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Abstract: Main purpose of this paper is to obtain fundamental relationships for the integrals and the matrix Wiener
transforms on Hilbert space. Using some technics and properties of matrices of real numbers, we state some algebraic
structure of matrices. We then establish evaluation formulas with examples. Furthermore, we define the matrix Wiener
transform, and investigate some properties of the matrix Wiener transform. Finally, we establish relationships for the
matrix Wiener transform.
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1. Introduction
With the development of scientific techniques, some integration theories and relationships transforms on Hilbert
space have appeared in engineering and humanities, health sciences to economics, finance and machine learning.
According to these applications, the concept of Wiener transform on a Hilbert space was introduced and studied
by Segal, Hida, Negrin, Hayek et al. They then developed various theories and structures for the Wiener
transform via the second quantization by use of an integral operator and some concepts of matrix on Hilbert
space, see [7, 12, 13, 15–20].

Research results of various integral transforms on function space have been published in many papers
[1–6, 9–11]. Recently studies on integral transform using matrices, it is called the matrix transform, have been
conducted, and are being used in various fields. All formulas and results for the matrix transform are more
generalized versions in previous papers [7, 14, 17].

In this paper, we first obtain two evaluation formula via the some concepts and properties of matrices
of real numbers, and give some examples. We then define the matrix Wiener transform, and establish some
relationships. Our results and formulas take a different form than the previous ones. Various research results
can be obtained by using the properties of matrices.

2. Definitions and preliminaries
In this section, we state some definitions and notations to understand the paper.

Let H be a real Hilbert space with inner product ⟨x, x′⟩H for x, x′ ∈ H and let L ≡ L(H : H) be
the set of all bounded linear operators on H [7, 8]. Let A and B be elements of L such that there exists an
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orthonormal basis B = {eα}α∈A of H (A being some index set) consisting of elements of H with

Aeα = µαeα, Beα = λαeα (2.1)

for some real numbers µα and λα . Then we note that for each x ∈ H ,

x =
∑
α∈A

⟨x, eα⟩Heα

and hence,

Ax =
∑
α∈A

⟨x, eα⟩Hµαeα and Bx =
∑
α∈A

⟨x, eα⟩Hλαeα.

For any arbitrary set F , natural numbers k and n , let MF
k×n be the set of all matrices whose components

are in F , namely, let
MF

k×n = {A = (aij)k×n|aij ∈ F , 1 ≤ i ≤ k, 1 ≤ j ≤ n}. (2.2)

Then the space (ML
k×n, ∥ · ∥0) is a Banach space with the norm

∥A∥0 = max{∥Tij∥op : 1 ≤ i ≤ k, 1 ≤ j ≤ n},

where A = (Tij) ∈ ML
k×n and ∥T∥op is the operator norm of T ∈ L , see [7].

We give simple examples of MF
k×n .

Example 2.1 When k = 2, n = 1 and F = H ,

MK
2×1 =

{(
x
y

)
: x, y ∈ H

}
.

If k = n = 2 and F = L , then

ML
2×2 =

{(
T11 T12
T21 T22

)
: T11, T12, T21, T22 ∈ L

}
.

We shall explain algebraic calculations on MF
k×n to develop our theories and results. According to the

various algebraic calculations for the matrices with constant coefficients, we shall introduce some algebraic
calculations on MF

k×n .

Remark 2.2 We adopt some notations and properties of matrices of real numbers as follows:

(i) For x =

x1...
xn

 ∈ MH
n×1 and T =

T11 · · · T1n
· · ·

Tn1 · · · Tnn

 ≡ (Tij) ∈ ML
n×n , let

Tx =


n∑

r=1
T1rxr

...
n∑

r=1
Tnrxr

 ∈ MH
n×1.
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(ii) For T1 = (T
(1)
ij ) and T2 = (T

(2)
ij ) in ML

n×n , let

A =
(
T1|T2

)
=

T (1)
11 · · · T (1)

1n T
(2)
11 · · · T (2)

1n

· · ·
T

(1)
n1 · · · T (1)

nn T
(2)
n1 · · · T (2)

nn

 ∈ ML
n×2n

and

B =

T1−
T2

 =



T
(1)
11 · · · T (1)

1n

· · ·
T

(1)
n1 · · · T (1)

nn

T
(2)
11 · · · T (2)

1n

· · ·
T

(2)
11 · · · T (2)

1n


∈ ML

2n×n.

