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Abstract: In this paper, we establish a new second main theorem for meromorphic mappings from M into P(V )

intersecting moving targets gj : M → P(V ∗), 1 ≤ j ≤ q, where M is a parabolic manifold and V is a Hermitian vector
space. As an application, we prove the algebraic dependence problem for meromorphic mappings with moving targets
in general position.
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1. Introduction and main results
In 1933, Cartan [2] established the second main theorem for linearly nondegenerate holomorphic curves into
complex projective spaces intersecting hyperplanes in general position which extended Nevanlinna’s results to
the high dimensional case. Later on, value distribution theory for meromorphic mappings of Cm into the
complex projective space Pn(C) intersecting fixed or moving targets had been studied and many interesting
results had been established [10, 14, 16, 19]. For the case of degenerate meromorphic mappings, M. Ru and J.
Wang [15] obtained a second main theorem for moving hyperplanes with truncated counting function. In 2008,
D. D. Thai and S. D. Quang [22] improved the result of Ru-Wang [15].

In 2019, S. D. Quang [11] proved the second main theorems for degenerate meromorphic mappings of
Cm into Pn(C) intersecting moving hyperplanes with counting function truncated to level k as follows.

Theorem A ([11, Theorem 1.1]) Let f : Cm → Pn(C) be a meromorphic mapping. Let {ai}qi=1(q ≥ 2n−k+2)

be meromorphic mappings of Cm into Pn(C)∗ in general position such that (f, ai) ̸≡ 0(1 ≤ i ≤ q), where
k + 1 = rankR(f). Then the following assertions hold:

∥ q − (n− k)

n+ 2
Tf (r) ≤

q∑
i=1

N
[k]
(f,ai)

(r) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r, s)).

Theorem B ([11, Theorem 1.3]) With the assumption of Theorem A, we assume further that q ≥ (n− k)(k+

1) + n+ 2. Then we have
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∥ q

k + 2
Tf (r) ≤

q∑
i=1

N
[k]
(f,ai)

(r) + o(Tf (r)) +O( max
1≤i≤q

Tai(r, s)).

In this paper, by the notation “ ∥ ” we mean that the inequality holds for all r ∈ [0,∞) outside a Borel
subset E of the interval [0,∞) with

∫
E
dr < ∞.

W. Stoll [18] obtained the second main theorem for linearly nondegenerate meromorphic maps from an
m -dimensional parabolic manifold to Pn(C) with fixed hyperplanes. In the case of meromorphic mappings
interesting moving targets, Ashline [1] obtained the logarithmic derivative lemma on parabolic manifolds with
an additional assumption and proved the corresponding second main theorem. In 1997, M. Ru [12] established
the second main theorem with moving targets on parabolic manifold and the logarithmic derivative lemma could
be avoided. In 2015, Q. Yan [25] proved the following truncated second main theorem for meromorphic maps
with moving targets in general position on parabolic manifolds.

Theorem C ([25, Theorem 1.1]) Let (M, τ) be an admissible parabolic manifold with dimension m. Let V be
a Hermitian vector space with dimV = n+1 > 1. Let g1, . . . , gq : M → P(V ∗) be meromorphic maps located in
general position. Let f : M → P(V ) be a nonconstant meromorphic map such that Ricτ (r, s) = o(Tf (r, s)) and
log Y (r) = o(Tf (r, s)) for r → ∞. Assume that (f, gj) is free for 1 ≤ j ≤ q and dim(suppµ(f,gi)∩suppµ(f,gj)) ≤
m− 2 for 1 ≤ i < j ≤ q. If q ≥ 2n+ 1, then for s > 0,

∥ q

2n+ 1
Tf (r, s) ≤

q∑
j=1

N
[n]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)),

where Ricτ (r, s) is the Ricci function, which depends only on the geometry (topology) of the manifold M.

The main purpose of this paper is to give a new second main theorem for degenerate meromorphic
mappings with moving targets on parabolic manifolds. Throughout this paper, we shall use the standard
notations in the value distribution theory of meromorphic mappings on parabolic manifolds ([18, 23]). To
establish the value distribution theory, we shall work on admissible parabolic manifolds, which satisfy the
following assumptions:
(i) M is a connected complex manifold of dimension m .
(ii) There exists a parabolic exhaustion function τ on M.

(iii) For any positive integer n, let Ψ : M → Pn(C) be a linearly nondegenerate meromorphic map. Then there
is a holomorphic differential form B of degree (m− 1, 0) on M such that Ψ is general for B and

mim−1B ∧ B̄ ≤ Y (r)vm−1

on M [r] for some real position valued function Y (r) on M, which is independent of Ψ (Y (r) is called a
majorant for B ). Here, for any positive integer m,

im :=

(√
−1

2π

)m

(−1)
m(m−1)

2 m!.

