which implies
d
@ gara (X (1), X (1)) = 20w (F (MY JX), F(JX)). (3.11)
By using (3.2) in (3.11), we obtain
4 grray(X (1), X (1) = —2gM(Ax JU + Ty JU, JX). (3.12)
Now from (3.7) and (3.12), we get
. de
gum(AxJU + Ty JU, JX) = acos@(t)sm&(t)a. (3.13)
Moreover, F is a Clairaut Riemannian map with r = e/ if and only if % (ef°*sinf(t)) = 0, that is,
efo(cosf(t) % + sin@(t)@) = 0. By multiplying this with nonzero factor asinf(t), we get
—acos@(t)sin@(t)ﬁ = asin®0(t) d(fa) . (3.14)
dt dt
Using (3.6) in (3.14), we get
d dé
9110 0. U 2D — acost(tysine () (3.15)
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Thus from (3.13) and (3.15), we get

d(foa)
dt

g (AxJU + Ty JU, JX) + gara) (U(t), U(t)) =0,

which implies

g (Ax JU + Ty JU, JX) + garay(U ), U#) grtaw (VY f,é) = 0.
Since VM f € T'(kerF.)* therefore above equation can be written as
g (AxJU + Ty JU, JX) + grraw (U®), U®)grrany (VM £, X) =0,

which completes the proof. O

Theorem 3.6 Let F : (M, gy, J) — (N,gn) be a Clairaut invariant Riemannian map with r = e/ from a
Kdhler manifold M to a Riemannian manifold N. Then TyV =0, for U #V € I'(kerF).

Proof Let F be a Clairaut invariant Riemannian map from a K&hler manifold to a Riemannian manifold.

Then by using (2.7) in Theorem 3.2, we get
TyV = —gu (U, V)gradf, (3.16)
for U,V € T'(kerF,), which implies
g (T V, JX) = —gn (U, V) gu (gradf, JX), (3.17)
for X € I'(kerF,)t. Using (2.4) and (2.12) in (3.17), we get
gm(VudV, X) = gu (U, V)gu (gradf, JX).
Using (2.4) and (3.16) in above equation, we get
g (U, IV) g (gradf, X) = —gm (U, V) g (gradf, JX). (3.18)
Interchanging the role of U and V' (U # V'), we obtain
gm (V, JU)gu (gradf, X) = —gar (U, V)gu (gradf, J X). (3.19)
From (3.19) and (3.18), we get
(g (U, JV) = g (V, JU)) g (gradf, X) = 0.
Using (2.12) in above equation, we get
290 (U, IV )gnr (VM f, X) = 0.

Thus
gu (VM f,X)=0. (3.20)
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Also, by (3.16), we get
gu(ToV, X) = =g (U, V) g (VM £, X), (3.21)
for X € I'(kerF,)t. By using (3.20) in (3.21), we get

Thus TyV =0 for U # V € I'(kerF), which completes the proof. O

Proposition 3.7 Let F : (M,gyn,J) = (N,gn) be an invariant Riemannian map from Kdhler manifold M
to a Riemannian manifold N and o : I — M is geodesic curve on M with U(t) = v&(t) and X (t) = Ha(t).
Then the curve B = F o« is geodesic on N if and only if

(VF)(X,JX) =0,F. (VM JIX + AxJU + Ty JJU) = 0. (3.22)
Proof Let a: I — M is geodesic on M. Then by (3.2), we have
HVNIX = —(HVYIX + AxJU + Ty JU),
for U € I'(kerF,) and X € I'(kerF,)*. By applying definition of Riemannian map, we get
F.(VNJIX) = —F(VMIX + AxJU + Ty JU). (3.23)
Using (2.8) in (3.23), we get

N
VEF.(JX) = (VF)(X,JX) - F.(VMIX + AxJU + Ty JU).

N
Now @ is geodesic on N if and only if VEF.(JX) = 0, which completes the proof. O

Definition 3.8 [21] A Riemannian map F : (M,gn) — (N,gn) between Riemannian manifolds is called
Clairaut Riemannian map if there is a function s : N — RY such that for every geodesic 8 on N, the function
(soB)sinw(t) is constant, where, F.X € T'(rangeF,) and V € T'(rangeF.,)* are components of B(t), and w(t)
is the angle between B(t) and V for all t.