(iii) Let T1 = (T
(1)
ij ), T2 = (T

(2)
ij ), S1 = (S

(1)
ij ) and S2 = (S

(2)
ij ) be elements of ML

n×n with

T
(1)
ij eα = µ

(1),α
ij eα, T

(2)
ij eα = µ

(2),α
ij eα, S

(1)
ij eα = λ

(1),α
ij eα

and
S
(2)
ij eα = λ

(2),α
ij eα

for eα ∈ B . Let (A)0 be the matrix of the eigenvalues of T1, T2, S1 and S2 as below

(A)0 =

(µ
(1),α
ij ) | (λ(1),αij )

−−−
(µ

(2),α
ij ) | (λ(2),αij )

 ∈ MR
2n×2n.

For x =

x1...
xn

 ∈ MH
n×1 and α ∈ A , let (x)α be the matrix of real numbers as below

(x)α =

⟨x1, eα⟩H
...

⟨xn, eα⟩H

 ∈ MR
n×1.

(iv) For x =

x1...
xn

 and y =

y1...
yn

 ∈ MH
n×1 , let

xy =



x1
...
xn
y1
...
yn


≡

 x
−−
y

 ∈ MH
2n×1.
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(v) For xy is in (iv), let H be a transform from MH
2n×1 to MH

n×1 ≡ Hn defined by the formula

H(xy) =
(
x+ y

)
. (2.3)

Then H is a linear transform.

(vi) For T ∈ ML
k×n , let T t be the transpose matrix of T . Then T t is an element of ML

n×k . For example, if

T =

(
T11 T12
T21 T22

)
, then T t =

(
T11 T21
T12 T22

)
.

We now state a class of functions used in this paper.

Definition 2.3 For a natural number n , let S(n) be the class of functions on Rn which satisfies the condition

|f(u)| ≤Mf exp

{
Nf

n∑
r=1

|uj |
}

(2.4)

where u = (u1, · · · , un) ∈ Rn , f ∈ C∞(Rn) , (the set of infinitely many differential functions), Mf and Nf are

nonnegative real numbers. In this case, f is called an exponential type function on Rn . Let E(n)
0 be the class

of all functions Fβ on Hn of the form

Fβ(x) = f((x)β) = f

⟨x1, eα⟩H
...

⟨xn, eα⟩H

 (2.5)

where f ∈ S(n) and eβ ∈ B . We say that Fβ(x) is a exponential type function on Hn .

For a function Fβ on Hn , we denote the Hn -integral by∫
Hn

F (x)dgc(x)

where the integration on Hn is performed with respect to the normalized distribution gc of the variance
parameter c > 0 if it exists. Then we have∫

Hn

Fβ(x)dgc(x) =

(
1√
2πc

)n ∫
Rn

f(v) exp

{
−v

tv

2c

}
dv (2.6)

if it exists, where v =

v1...
vn

 ∈ MR
n×1 .

3. Evaluation formulas
In this section, we obtain two evaluation formulas for the Hn -integral, and give some examples to explain the
usefulness of our evaluation formulas.

When calculating integrals, there are many functions that are actually difficult to calculate integrals.
In the following Theorem 3.1 below, it can be seen that these difficulties can be solved under appropriate
conditions.
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Theorem 3.1 Let T = (Tij) be an element of ML
n×n with real valued eigenvalues, Tijeα = µα

ijeα for
i, j = 1, · · · , n , where eα ∈ B . Then∫

Hn

Fβ(x)dgc(x) =

∫
Hn

Fβ(Tx)dgc(x) (3.1)

for all Fβ ∈ E(n)
0 if following conditions hold:

(a) The determinant of (T )0 is 1 and hence (T )0 has the inverse matrix (T )−1
0 .

(b) ((T )−1
0 )t((T )−1

0 ) = In , where In denotes the identity matrix in MR
n×n .