We can prove the following second main theorem.
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Theorem 1.1 Let (M, τ) be an admissible parabolic manifold with dimension m. Let V be a Hermitian
vector space with dimV = n + 1 > 1. Let g1, . . . , gq : M → P(V ∗) be meromorphic maps located in general
position. Let f : M → P(V ) be a nonconstant meromorphic map with rankRG (f) = k + 1 such that
Ricτ (r, s) = o(Tf (r, s)) and log Y (r) = o(Tf (r, s)) for r → ∞. Assume that (f, gj) is free for 1 ≤ j ≤ q

and dim(suppµ(f,gi) ∩ suppµ(f,gj)) ≤ m− 2 for 1 ≤ i < j ≤ q. If q ≥ 2n− k + 2, then for s > 0,

∥ q − (n− k)

n+ 2
Tf (r, s) ≤

q∑
j=1

N
[k]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)).

We see that the Theorem 1.1 is an improvement of Theorem B.
We will prove a better second main theorem as follows if the number of moving targets is large enough.

Theorem 1.2 With the assumptions of Theorem 1.1, we assume further that q ≥ (n− k+1)(k+2). Then for
s > 0, we have

∥ q

k + 2
Tf (r, s) ≤

q∑
j=1

N
[k]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)).

Remark 1.3 In the case where the mappings are assumed to be nondegenerate, we see that the coefficients in
front of the characteristic function in Theorem 1.1 are the same as in Theorem 1.2.

As the application of the second main theorem, the uniqueness problem have been given over the last
few decades. In 1926, Nevanlinna [8] proved the well-known five-value theorem and four-value theorem for
meromorphic functions on the complex plane C. Fujimoto [6] generalized the Nevanlinna’s five value theorem
to the case of meromorphic mappings from Cm into Pn(C) with counting multiplicities. After that, many
scholars had interest in the uniqueness problem of meromorphic mappings with counting multiplicities or
ignoring multiplicities and obtained a lot of significant results [3–5, 7, 9, 21, 24, 26]. W. Stoll [20] proved
algebraic dependence problem for meromorphic mappings with fixed hyperplanes on parabolic covering space
which extended the results given by Smiley [17]. Ru [13] extended Stoll’s result to moving targets, and he gave
the algebraic dependence problem for the case of meromorphic mappings with moving targets. To state our
results, we need the following notations [20, 25].

Let M be a connected complex manifold of dimension m with surjective, proper holomorphic map
π : M → Cm. Then τ = ∥π∥2 is parabolic exhaustion of M and (M, τ) is called a parabolic covering space
of Cm. Let V be a Hermitian vector space of dimension n + 1 > 1. Let ft : M → P(V ) be a meromorphic
mapping for t = 1, . . . , λ and A be a nonempty subset of M. f1, . . . , fλ are said to be in p -special position
on A if, for any x ∈ A, there exists an open, connected neighborhood Ux of x and a reduced representation
Ft : Ux → V (of ft ) such that, for any 1 ≤ t1 < t2 < . . . < tp ≤ λ,

Ft1(x) ∧ . . . ∧ Ftp(x) = 0.

If A = M omit “on A”. Also “special position” means “λ -special position”. Then f1 and f2 are in
2 -special position if and only if f1 ≡ f2. If f1, . . . , fλ are in λ -special position, then f1, . . . , fλ are algebraically
dependent, where f1, . . . , fλ are said to be algebraically dependent if and only if there is a proper analytic
subset S of P(V )λ such that (f1, . . . , fλ) ⊂ S.
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Using Theorem B, Q. Yan [25] gave an algebraic dependence theorem for meromorphic mappings with
moving targets as following.

Theorem D ([25, Theorem 1.2]) Let f1, . . . , fλ : M → P(V ) be nonconstant meromorphic maps such that
Ricτ (r, s) = o(Tft(r, s)) and log Y (r) = o(Tft(r, s)) for r → ∞, 1 ≤ t ≤ λ. Let g1, . . . , gq : M → P(V ∗) be mero-
morphic maps located in general position and Tgj (r, s) = o(max1≤t≤λ Tft(r, s)) for r → ∞, 1 ≤ j ≤ q. Assume
that (ft, gj) is free for 1 ≤ t ≤ λ, 1 ≤ j ≤ q. Assume that Aj = suppµ(f1,gj) = suppµ(f2,gj) = · · · = suppµ(fλ,gj)

for each 1 ≤ j ≤ q, and dim(Ai ∩Aj) ≤ m− 2 for 1 ≤ i < j ≤ q. Define A =
∪q

j=1 Aj . Assume that f1, . . . , fλ

are in l -special position on A, where l is an integer with 2 ≤ l ≤ λ. If q > n(2n+1)λ
λ−l+1 , then f1, . . . , fλ are in

special position.

We will apply Theorem 1.1 and show the following result.