Remark 3.9 As we know that Clairaut’s relation comes from geodesic curve. In [18], B. Sahin considered
geodesic curve on the total manifold of a Riemannian map F', then by using Clairaut relation fibers of F are
totally umbilical. On the other hand, in Definition 3.8, we considered geodesic curve on base manifold of F',

then by using Clairaut’s relation F becomes totally umbilical.

Theorem 3.10 Let F : (M, gn,J) — (N,gn) be an invariant Riemannian map from a Kihler manifold M to

a Riemannian manifold N and «, f = Foa are geodesic curves on M and N , respectively. Then F is Clairaut
invariant Riemannian map with s = €9 if and only if gy (VY F.JX, F.JX) JrgN(F*JX,F*JX)% =0,
where g is a smooth function on N and F,X € I'(rangeF.),V € I'(rangeF,)* are components of 5(t)
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Proof Let a: I — M be a geodesic on M with U(t) = va(t) and X(t) = Ha(t). Let 8 = Foa be a
geodesic on N with F,X € ['(rangeF,) and V € I'(rangeF,)* are components of 3(t) and w(t) denote the

angle between 8 and V. Assuming b = ||3(¢)||?, then we get

gnpw (V. V) = beos*w(t),

Now, differentiating (3.25), we get

d d
ZINB (F.X,F.X) = 2bsinwcoswd—j.

On the other hand, since M is almost Hermitian manifold and using (2.1), we get
d d
%gNﬁ(t)(F*X, F.X)= %gNg(t)(F*JX, F.JX),

which implies

d
ZfINen (FX F.X) = 20850 (V5 FuJ X, FLJX).
By putting 8 = F,.X +V in (3.27), we get
d
%gNﬁ(t)(F*X, F.X)= 2gN5(t)(Vg*XF*JX +VYFE.JX,F.JX),
which implies
d N N
Using (2.8) in (3.28), we get
%gNg(t)(F*X, F.X) =2g9np0) (VFE)(X, JX) + F.(V¥JIX)+ VYF.(JX), F.(JX)).

Using (3.23) in above equation, we get

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

L onp) (Fu X, F.X) = 29550 (VE)(X,JX) = F (VM JIX 4+ AxJU + Ty JU) + VY F.(JX), F.(JX)).

Since (3 is geodesic on N then using (3.22) in above equation, we get

d

%gNﬁ(t)(F*X7 F*X) = 29Nﬁ(t)<v\]>[F*<JX)a F*(JX))
Thus from (3.26) and (3.29), we get

d
gNB(t)(VgF*(JX), F.(JX)) = bsinwcoswd—j.
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Moreover, F' is a Clairaut Riemannian map with s = €9 if and only if %(eg"ﬁsinw) =0, that is, egoﬁsmw%—i—
e9°P cosw‘é—“{ = 0. By multiplying this with nonzero factor bsinw, and using (3.25), we get
d d
gnpe (Fu X, F.X) (g0 5) = —bsinwcosw —.. (3.31)
dt dt
Thus (3.30), (3.31), (2.1) and (2.12) completes the proof. O

Example 3.10 Let M be an Euclidean space given by M = {(x1,z2,23,74) € R* : 21 # 0,20 # 0,23 #
0,74 # 0}. We define the Riemannian metric gy; on M given by gy = z3da? + x3dz3 + x3dx3 + dz? and the
complex structure J on M defined as J(z1, %2, 73, 74) = (—2,21, —24,73). Let N = {(y1,v2,y3) € R3} be a
Riemannian manifold with Riemannian metric gx on N given by gy = dy? + y3dy3 + dy3. Consider a map
F:(M,gn,J) — (N,gn) defined by

F(x1,x0,23,74) = (0,23, 24).
Then, we get
kerF, = Span{U; = e1,Us = ea},
and
(kerF.)* = Span{X, = e3, Xo = ey},

- 190 , - 10 , 190 , _ 9 * 0 ox 1 0 x_ O
where {el = 92 T 357905003 = 3590504 = 8“}, {61 = 9y €2 = 35955063 = ays} are bases on T, M

and Tp,) N respectively, for all p € M. By direct computations, we can see that F,(X;) = €3, Fi.(X2) = €3 and
g (X4, X;) = gy (FuX;, F.X;) for all X;,X; € ['(kerF,)*. Thus F is Riemannian map with (rangeF,)* =
Span{e;}. Moreover it is easy to see that JU; = —Us, JUs = U; and (kerF,)* is also invariant with respect
to J. Thus F' is an invariant Riemannian map.

