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Abstract: We present and investigate a new subclass of biunivalent functions by applying Gegenbouer polynomials in
this paper. Also, we find nonsharp estimates on the first two coefficients |b0| and |b1| for functions belonging to this
subclass. Furthermore, the Fekete–Szegö inequality

∣∣b1 − ηb20
∣∣ for this subclass is obtained. We also point out some

consequences of results.
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1. Introduction

Let A denote the class of all analytic functions f which are normalized by the conditions f(0) = 0 and f
′
(0) = 1

and defined in the open unit disc U = {z ∈ C : |z| < 1} . Taylor’s series expansion of f ∈ A is of the form:

f(z) = z +

∞∑
n=2

anz
n. (1)

Further, by S we mean the subclass of A containing those functions which are univalent and analytic in
U (for detail, see [15]).

Suppose the functions f and F are analytic in U . Then the subordination between f and F is
symbolically denoted by f ≺ g and is defined as:

The function f is subordinate to F if there exists a Schwarz function w in U with w(0) = 0 and
|w(z)| < 1 satisfying

f(z) = F (w(z)).

Further, if F (z) is univalent in U , then the following subordination [26] holds:

f(z) ≺ F (z) ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U) z ∈ U.
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The Koebe one-quarter theorem (for detail, see [15]) ensures that the image of U under every univalent
function f ∈ A contains a disc of radius 1

4 .

According to this, every univalent function f ∈ A has an inverse map f−1 that satisfies the following
conditions:

f−1(f(z)) = z (z ∈ U),

and

f(f−1(w)) = w (|w| < r0(f) : r0(f) ≥
1

4
).

The series representation of an inverse function is

g(w) = f−1(w) = w − b0w
2 + (2b20 − b1)w

3 − (5b30 − 5b0b1 + b4)w
4 + .... (2)

A function f ∈ A is said to be biunivalent in U if both f and f−1 are univalent in U . Let Σ denote the
class of biunivalent functions in U.

It is worth mentioning that the familiar Koebe function k(z) = z
(1−z) is not in Σ , since it maps the unit

disc U which is univalent onto the entire complex plane except the part of the negative real axis from −1/4

to −∞ . For detail and in-depth study about biunivalent functions, we refer to ([6]–[10]) and references cited
therein.

The class of analytic biunivalent functions was first introduced and studied by Lewin [25] and it was
shown that |b0| < 1.51 . Afterward, the result of Lewin is modified to |b0| <

√
2 , see for example, [9]. Many

subclasses of biunivalent functions were explored by many authors and found nonsharp estimates on |b0| and
|b1| . Further, for detailed description, we refer to ([16], [19], [21], [23]- [29], [34], [35], [37]).

The most important and fundamental subclass of the class S is the class S∗(ζ) of starlike functions of
order ζ, 0 ≤ ζ < 1 in U and the class k(ζ) of the convex function of order ζ in U . We have,

S∗(ζ) =

{
f : f ∈ S and Re

(
zf

′
(z)

f (z)

)
> ζ, (z ∈ U ; 0 ≤ ζ < 1)

}
,

and

k(ζ) =

{
f : f ∈ S and Re

(
1 +

zf
′′
(z)

f ′ (z)

)
> ζ, (z ∈ U ; 0 ≤ ζ < 1)

}
.

For 0 ≤ ζ < 1 , a function f ∈ Σ is in the class S∗
Σ(ζ) of the bistarlike function of order ζ or kΣ(ζ) of

the biconvex function of order ζ if both f and f −1 are, respectively, starlike or convex functions of order ζ.

The main objective of our present investigation is on Gegenbauer polynomial denoted by Hα(x, z) , very
recently, was introduced by Amourah [2] and it is given by the following recurrence relation:

For nonzero real constant α , a generating function of Gegenbauer polynomial is defined by

Hα(x, z) =
1

(1− 2xz + z2)α
, (3)
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where x ∈ [−1, 1] and z ∈ U . For fixed x , the function Hα is analytic in U , so it can be expanded as

Hα(x, z) =

∞∑
n=0

Cα
n (x)z

n, (4)

where Cα
n (x) is Gegenbauer polynomial of degree n .