Theorem 1.4 Let f1, . . . , fλ : M → P(V ) be nonconstant meromorphic maps such that Ricτ (r, s) = o(Tft(r, s))

and log Y (r) = o(Tft(r, s)) for r → ∞, 1 ≤ t ≤ λ. Let g1, . . . , gq : M → P(V ∗) be meromorphic maps located
in general position and Tgj (r, s) = o(max1≤t≤λ Tft(r, s)) for r → ∞, 1 ≤ j ≤ q. Let mj(j = 1, . . . , q) be
positive integers or ∞ with m1 ≥ m2 ≥ . . . ≥ mq. Assume that (ft, gj) is free for 1 ≤ t ≤ λ, 1 ≤ j ≤ q.

Assume that Aj = suppµ(f1,gj),≤mj
= suppµ(f2,gj),≤mj

= · · · = suppµ(fλ,gj),≤mj
for each 1 ≤ j ≤ q, and

dim(Ai ∩Aj) ≤ m− 2 for 1 ≤ i < j ≤ q. Define A = ∪q
j=1Aj . Assume that f1, . . . , fλ are in l -special position

on A, where l is an integer with 2 ≤ l ≤ λ. If k+1 = max1≤t≤λ{rankRG (ft)}, k′+1 = min1≤t≤λ{rankRG (ft)},

q∑
j=3

mj

mj + 1
> q − 2− q − (n− k)

(n+ 2)k
+

2

m2 + 1
+ (1− k′

m2 + 1
)

λ

λ− l + 1
,

then f1, . . . , fλ are in special position.

Similar to the proof of Theorem 1.4, we have the following result by using Theorem 1.2.

Theorem 1.5 With the assumptions of Theorem 1.4, if k+1 = max1≤t≤λ{rankRG (ft)}, k′+1 = min1≤t≤λ{rankRG (ft)},

q∑
j=3

mj

mj + 1
> q − 2− q

(k + 2)k
+

2

m2 + 1
+ (1− k′

m2 + 1
)

λ

λ− l + 1
,

then f1, . . . , fλ are in special position.

Remark 1.6 (1) Letting mj = +∞, (1 ≤ j ≤ q), we have the following results.
(a) By Theorem 1.4, we have

q >
λ(n+ 2)k

λ− l + 1
+ (n− k).

(b) By Theorem 1.5, we have q > λ(k+2)k
λ−l+1 , which is improvement of the Theorem D.

(2) Letting λ = l = 2 and mj = +∞, we get the following uniqueness theorems.
(a) By Theorem 1.4, if q > 2nk + n+ 3k, then f1 = f2.

(b) By Theorem 1.5, if q > 2k(k + 2), then f1 = f2.
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We organize our paper as follows: In next section, we recall some basic notations and definitions in the
value distribution theory on parabolic manifolds. We give the proofs of Theorem 1.1 and Theorem 1.2 in Section
3 and prove Theorem 1.4 in Section 4. In this paper, we adopt the methods and techniques by Quang [11] to
prove the main theorems.

2. Preliminaries
We recall some fundamental notations and results of meromorphic maps on parabolic manifolds, for references,
see [18, 23].

2.1. Parabolic manifolds and Hermitian vector space
Let M be a connected, complex manifold of dimension m. Let τ be a nonnegative function of class C∞ on
M. For r ≥ 0 and A ⊆ M, define

A[r] = {x ∈ A|τ(x) ≤ r2}, A(r) = {x ∈ A|τ(x) < r2},

A⟨r⟩ = {x ∈ A|τ(x) = r2}, A∗ = {x ∈ A|τ(x) > 0},

v = ddcτ, ω = ddc log τ, σ = dc log τ ∧ ωm−1.

If M [r] is compact for each r > 0, then the function τ is said to be an exhaustion of M. The function
τ is said to be parabolic if

ω ≥ 0, dσ = ωm ≡ 0, vm ̸≡ 0 on M∗.

Note that v ≥ 0 on M. If τ is a parabolic exhaustion, (M, τ) is said to be a parabolic manifold. Define
R̂τ = {r ∈ R+|dτ(x) ̸= 0 for all x ∈ M⟨r⟩}. Then R+ \ R̂τ has measure zero. If r ∈ R̂τ , then M⟨r⟩ is the
boundary of M(r) and M⟨r⟩ is a differentiable, (2m−1) -dimensional submanifold of class C∞ which we orient
to the exterior of M(r). By Stoll ([18]), for all r ∈ R̂τ ,

∫
M⟨r⟩ σ is a positive constant, independent of r. Let

κ =
∫
M⟨r⟩ σ. In addition, ∫

M [r]

vm =

∫
M(r)

vm = κr2m.

We will introduce the definition of Hermitian vector space as follows.
Let V be a complex vector space with dimension n + 1 > 1. A function φ : V × V → C is called a

Hermitian metric on V if and only if
(i) φ(α, α) > 0 for all α ∈ V − {0}.
(ii) φ(aα+ bβ, γ) = aφ(α, γ) + bφ(β, γ) for all a and b in C and all α , β and γ in V.