Proof First, using Equations (2.6) and (2.4), one can see that∣∣∣∣∫
Hn

Fβ(x)dgc(x)

∣∣∣∣
≤

(
1√
2πc

)n ∫
Rn

|f(vt)| exp
{
−v

tv

2c

}
dv

≤
(

1√
2πc

)n

Mf

∫
Rn

exp

{
Nf

n∑
r=1

|vj | −
vtv

2c

}
dv <∞

and so Fβ is integrable on Hn . We left to show that Equation (3.1) holds. In order to do this, using Equations
(2.6) and (2.4), we obtain that∫

Hn

Fβ(Tx)dgc(x) =

∫
Hn

f

(
(T )0(x)β

)
dgc(x)

=

(
1√
2πc

)n ∫
Rn

f

(
(T )0v

)
exp

{
−v

tv

2c

}
dv.

Now, let w = (T )0v . Then using conditions (a) and (b), we can obtain that∫
Hn

Fβ(Tx)dgc(x)

=

(
1√
2πc

)n ∫
Rn

f(w) exp

{
−w

t((T )−1
0 )t(T )−1

0 w

2c

}
dw

=

(
1√
2πc

)n ∫
Rn

f(w) exp

{
−w

tw

2c

}
dw,

which completes the proof of Theorem 3.1 as desired. 2

We shall give two examples to illustrate the usefulness of Theorem 3.1 above.

Example 3.2 Let T be as in Theorem 3.1 and let f(u1, u2) = sec4(u1 + u2) . Then Fβ(x) = sec4(⟨x1, eβ⟩H +

⟨x2, eβ⟩H) . One can see that the calculation of the following integral∫
H2

Fβ(x)dgc(x)
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is not easy. However, using Equation (3.1) we have∫
H2

Fβ(x)dgc(x)

=

∫
H2

Fβ(Tx)dgc(x)

=

∫
H2

sec4((µβ
11 + µβ

21)⟨x1, eβ⟩H + (µβ
12 + µβ

22)⟨x2, eβ⟩H)dgc(x)

=

(
1√
2πc

)2 ∫
R2

sec4((µβ
11 + µβ

21)v1 + (µβ
12 + µβ

22)v2) exp

{
−v

2
1 + v22
2c

}
dv

=

(
1√
2πc

)2 ∫
R2

exp

{
−v

2
1 + v22
2c

}
dv = 1

provided µβ
11 + µβ

21 = 0 and µβ
12 + µβ

22 = 0 .

In our next example, we give an example for the 3 -dimensional version of Theorem 3.1.

Example 3.3 Let T be as in Theorem 3.1 and let f(u1, u2, u3) = exp{−u2+u3

u1
} . Then

Fβ(x) = exp

{
−⟨x2, eβ⟩H + ⟨x3, eβ⟩H

⟨x1, eβ⟩H

}
.

One can see that the calculation of the following integral∫
H3

Fβ(x)dgc(x)

is also not easy. However, using Equation (3.1) we have∫
H3

Fβ(x)dgc(x)

=

∫
H3

Fβ(Tx)dgc(x)

=

∫
H3

exp

{
− (µβ

12 + µβ
22 + µβ

32)⟨x2, eβ⟩H + (µβ
13 + µβ

23 + µβ
33)⟨x3, eβ⟩H

(µβ
11 + µβ

21 + µβ
31)⟨x1, eβ⟩H

}
dgc(x)

=

(
1√
2πc

)3 ∫
R3

exp

{
− (µβ

12 + µβ
22 + µβ

32)v2 + (µβ
13 + µβ

23 + µβ
33)v3

(µβ
11 + µβ

21 + µβ
31)v1

}

× exp

{
−v

2
1 + v22 + v23

2c

}
dv

=

(
1√
2πc

)3 ∫
R3

exp

{
−K − v21 + v22 + v23

2c

}
dv = e−K

provided µβ
11 = Kµβ

21, µ
β
12 = Kµβ

22 and µβ
13 = Kµβ

23 .
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When n = 2 , we have the following evaluation formula.

Corollary 3.4 Let T =

(
T11 T12
T21 T22

)
be an element of ML

2×2 with real valued eigenvalues, T11eα = µα
11eα, T12eα =

µα
12eα, T21eα = µα

21eα and T22eα = µα
22eα for eα ∈ B . Then∫
H2

Fβ(x)dgc(x) =

∫
H2

Fβ(Tx)dgc(x) (3.2)

for all Fβ ∈ E(2)
0 if following conditions hold:

(a’) (µβ
11)

2 + (µβ
21)

2 = 1, (µβ
12)

2 + (µβ
22)

2 = 1 .

(b’) µβ
11µ

β
21 + µβ

12µ
β
22 = 0 .