Now we will find a smooth function f on M satisfying TyU = —ga (U, U)VM f for all U € T'(kerF,).
Here any U € T'(kerF,) can be written as U = A\ Uy + AUy for some Aj, A2 € R. Since covariant derivative

for vector fields £ = Eiaizﬂ F= Fja%j on M is defined as

o L OF 0

VMF = E,F;VY s , 3.32
B J 9% 8.13]‘ 8.131' 8l‘j ( )
where the covariant derivatives of basis vector fields % along é%i is defined by
0 0
M k
=Tk 3.33
va(?ci 8.’Ej t 8(Ek7 ( )
and Christoffel symbols are defined by
1 9gmji | Ogma  Ogwmij
ko= - kl( j _ J). 3.34
K 291\/[ 31‘1 an 81’[ ( )
Now, we have
2 0 0 0 P 000
0 0 0 1 0 0 0 1
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By using (3.34) and (3.35), we obtain

F%l = OaI‘%l = 07]-—‘?1 = Oar%l = —Ty4,
I3 = 0,13, = 0,13, = 0,13, = —xy, (3.36)
I, =0=T%.,T2,=0=T%3,,I'%,=0=1%,,T}, =0=Tj5,.

By using (3.32), (3.33) and (3.36), we obtain

1 0
M M M M
V 61—V 62——f75 61—0 62—0.
e1 €2 T4 8:&4’ €2 1

Therefore

VMU =V, L ader + doea = A2V M e 4 A0V ey + M AV ey + A2V ey

(- i).

x4 014
Then by (2.4), we get

1 0
()2 PAY e

For any smooth function f on M, the gradient of f with respect to the metric gp; is given by VM f =

S g gj %. Therefore

J

mMp_10f 0 10f 0 19f 9  Of 9
v f_mi 0z 6x1+x?18m2 8x2+xi Oxs 8m3+6x4 Oxy’

Hence VM f = ?148%4 for the function f = log(w4). Then it is easy to verify that TyU = —gp (U, U)VM £,
where gy (U, U) = (A + A3), for any vertical vector field U. Thus by Theorem 3.2, we see that F' is Clairaut

invariant Riemannian map.

4. Clairaut invariant Riemannian maps to Kahler manifolds

In this section, we introduce Clairaut invariant Riemannian maps to Kédhler manifolds and find a necessary and
sufficient condition for invariant Riemannian maps from Riemannian maps to Ké&hler manifolds to be Clairaut

invariant Riemannian maps and give a non-trivial example of such maps.

Definition 4.1 [10] Let F : (M,gn) — (N,gn) be a proper Riemannian map from a Riemannian manifold
M to a Hermitian manifold N with almost complez structure Jy . We say that F is an invariant Riemannian
map at p € M if Jn(rangeF,,) = rangeF,,. If F is an invariant Riemannian map for every p € M then F

is called an invariant Riemannian map.

Definition 4.2 An invariant Riemannian map from Riemannian manifold to Kéihler manifold is called Clairaut
invariant Riemannian map if it satisfies the condition of Definition 3.8.
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Theorem 4.3 [21] Let F: (M™,gp) — (N™,gn) be a Riemannian map between Riemannian manifolds such
that (rangeF,)* is totally geodesic and o, B = F o a are geodesic curves on M and N, respectively. Then

F is Clairaut Riemannian map with s = e9 if and only if F is umbilical, and has Hy = —VNg, where Hy is

mean curvature vector field of rangeF, and g is a smooth function on N .