(iii) φ(α, β) = φ(β, α) for all α, β ∈ V.

A norm ∥∥φ : V → R+ called the Hermitian norm defined by φ is given by

∥α∥φ =
√
φ(α, α).

Then
|φ(α, β)| ≤ ∥α∥φ∥β∥φ.

A complex vector space (V, φ) with a Hermitian metric is called a Hermitian vector spaces.
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2.2. Meromorphic maps, reduced representation

Let M be a complex manifold with dimM = m. Let A ̸= ∅ be an open subset of M such that S = M −A is
analytic. Then A is dense in M. Let V be a complex vector space with dimension n+1 > 1. Let f : A → P(V )

be a holomorphic map on A. The closure Γ of the graph {(x, f(x))|x ∈ A} in M×P(V ) is called the closed graph
of f. The map f is said to be meromorphic on M if (i) Γ(f) is analytic in M×P(V ) and (ii) Γ(f)∩(K×P(V ))

is compact for each compact subset K ⊆ M, i.e. the project ρ : Γ(f) → M is proper. If f is meromorphic,
then the set of indeterminacy If = {x ∈ M |♯ρ−1(x) > 1} is analytic with dim If ≤ m− 2 and is contained in
S. The holomorphic map f : A → P(V ) continues to a holomorphic map f : M − If → P(V ) such that we can
assume that S = If .

Suppose that f : A → P(V ) is a holomorphic map as above. Also, suppose that U is a nonempty,
open, connected subset of M. A holomorphic map F : U → V is called a representation of f on U if
F ̸≡ 0 and if f(x) = P(F (x)) for all x ∈ U ∩ A such that F (x) ̸= 0. The representation is called reduced if
dimF−1(0) ≤ m− 2. If F : U → V is reduced representation, then U ∩ If = F−1(0). Also, f is meromorphic
if and only if for every point x ∈ M, there is a representation F : U → V of f with x ∈ U.

2.3. Divisor
Let ν be a divisor on M with S = suppν, and let k, L be positive integers or ∞. We define the following
counting function of ν by:

ν[L](z) = min{ν(z), L}, ν
[L]
≤k(z) =

{
0, if ν(z) > k;
ν[L](z), if ν(z) ≤ k,

nν(t) =

{
t2−2m

∫
S[t]

νvm−1, if m ≥ 2;∑
z∈S[t] ν(z), if m = 1.

Similarly, we define n
[L]
ν (t), n

[L]
ν,>k(t) and n

[L]
ν,≤k(t). The counting function of ν is defined to be

Nν(r, s) =

∫ r

s

nν(t)
dt

t
,

Similarly, we define N
[L]
ν (r, s), N

[L]
ν,>k(r, s) and N

[L]
ν,≤k(r, s).

In addition, if L = ∞, we will omit the L for brevity.

2.4. Projective distance

Suppose that f : M → P(V ) and g : M → P(V ∗) are meromorphic maps. Let U be an open, connected subset
of M. Let F : U → V be a reduced representation of f and G : U → V ∗ be a reduced representation of g. Let
{v0, . . . , vn} be an orthonormal basis of V, and let {v∗0 , . . . , v∗n} be the dual basis.

Take a ∈ V ∗ and b ∈ V ∗\{0} , there is a unique meromorphic function fa,b|U called a coordinate function
on M such that

fa,b|U =
⟨F, a⟩
⟨F, b⟩

,
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if ⟨F, b⟩ ̸≡ 0.

Define

F⌞G =

n∑
i=0

⟨F, v∗i ⟩⟨G, vi⟩,

∥F∥ = max
0≤i≤n

|⟨F, v∗i ⟩|, ∥G∥ = max
0≤i≤n

|⟨G, vi⟩|.

Then the project distance between f and g is defined by

∥f ; g∥|U =
|F⌞G|
∥F∥∥G∥

.

Note that ∥f ; g∥ is global function on M.

(f, g) is called free if and only if there exist representations F : U → V of f and G :→ V ∗ of g such
that F⌞G ̸≡ 0. Suppose that (f, g) is free. Define the intersection divisor of f and g by

µ(f,g)|U = µF⌞G,

which is well-defined. For the intersection divisor of f and g, we denote the counting function by

N(f,g)(r, s) = Nµ(f,g)
(r, s), N

[L]
(f,g)(r, s) = N

µ
[L]

(f,g)

(r, s),

N
[L]
(f,g),>k(r, s) = N

µ
[L]

(f,g),>k

(r, s), N
[L]
(f,g),≤k(r, s) = N

µ
[L]

(f,g),≤k

(r, s).

For r ∈ R̂τ , define

m(f,g)(r) =

∫
M⟨r⟩

log
1

∥f ; g∥
σ.