(c’) µβ
11µ

β
22 − µβ

12µ
β
21 = 1 .

In fact, the matrix
(
cos θ − sin θ
sin θ cos θ

)
satisfies conditions (a’), (b’), and (c’).

The following lemma plays a key role to obtain the second evaluation formula for Hn -integrals.

Lemma 3.5 Let φ be a measurable function on R . Then for all nonzero complex numbers p and q ,∫
H

∫
H

φ(p⟨x, eα⟩+ q⟨y, eα⟩)dgc(x)dgc(y)
∗
=

∫
H

φ(
√
p2 + q2⟨z, eα⟩)dgc(z) (3.3)

where by ∗
= we means that if either side exists, both sides exist and equality holds.

Proof In order to prove the Lemma 3.5, we define a transform Rθ on H ×H . For each real number θ , let
Rθ : H×H → H×H be the transform defined by Rθ(x) = (X) , where

X ≡
(
X1

X2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)

for x =

(
x1
x2

)
. Let h be a measurable function on R× R and let

H(x) = h

(
⟨x1, eα⟩H
⟨x2, eα⟩H

)
= h((x)α).

Then using Equation (2.6) it follows that∫
H2

H(Rθ(x))dgc(x)

=

(
1√
2πc

)2 ∫
R2

h(Xu) exp

{
−u

2
1 + u22
2c

}
du,
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where u =

(
u1
u2

)
. Now, let u1 cos θ−u2 sin θ = u′1 and u1 sin θ+u2 cos θ = u′2 . Then the last expression above

becomes (
1√
2πc

)2 ∫
R2

h(u′) exp

{
− (u′1)

2 + (u′2)
2

2c

}
du′,

where u′ =
(
u′1
u′2

)
, and hence by using Equation (2.3) again, we obtain Equation (3.4) as below

∫
H2

H(x)dgc(x)
∗
=

∫
H2

H(Rθ(x))dgc(x). (3.4)

Now, let P2 : H2 → H be the projection map given by P2(x) = x2 and let H(x) = K(P2(x)) where K is a
measurable function on H . Then∫

H2

K(x1 sin θ + x2 cos θ)dgc(x)
∗
=

∫
H

K(z)dgc(z). (3.5)

For given real numbers p and q , letting sin θ = p√
p2+q2

, cos θ = q√
p2+q2

. Replacing K with F (x) =

K(
√
p2 + q2x) where F (x) = φ(⟨x, eα⟩) , we can complete the proof of Lemma 3.5. 2

In Theorem 3.6, we establish the second evaluation formula. Equation (3.6) is called the composition
formula for Hn -integrals with matrices.

Theorem 3.6 Let Fβ be an element of E(n)
0 and let T1, T2 ∈ ML

n×n with

Tk = (T
(k)
ij ),

where T
(k)
ij eα = µ

(k),α
ij eα for k = 1, 2 . Then we have

∫
Hn

∫
Hn

Fβ(T1x+ T2y)dgc(x)dgc(y) =

∫
Hn

Fβ(T3z)dgc(z) (3.6)

where (T3)0 = (λβij) ∈ MR
n×n with

(λβij)
2 = (µ

(1),β
ij )2 + (µ

(2),β
ij )2

for all i, j = 1, · · · , n .

Proof We first note that

T1x+ T2y =


n∑

r=1
(T

(1)
1r xr + T

(2)
1r yr)

...
n∑

r=1
(T

(1)
nr xr + T

(2)
nr yr)


1071
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and so

Fβ(T1x+ T2y) = f


n∑

r=1
(µ

(1),β
1r ⟨xr, eβ⟩+ µ

(2),β
1r ⟨yr, eβ⟩)

...
n∑

r=1
(µ

(1),β
nr ⟨xr, eβ⟩+ µ

(2),β
nr ⟨yr, eβ⟩)

 .

Also we note that

Fβ(T3z) = f


n∑

r=1
λβ1r⟨zr, eβ⟩

...
n∑

r=1
λβnr⟨zr, eβ⟩

 .