Proposition 4.4 Let F : (M,gn) — (N,gn,Jn) be an invariant Riemannian map from a Riemannian

manifold M to a Kdhler manifold N such that (rangeF,)* is totally geodesic and o : I — M be a geodesic

curve on M. Then the curve B = F o« is geodesic curve on N if and only if

IN(VE) (X, X) + VELINV + VEL TNV =0, (4.1)

—SivE X + INF (VEX) + VY INF.X =0, (4.2)

where F,X € D(rangeF.,),V € D(rangeF,)" are components of 3(t) and V'V is the Levi-Civita connection on

N and VI s a linear connection on (rangeF,)* .

Proof Let F be an invariant Riemannian map from a Riemannian manifold M to a Ké&hler manifold N
such that (rangeF.)* is totally geodesic, i.e. VNV = VELV for all U,V € I'(rangeF.)*. Let a: [ — M
be a geodesic on M with U(t) = va(t) and X(t) = Hd(t). Let 8 = F oa be a geodesic on N with
F.X € T'(rangeF,) and V € TI'(rangeF,)" are components of §(t). Since N is Kihler manifold, we have
VB =—JInVYInB.
Now,
Vf;vJNB = Ve xivIn(EX +V),

which is equal to

VYING = INVE xFX + VE x INV + VY INFX + VT Iy V.

Using (2.10) in above equation, we get

N
vgJNﬁ = JINVEF.XoF - S; . vF.X + Vi INV + VY INEX + VY INV.

Since gy (VY INF.X,U) = —gn(INEX,VYU) = —gn(INFX,VELU) = 0 for U € T'(rangeF,)*, which
implies VY JyF.X € I'(rangeF,) and using (2.8) in above equation, we get

vgJNB = IN((VE)(X,X) 4+ FuVYX)) = Sjyv F X + VI INV + VY INF. X 4+ VY N V. (4.3)
Since (rangeF,)* is totally geodesic therefore putting VY JyV = VEL NV in (4.3), we get
VgJNB = JIN(VF)(X,X)+ INE(VEX) = SjyvEX + VR INV + VI INEX + VELINV. (4.4)

Now f( is geodesic on N if and only if Vgﬂ =0 if and only if —JN(VéVJNB) =0 if and only if V]BVJNB =0.

Then (4.4) implies Jy(VFE)(X, X) + INF. (VM X) — Sj v E X + VELINY + VY INF.X + VELINV =0,
which completes the proof. O
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Theorem 4.5 Let F : (M,gn) — (N,gn,Jn) be an invariant Riemannian map from Riemannian manifold
M to Kihler manifold N such that (rangeF,)*: is totally geodesic and o, 3 = F o« are geodesic curves
on M and N, respectively. Then F is Clairaut invariant Riemannian map with s = e9 if and only if

SivvF.X = =V (9)IJNF.X, where g is a smooth function on N and F,X € I'(rangeF.),V € I'(rangeF.)*

are components of B(t).
Proof Let a: I — M be a geodesic on M with U(t) = va(t) and X(t) = Ha(t). Let 8 = Foa be a

geodesic on N with F,X € ['(rangeF,) and V € I'(rangeF,)" are components of 3(t) and w(t) denote the
angle between 8 and V. Assuming b = [|3(t)||?, then we get

anpw(V, V) = bcoszw(t), (4.5)
gnpw (Fu X, F.X) = bsin*w(t). (4.6)
Now differentiating (4.6), we get
d d
2 INB® (FX, F.X) = 2bsinwcoswd—o;. (4.7)

On the other hand

d
agNB(t)(mX, F.X) = 2gN(VIBVJNF*X, INF.X).

By putting 6 = F,X +V in above equation, we get

d

dt
which implies
d N
%gNB(t)(F*X, F.X) =2gn(INVEF.X o F + VY INF. X, JNF. X). (4.8)

Using (2.8) and (4.2) in (4.8), we get
d
agNB(t)(F*X’ F*X) = 2gN(JN(VF*)(X, X) + SJNVF*X, JNF*X)

Using (2.9) in above equation, we get
d
%gNﬂ(t)(F*X,F*X) ZQQN(SJN\/F*X, JNF*X) (49)

Now from (4.7) and (4.9), we get

dw

IN(SivE X, INF X) = bsinwcoswﬁ. (4.10)
Moreover, F' is a Clairaut Riemannian map with s = €9 if and only if %(egoﬁsinw) = 0, that is, egoﬁsinw%Jr
e9°P cosw% = 0. By multiplying this with nonzero factor bsinw and using (4.6), we get
d d
N (F X, F.X) (gdz h) = —bsinwcoswd—c:. (4.11)
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Now from (4.10) and (4.11), we get

d(gop)