2.5. Family of moving targets

Let g be a meromorphic map from M into P(V ∗), and G be a reduced representation of g on U and j̄ with

0 ≤ j̄ ≤ n such that ⟨G, vj̄⟩ ̸≡ 0. Then G̃ :=
∑n

i=0
⟨G,vi⟩
⟨G,vj̄⟩

v∗i is a global meromorphic representation of g. Let

G = {g1, . . . , gq} be a family of meromorphic mappings from M into P(V ∗). Denote G̃ = {G̃1, . . . , G̃q}. We

note that ⟨Gj ,vi⟩
⟨Gj ,vj̄⟩

is meromorphic function on M for i = 0, . . . , n and j = 1, . . . , q. Denote by RG the smallest

subfield containing C and all meromorphic functions ⟨Gj ,vi⟩
⟨Gj ,vj̄⟩

for all i, j.

2.6. The first main theorem
The characteristic function of a meromorphic map f : M → P(V ) is defined by

Tf (r, s) =

∫ r

s

dt

t2m−1

∫
M [t]

f∗(Ω) ∧ vm−1 for 0 < s < r,

where Ω is the Fubini-Study form on P(V ).
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The First Main Theorem For r, s in R̂τ with 0 < s < r, we have

Tf (r, s) + Tg(r, s) = N(f,g)(r, s) +m(f,g)(r)−m(f,g)(s).

3. Proof of Theorem 1.1 and Theorem 1.2
In order to prove Theorem 1.1 and according to the proof the Theorem 3.1 in [25], we can obtain the following
lemma.

Lemma 3.1 Let (M, τ) be an admissible parabolic manifold with dimension m. Let V be a Hermitian vector
space with dimV = n+1 > 1. Let g1, . . . , gq : M → P(V ∗) be meromorphic maps located in general position. Let
f : M → P(V ) be a nonconstant meromorphic map such that Ricτ (r, s) = o(Tf (r, s)) and log Y (r) = o(Tf (r, s))

for r → ∞. Assume that (f, gj) is free for 1 ≤ j ≤ q and dim(suppµ(f,gi) ∩ suppµ(f,gj)) ≤ m − 2 for
1 ≤ i < j ≤ q. Assume that there exists a partition {1, . . . , q} = I1 ∪ I2 ∪ . . . ∪ Il satisfying:
(i) {F⌞G̃ij}j∈I1 is minimal over RG , ♯It ≥ 2, and {F⌞G̃ij}j∈It is linearly independent over RG(2 ≤ t ≤ l).

(ii) For any 2 ≤ t ≤ l, j ∈ It, there exist meromorphic functions cj ∈ RG \ {0} such that

∑
j∈It

cjF⌞G̃ij ∈

t−1∪
s=1

∪
j∈Is

F⌞G̃ij


RG

.

Then for s > 0, we have

∥ Tf (r, s) ≤
l∑

i=1

∑
j∈Ii

N
[k]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)),

where k + 1 = rankRG (f), k + 1 ≤ n+ 1.

Proof of Theorem 1.1. We denote by I the set of all permutations of q -tuple (1, . . . , q). For each
element I = (i1, . . . , iq) ∈ I, we set

NI = {r ∈ R+;N
[k]
(f,gi1 )

(r, s) ≤ · · · ≤ N
[k]
(f,giq )

(r, s)}.

We consider an element I of I. Without loss of generality, we set I = (1, . . . , q). We will construct
subsets It of the set A1 = {1, . . . , 2n− k + 2} as follows.

We choose a subset I1 of A1 which is the minimal subset of A1 satisfying that {F⌞G̃ij}j∈I1 is minimal

over RG . If rankRG{F⌞G̃ij}j∈I1 = k + 1, then we stop the process.

Otherwise, set I ′1 = {i : F⌞G̃i ∈ ({F⌞G̃ij}j∈I1)RG}, A2 = A1 \ (I1 ∪ I ′1) and see that ♯I1 ∪ I ′1 < n + 1.

We consider the following two case:
Case 1. Suppose that ♯A2 ≥ n+ 1. Since {g̃ij}j∈A2

is in general position, we have

({F⌞G̃ij}j∈A2)RG ⊃ ({F⌞G̃ij}j∈I1)RG ̸≡ ∅.

Case 2. Suppose that ♯A2 < n+ 1. Then we have the following:

dimRG ({F⌞G̃ij}j∈I1)RG ≥ k + 1− (n+ 1− ♯I1 ∪ I ′1) = k − n+ ♯I1 ∪ I ′1,
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dimRG ({F⌞G̃ij}j∈A2)RG ≥ k + 1− (n+ 1− ♯A2) = k − n+ ♯A2.

We note that ♯I1 ∪ I ′1 + ♯A2 = 2n− k + 2. Hence, the above inequalities imply that

dimRG

(
({F⌞G̃ij}j∈I1)RG ∩ ({F⌞G̃ij}j∈A2

)RG

)
= dimRG ({F⌞G̃ij}j∈I1∪I′

1
)RG + dimRG ({F⌞G̃ij}j∈A2

)RG − (k + 1)

≥ k − n+ ♯I1 ∪ I ′1 + k − n+ ♯A2 − (k + 1) = 1.