Let Pros be a s -th projection map on Rn defined by the formula Pros(u) = us, s = 1, 2, · · · , n and let
f = ψ ◦ ps for a measurable function ψ . Then using these facts and (3.3) in Lemma 3.5 with φ replaced by ψ

repeatedly, we have

∫
Hn

∫
Hn

Fβ(T1x+ T2y)dgc(x)dgc(y)

=

∫
Hn

∫
Hn

f

(
(T1)0(x)β + (T2)0(y)β

)
dgc(x)dgc(y)

=

∫
Hn

∫
Hn

ψ

( n∑
r=1

(µ(1),β
sr ⟨xr, eβ⟩+ µ(2),β

sr ⟨yr, eβ⟩)
)
dgc(x)dgc(y)

=

∫
Hn

∫
Hn

ψ

( n∑
r=1

λβsr⟨zr, eβ⟩
)
dgc(x)dgc(y)

=

∫
Hn

f

(
(T3)0(z)β

)
dgc(z)

=

∫
Hn

Fβ(T3z)dgc(z).

Hence we have the desired results. 2

4. Matrix Wiener transform
In this section we first define the matrix Wiener transform, and establish the existence of matrix Wiener

transform for functions in E(n)
0 . We then obtain some relationships for the matrix Wiener transform. In order

to do this, we need following items.
For T1, T2, S1 and S2 in ML

n×n , let

A =

T1 | S1

−−−
T2 | S2

 ∈ ML
2n×2n. (4.1)
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Then we have

Axy =

T1 | S1

−−−
T2 | S2

x
−
y

 =

T1x+ S1y
−−−

T2x+ S2y

 ∈ MH
2n×1.

Hence we have

H(Axy) =
(
(T1 + T2)x+ (S1 + S2)y

)
∈ MH

n×1.

Furthermore, one can see that

(
(T1 + T2)x+ (S1 + S2)y

)
=


n∑

r=1
(T

(1)
1r + T

(2)
1r )xr +

n∑
r=1

(S
(1)
1r + S

(2)
1r )yr

...
n∑

r=1
(T

(1)
nr + T

(2)
nr )xr +

n∑
r=1

(S
(1)
nr + S

(2)
nr )yr

 ∈ MH
n×1

and so

Fβ(H(Axy)) = f

(
(A)0(xy)β

)
.

We are ready to define a matrix Wiener transform via the bounded linear operators on the product space
of Hilbert spaces.

Definition 4.1 Let F be a exponential type function on Hn and let H be as in Equation (2.3). Let A be as
in Equation (4.1) above. The (H) matrix Wiener transform TH

A (F ) of F is defined by the formula

TH
A (F )(y) =

∫
Hn

(F ◦ H)(Axy)dgc(x), (4.2)

if it exists.

In our next theorem, we establish the existence of the matrix Wiener transform for functions in E(n)
0 .

Theorem 4.2 (Existence theorem) Let Fβ be as in Equation (2.5) above. Then the matrix Wiener transform

TH
A (Fβ) of Fβ exists, belongs to E(n)

0 and is given by the formula

TH
A (Fβ)(y) = ΓTH

A (Fβ)((y)β), (4.3)

where

ΓTH
A (Fβ)(u) =

(
1√
2πc

)n ∫
Rn

f

(
((T1)0 + (T2)0)v + ((S1)0 + (S2)0)u

)

× exp

{
−v

tv

2c

}
dv.
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Proof Using Equations (4.2) and (2.6), we have

TH
A (Fβ)(y)

=

∫
Hn

Fβ((T1 + T2)x+ (S1 + S2)y)dgc(x)

=

∫
Hn

f

(
((T1)0 + (T2)0)(x)0 + ((S1)0 + (S2)0)(y)β

)
dgc(x)

=

(
1√
2πc

)n ∫
Rn

f

(
((T1)0 + (T2)0)v + ((S1)0 + (S2)0)(y)β

)
exp

{
−v

tv

2c

}
dv.

We next use Equation (2.4) to obtain the existence as below:

|ΓTH
A (Fβ)(u)|

≤
(

1√
2πc

)n

Mf

∫
Rn

exp

{
NfM1

n∑
r=1

|vr|
}
exp

{
−v

tv

2c

}
dv

× exp

{
NfM2

n∑
r=1

|ur|
}

≤MTH
A (Fβ) exp

{
NTH

A (Fβ)

n∑
r=1

|ur|
}
<∞,

where M1 =Max{|µ(1),β
ij |, |µ(2),β

ij |} , M2 =Max{|λ(1),βij |, |λ(2),βij |} for i, j = 1, · · · , n , NΓTH
A

(Fβ)
= NfM2 and

MΓTH
A

(Fβ)
=

(
1√
2πc

)n

Mf

∫
Rn

exp

{
NfM1

n∑
r=1

|vr|
}
exp

{
−v

tv

2c

}
dv <∞.