IN(SiyvF X, INF.X) = —gnp@) (Fu X, F. X) 7

Since N is Kéahler manifold then above equation can be written as

9 (Ssnv FoX, INF.X) = —gnp (InF.X, JNF*X)d(gdC; 2}
which means
IN(Sav B X, INEX) = =g (INEX, InEX)gn (VY g, B). (4.12)
Since VNg € I'(rangeF,)* and 3= F.X + V, then from (4.12), we get
IN(SI v EX, INFX) = —gnp (In B X, Iy B X)gn (VN g, V). (4.13)
Thus SjyvFX = =V (g)JnF. X, where V(g) is a smooth function on N, which completes the proof. O

Example 4.6 Let M be an Euclidean space given by M = {(z1,22,23,24) € R* : 21 # 0,20 # 0,23 #
0,74 # 0}. We define the Riemannian metric gys on M given by gy = e**4da? + e**41dx3 + e**4dx3 + da?.
Let N = {(y1,42,y3,54) € R*} be a Riemannian manifold with Riemannian metric gy on N given by
gy = e2¥idy? + e2¥edy? + dy? + dy? and the complex structure Jy on N defined as Jn(y1,Y2,y3,v1) =
(—y2,91, —Y4,y3). Consider a map F : (M, gpn) — (N,gn, Jn) defined by

T+ To T — 2
1+22 21 270’0)

F(I1,$27l’3,$4) = ( \/5 ) \/i

Then, we get
kerF, = Span{U; = e3,Us = e4},

and
(kerF)* = Span{X, = e1, Xo = ey},

_ ,—x4 O _ _—x4 O _ _—x4 O _ 0 * _ —xyg O * _ _—xyg O * _ 0 *
where {61 =€ 7311762 =€ 78:62’63 =€ 78:133’64 e € =€ Tyl,ez =€ 76?!2,63 = 7ay3,64 =

6%4} are bases on T,M and Tp) N respectively, for all p € M. By easy computations, we see that
Fiu(X1) = J5(ef +e5), Fu(X2) = (el —e3) and gur(Xi, X;) = gn(FXi, F.X;) for all X;, X; € T(kerFo)™*.
Thus F is Riemannian map with rangeF, = Spcm{F*(Xl) = %(e*{ +e3), Fi(X2) = %(ef — eﬁ)} and
(rangeF,)*: = Span{e},e}}. Moreover it is easy to see that JyF.X; = F.Xs, JvF. Xy = —F,X; and
(rangeF,)* is also invariant with respect to Jy. Thus F is an invariant Riemannian map.

Now to show that F' is Clairaut Riemannian map we will find a smooth function g on N satisfying
(VE) (X, X) = —gu(X, X)V¥g for any X € ['(kerF,)*. Since by (2.9) (VF,)(X, X) € I'(rangeF,)* for any
X € T'(kerF,)*. So, here we can write (VFE,)(X, X) = Aie}+Xaej, and g (X, X) = g (1 X1+ Xa, a1 X1+

asXs) = a2 + a3 for some i, Ao, a1, a0 € R,
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Since, we have

2% 0 0 0 e 0 0 0
0 e 0 0| 4 [ 0 €2 00
ING= 1 g o 1 0o|'INT | o 0 1 0
0 0 0 1 0 0 0 1

For any smooth function g on N, the gradient of g with respect to the metric gy is given by Vg =

4
S gi09 0 Thyg

2 N dy; dy;
YNy — 20099 0 | 20,09 O 09 O | 09 9
Oy1 Oy Oyz Oya ~ Oy3 Oy~ Oya Oya
Hence VVNg = — (a%):ag 8%3 + a%)fag 8%4> for the function g = —a%)_‘ﬁag Ys — a%,)fag ys. Then it is easy to verify
that (VF) (X, X) = —gm (X, X)V¥g, for any vector field X € I'(kerF,)*. Thus by Theorem 4.3 and Lemma

2.1, we see that F is Clairaut invariant Riemannian map.
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