Therefore, from the above two cases, we have

({F⌞G̃ij}j∈I1)RG ∩ ({F⌞G̃ij}j∈A2
)RG ̸= ∅.

Thus, we may choose a subset I2 ⊂ A2 which is the minimal subset of A2 satisfying that there exist
nonzero meromorphic functions ci ∈ RG(i ∈ I2),

∑
i∈I2

ciF⌞G̃i ∈

(∪
i∈I1

F⌞G̃i

)
RG

.

We see that ♯I2 ≥ 2, and the family {F⌞G̃ij}j∈I2 is linearly independent over RG . Hence, ♯I2 ≤ k + 1 and

♯(I1 ∪ I2) ≤ min{2n− k + 2, n+ k + 1}.

If rankRG{F⌞G̃ij}j∈I1∪I2 = k + 1, then we stop the process. Otherwise, by repeating the above argument, we

have a subset I ′2 = {i : F⌞G̃i ∈ ({F⌞G̃ij}j∈I1∪I2)RG}, and a subset I3 of A3 = A1 \ (I1 ∪ I2 ∪ I ′2), which satisfy
the following:

• there exist nonzero meromorphic functions ci ∈ RG(i ∈ I3) such that

∑
i∈I3

ciF⌞G̃i ∈

( ∪
i∈I1∪I2

F⌞G̃i

)
RG

,

• {F⌞G̃ij}j∈I3 is linearly independent over RG .

Continuing this process, we get a sequence of subsets I1, . . . , Il which satisfy:

• {F⌞G̃ij}j∈I1 is minimal over RG , ♯It ≥ 2, and {F⌞G̃ij}j∈It is linearly independent over RG(2 ≤ t ≤ l),

• for any 2 ≤ t ≤ l, j ∈ It, there exist meromorphic functions cj ∈ RG \ {0} such that

∑
j∈It

cjF⌞G̃ij ∈

t−1∪
s=1

∪
j∈Is

F⌞G̃ij


RG

,

• rankRG{F⌞G̃ij}j∈I1∪···∪Il = k + 1.

1056



CHEN and ZHANG/Turk J Math

If ♯I1 = 2 , we will remove one element from I1 and combine the remaining element with I2 to become a new
set I1. Therefore, we will get a sequence I1, . . . , Il which satisfies the above three properties and ♯I1 ≥ 3,

♯It ≥ 2(2 ≤ t ≤ l). We set n1 = ♯I1 − 2, nt = ♯It − 1(2 ≤ t ≤ l), n0 = max2≤t≤l nt, J = I1 ∪ · · · ∪ Il, and
d+ 2 = ♯J. Then we can estimate

(n1 + 2) + (n2 + 1) + · · ·+ (nl + 1) = d+ 2, ♯J = d+ 2 ≤ n+ 2.

Now the family of subsets I1, . . . , Il satisfy the assumptions of Lemma 3.1. Therefore, by Lemma 3.1,
we have

Tf (r, s) ≤
l∑

t=1

∑
j∈It

N
[k]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)). (3.1)

For all r ∈ NI , from (3.1) we obtain

∥ Tf (r, s) ≤
∑
j∈J

N
[k]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s))

≤ ♯J

q − (2n− k + 2) + ♯J
(
∑
j∈J

N
[k]
(f,gj)

(r, s) +

q∑
j=2n−k+3

N
[k]
(f,gj)

(r, s))

+o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)).

Since ♯J = d+ 2 ≤ n+ 2, then one can imply that

∥ Tf (r, s) ≤
n+ 2

q − (n− k)

q∑
j=1

N
[k]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)). (3.2)

We see that
∪

I∈I NI = R+ and the above inequality holds for every r ∈ NI , I ∈ I outside a finite Borel
measure subset. Thus,

∥ q − (n− k)

n+ 2
Tf (r, s) ≤

q∑
j=1

N
[k]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)).

Thus, Theorem 1.1 is proved. 2

Proof of Theorem 1.2. We denote by I the set of all permutations of q -tuple (1, . . . , q). For each element

I = (i1, . . . , iq) ∈ I, we set

NI = {r ∈ R+;N
[k]
(f,gi1 )

(r, s) ≤ · · · ≤ N
[k]
(f,giq )

(r, s)}.