Hence we have the desired result. 2

Theorem 4.3 tells us that the matrix Wiener transforms are commutative.

Theorem 4.3 (Relationship 1 : commutation of the matrix Wiener transform) Let Fβ be an element of E(n)
0

and let

Ak =

Tk1 | Sk1

−−−
Tk2 | Sk2

 ∈ ML
2n×2n

where Tkq and Skq satisfy the condition (iii) in Remark 2.2 respectively for k, q = 1, 2 . Then

TH
A2

(TH
A1

(Fβ))(y) = TH
A1

(TH
A2

(Fβ))(y)

if
(T11)0 + (T12)0 = (T21)0 + (T22)0, (S11)0 + (S12)0 = (S21)0 + (S22)0,

and ((S21)0 + (S22)0) and ((S11)0 + (S12)0) are commutative.
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Proof Using Equations (4.2) and (2.6), we have

TH
A2

(TH
A1

(Fβ)(y)

=

∫
Hn

∫
Hn

Fβ((T11 + T12)z + (S11 + S12)(T21 + T22)x

+ (S11 + S12)(S21 + S22)y)dgc(z)dgc(x)

=

(
1√
2πc

)2n ∫
Rn

∫
Rn

f

(
((T11)0 + (T12)0)w + ((S11)0 + (S12)0)((T21)0 + (T22)0)v

+ ((S11)0 + (S12)0)((S21)0 + (S22)0)(y)β

)

× exp

{
−w

tw + vtv

2c

}
dwdv.

(4.4)

Using the similar methods, we have

TH
A1

(TH
A2

(Fβ)(y)

=

(
1√
2πc

)2n ∫
Rn

∫
Rn

f

(
((T21)0 + (T22)0)w + ((S21)0 + (S22)0)((T11)0 + (T12)0)v

+ ((S21)0 + (S22)0)((S11)0 + (S12)0)(y)β

)

× exp

{
−w

tw + vtv

2c

}
dwdv.

(4.5)

Comparing two equations (4.4) and (4.5), we can obtain the desired results. 2

We give a composition formula and a inverse transform for the matrix Wiener transform.

Theorem 4.4 (Relationship 2 : composition formula and inverse transform) Under the hypothesis of Theorem
4.3, we have

TH
A2

(TH
A1

(Fβ))(y) = TH
A3

(Fβ)(y)

if
(A3)0 = (λβij) ∈ ML

n×n

where (λβij)
2 = [(µ

(11),β
ij ) + (µ

(12),β
ij )]2 + [((µ

(21),β
ij ) + (µ

(22),β
ij ))((λ

(11),β
ij ) + (λ

(12),β
ij ))]2 . Furthermore, we have

TH
A2

(TH
A1

(Fβ))(y) = Fβ(y)

if
(T11)0 + (T12)0 or (T21)0 + (T22)0

is the zero matrix, and ((S21)0+(S22)0)((S11)0+(S12)0) = In where In denotes the identity matrix in MR
n×n .

In this case, we write
(TH

A1
)−1 = TH

A2
.
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We finish this paper by a stating some differences the matrix Wiener transform TH
A1

used in this paper
and the matrix Wiener transform Fc,A,B used in [13].

Remark 4.5 In [13], the authors defined the matrix Wiener transform Fc,A,B on a Hilbert space Rn , and then
they analyzed some properties of the matrix Wiener transform Fc,A,B involving the composition, inverse and
Parseval’s formulas corresponding to Theorem 4.4 in this paper. These formulas are meaningful. While, our
matrix Wiener transform TH

A is defined on general Hilbert space H . This tells that all formulas and results in
[13] are corollaries of our formulas and results. More specifically, when H = R

TH
A (Fβ)(y) = Fc,T0,S0

(f)(u)

where Fβ(x) = f((x)β) , T0 = (T1)0 + (T2)0 and S0 = (S1)0 + (S2)0 for a matrix A given by Equation
(4.1) above. Furthermore, we obtained an evaluation formula (3.1) with some examples. This version was not
established in [13]. In addition to this formula, it is expected that other formulas that have not been dealt with
in [13] can be obtained.
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