We now consider an element I0 of I. Without loss of generality, we set I0 = (1, . . . , q). {gj}qj=1 are
located in general position and rankRG (f) = k + 1, then there is a maximal linearly independent subset of the
set {F⌞G̃j : 1 ≤ j ≤ n + 1} which is of exactly k + 1 elements and contains F⌞G̃1. We assume that they are
{F⌞G̃ij : 1 = i1 < . . . < ik+1 ≤ n+ 1}. For each j ∈ {1, . . . , k + 1}, we set

Ω(j) = {i ∈ (1, . . . , q);F⌞G̃i ∈ (F⌞G̃it ; 1 ≤ t ≤ k + 1, t ̸= j)RG}.
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Note that the space (F⌞G̃it ; 1 ≤ t ≤ k + 1, t ̸= j)RG is of dimension k. Then Ω(j) has at most n elements.
Therefore,

♯

k+1∪
j=1

Ω(j) = ♯

k+1∪
j=1

(Ω(j) \ {ij}k+1
j=1 ) + k + 1 ≤ (n− k)(k + 1) + k + 1 = (n− k + 1)(k + 1).

Hence, there exists an index i0 ≤ (n− k + 1)(k + 1) + 1 such that i0 ̸∈
∪k+1

j=1 Ω(j). This yields that the

set {F⌞G̃ij ; 0 ≤ j ≤ k + 1} is minimal over RG . Then by Lemma 3.1, for all r ∈ NI we have

∥ Tf (r, s) ≤
k+1∑
j=0

N
[k]
(f,gij )

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s))

≤ N
[k]
(f,g1)

(r, s) +

k+1∑
j=2

N
[k]
(f,gij )

(r, s) +N
[k]
(f,gλ)

(r, s)

+o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s))

≤ N
[k]
(f,g1)

(r, s) +

n+1∑
i=n−k+2

N
[k]
(f,gi)

(r, s) +N
[k]
(f,gλ)

(r, s)

+o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s))

≤ 1

n− k + 1
(

n−k+1∑
i=1

N
[k]
(f,gi)

(r, s) +

λ−1∑
i=n−k+2

N
[k]
(f,gi)

(r, s)

+

(n−k+1)(k+2)∑
i=λ

N
[k]
(f,gi)

(r, s)) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s))

=
1

n− k + 1

(n−k+1)(k+2)∑
i=1

N
[k]
(f,gi)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s))

≤ 1

n− k + 1

(n− k + 1)(k + 2)

q

q∑
i=1

N
[k]
(f,gi)

(r, s)

+o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s))

=
k + 2

q

q∑
i=1

N
[k]
(f,gi)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)),

where λ = (n− k + 1)(k + 1) + 1.

We see that
∪

I∈I NI = R+ and the above inequality holds for every r ∈ NI , I ∈ I outside a finite Borel
measure subset. Thus,

∥ q

k + 2
Tf (r, s) ≤

q∑
j=1

N
[k]
(f,gj)

(r, s) + o(Tf (r, s)) +O( max
1≤j≤q

Tgj (r, s)).

Thus, Theorem 1.2 is proved. 2
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4. Proof of Theorem 1.4

In order to prove Theorem 1.4, we need the following lemma.

Lemma 4.1 [20, 25] Let M be a connected complex manifold of dimension m. Let A be a pure (m − 1)-
dimensional analytic subset of M and V be a complex vector space of dimension n + 1 > 1. Let λ and l be
integers with 1 ≤ l ≤ λ ≤ n + 1. Let fj : M → P(V ), 1 ≤ j ≤ λ be meromorphic mappings. Assume that
f1, . . . , fλ are in general position (not in special position), and f1, . . . , fλ are in l -special position on A. Then,
we have

µf1∧...∧fλ ≥ (λ− l + 1)νA.

Proof of Theorem 1.5. Assume that f0, . . . , fλ are not in special position, and kt + 1 = rankRG (ft),

k = max{kt : 1 ≤ t ≤ λ}, k′ = min{kt : 1 ≤ t ≤ λ}. Let Ft : U → V be a representation of ft on U for
t = 1, . . . , λ. Then F1∧· · ·∧Fλ : U →

∧
λ V is not identically zero, there exists one and only one divisor defined

by

µf1∧̇···∧̇fλ |U = µF1∧···∧Fλ
.

By Lemma 4.1, we have, for every 1 ≤ t ≤ λ,

q∑
j=1

N
[kt]
(ft,gj)

(r, s) ≤ kt
λ− l + 1

Nµf1∧̇···∧̇fλ
(r, s). (4.1)

By the first main theorem of the exterior product (cf. (3.28) of [20]),

Nµf1∧̇···∧̇fλ
(r, s) ≤

λ∑
i=1

Tfi(r, s) +O(1). (4.2)

Combining (4.1) and (4.2), we obtain

q∑
j=1

N
[kt]
(ft,gj)

(r, s) ≤ kt
λ− l + 1

λ∑
i=1

Tfi(r, s) +O(1). (4.3)
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By Theorem 1.1, for each 1 ≤ t ≤ λ, we have

q − (n− kt)

n+ 2
Tft(r, s) ≤

q∑
j=1

N
[kt]
(ft,gj)

(r, s) + o( max
1≤t≤λ

Tft(r, s))

≤
q∑

j=1

(N
[kt]
(ft,gj),≤mj

(r, s) +N
[kt]
(ft,gj),>mj

(r, s)) + o( max
1≤t≤λ

Tft(r, s))

≤
q∑

j=1

(
N

[kt]
(ft,gj),≤mj

(r, s) +
kt

mj + 1
N(ft,gj),>mj

(r, s)

)
+o( max

1≤t≤λ
Tft(r, s))

≤
q∑

j=1

N
[kt]
(ft,gj),≤mj

(r, s) + o( max
1≤t≤λ

Tft(r, s))

+

q∑
j=1

kt
mj + 1

(N(ft,gj)(r, s)−N
[kt]
(ft,gj),≤mj

(r, s)).

We note that N(ft,gj)(r, s) ≤ Tft(r, s) + o(max1≤t≤λ Tft(r, s)). Thus, we have

q − (n− kt)

n+ 2
Tft(r, s) ≤

q∑
j=1

(1− kt
mj + 1

)N
[kt]
(ft,gj),≤mj

(r, s) +

q∑
j=1

kt
mj + 1

Tft(r, s)

+o( max
1≤t≤λ

Tft(r, s))

≤ (1− kt
m1 + 1

)N
[kt]
(ft,g1),≤m1

(r, s) + o( max
1≤t≤λ

Tft(r, s))

+

q∑
j=2

(1− kt
m2 + 1

)N
[kt]
(ft,gj),≤mj

(r, s) +

q∑
j=1

kt
mj + 1

Tft(r, s)

≤ (
kt

m2 + 1
− kt

m1 + 1
)N

[kt]
(ft,g1),≤m1

(r, s) + o( max
1≤t≤λ

Tft(r, s))

+

q∑
j=1

(1− kt
m2 + 1

)N
[kt]
(ft,gj),≤mj

(r, s) +

q∑
j=1

kt
mj + 1

Tft(r, s).

Hence, together with N
[kt]
(ft,g1),≤m1

(r, s) ≤ Tft(r, s) + o(max1≤t≤λ Tft(r, s)), the above inequality implies
that

q − (n− kt)

n+ 2
Tft(r, s) ≤ (

kt
m2 + 1

− kt
m1 + 1

)Tft(r, s) + o( max
1≤t≤λ

Tft(r, s))

+

q∑
j=1

(1− kt
m2 + 1

)N
[kt]
(ft,gj),≤mj

(r, s) +

q∑
j=1

kt
mj + 1

Tft(r, s).
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Noting that N
[kt]
(ft,gj),≤mj

(r, s) ≤ N
[kt]
(ft,gj)

(r, s), then, combining with (4.3), one can imply that

q − (n− kt)

n+ 2
Tft(r, s) ≤ (

kt
m2 + 1

− kt
m1 + 1

)Tft(r, s) +

q∑
j=1

(1− kt
m2 + 1

)N
[kt]
(ft,gj)

(r, s)

+

q∑
j=1

kt
mj + 1

Tft(r, s) + o( max
1≤t≤λ

Tft(r, s))

≤ (
kt

m2 + 1
− kt

m1 + 1
)Tft(r, s) +

q∑
j=1

kt
mj + 1

Tft(r, s)

+(1− kt
m2 + 1

)
kt

λ− l + 1

λ∑
i=1

Tfi(r, s) + o( max
1≤t≤λ

Tft(r, s)).

Then, for each 1 ≤ t ≤ λ, we have

−
q∑

j=3

1

mj + 1
Tft(r, s) ≤ 2

m2 + 1
Tft(r, s)−

q − (n− kt)

(n+ 2)kt
Tft(r, s)

+(1− kt
m2 + 1

)
1

λ− l + 1

λ∑
i=1

Tfi(r, s) + o( max
1≤t≤λ

Tft(r, s))

≤ 2

m2 + 1
Tft(r, s)−

q − (n− k)

(n+ 2)k
Tft(r, s)

+(1− k′

m2 + 1
)

1

λ− l + 1

λ∑
i=1

Tfi(r, s) + o( max
1≤t≤λ

Tft(r, s)).

Thus,

q∑
j=3

mj

mj + 1

λ∑
t=1

Tft(r, s) ≤ (q − 2)

λ∑
t=1

Tft(r, s) +
2

m2 + 1

λ∑
t=1

Tft(r, s)

−q − (n− k)

(n+ 2)k

λ∑
t=1

Tft(r, s)

+(1− k′

m2 + 1
)

λ

λ− l + 1

λ∑
i=1

Tfi(r, s) + o(

λ∑
t=1

Tft(r, s)).

Let r → ∞,
q∑

j=3

mj

mj + 1
≤ q − 2− q − (n− k)

(n+ 2)k
+

2

m2 + 1
+ (1− k′

m2 + 1
)

λ

λ− l + 1
.

This is a contradiction. Hence, f1, . . . , fλ are in special position. 2
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