If α = 0, then H0(x, z) no polynomial cannot be generated. Therefore, the generating function of the
Gegenbauer polynomial is set to be

Hα(x, z) = 1− log(1− 2x+ z2) =

∞∑
n=0

C0
n(x)z

n,

for α = 0. Moreover, it is worth mentioning that normalization of α to be greater than −1/2 is desirable ([14],
[31]). Gegenbauer polynomial satisfies the following relation

Cα
n (x) =

1

n
[2x(n+ α− 1)Cα

n−1(x)− (n+ 2α− 1)Cα
n−1(x)],

with first three Gegenbauer polynomials are:

Cα
0 (x) = 1, Cα

1 (x) = 2αx and Cα
2 (x) = 2α(1 + α)x2 − α. (5)

By taking α = 1/2 and α = 1 Gegenbauer polynomial reduces to Legendre and Chebyshev polynomials.
Recently, many researchers have been exploring biunivalent functions associated with orthogonal poly-

nomials, few to mention ([1]–[5], [32], [33]). For Gegenbauer polynomial, as far as we know, there is little work
associated with biunivalent functions in the literature.

In this section, we are ready to define some basic concepts of q -calculus or quantum calculus, that is, the
main objective of the current section.

Quantum calculus, sometimes called calculus without limits, dates back to the eighteenth century. It plays
an important role in many areas of mathematical, physical, and engineering sciences. In geometric function
theory, subclasses of Σ of biunivalent functions have been studied from different viewpoints. The q -calculus
provided important tools that have been used to investigate various subclasses of class Σ. Very a number
of incredible mathematicians considered the concepts of q -derivative, for example by Aral et al. [4], Gasper
and Rahman [18] and many others ([11]–[13], [30], [36]). We provide some basic definitions and concepts of
q -calculus which help us in our subsequent work.

Definition 1.1 ([20], [22]) For a function f ∈ Σ and given by (1) and (0 < q < 1) , the q-derivative of function
f is defined by

Dqf(z) =

{
f(qz)−f(z)

(q−1) ; z ̸= 0

f
′
(z) ; z = 0

. (6)

By definition, we write

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1, (7)
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where

[n]q =
1− qn

1− q
. (8)

Noted that:
(i) For n = 2, in (8) we have, [2]q = 1 + q and when q → 1− , then [2]1 = 2 ,
(ii) For n = 3 , in (8) we have, [3]q = q2 + q + 1 and when q → 1− , then [3]1 = 3 , and so on.
In terms of q-derivative, the inverse function F (w) defined by (2) can be written as:

Dqg(w) = 1− [2]qb0w + [3]q(2b
2
0 − b1)w

2 − [4]q(5b
3
0 − 5b0b1 + b4)w

3 + .... (9)

We note that:
1. In (6), lim

q→1−
Dqf(z) = f(z) , for f ∈ Σ,

2. In (8), q → 1− , then [n]q → n.

Based on q-derivative, we have the following definition:

Definition 1.2 A function f ∈ Σ given by (1) is said to be in class βµ
q,Σ(λ, x, α) and (λ ≥ 1, µ ≥ 0, 0 < q < 1, 1/2 < x < 1) ,

if the following conditions are satisfied:

(1− λ)

(
f(z)

z

)µ

+ λDqf(z)

(
f(z)

z

)µ−1

≺ Hα(x, z), (10)

and

(1− λ)

(
g(w)

w

)µ

+ λDqg(w)

(
g(w)

w

)µ−1

≺ Hα(x,w), (11)

where the functions g is defined by (2) and Hα is the generating function of the Gegenbauer polynomial given
by (4) .

Note that:
1. When q → 1−, the class βµ

1,Σ(λ, x, α) reduced to βµ
Σ(λ, x, α) which was introduced by Almourah [3];

2. When q → 1− and α = 1, the class βµ
1,Σ(λ, x, 1) reduced to βµ

Σ(λ, x) which was introduced by Bulut
[7];

3. When q → 1− and µ = α = 1, the class β1
1,Σ(λ, x, 1) reduced to βΣ(λ, x) which was introduced by

Bulut [8].
In this paper, we introduce a new subclass βµ

q,Σ(λ, x, α) of biunivalent functions by using Gegenbauer
polynomials and obtain the estimates on the initial coefficients |b0| and |b1| for this subclass.

In the remaining sections, we assume λ ≥ 1, µ ≥ 0, 0 < q < 1, 1/2 < x < 1, and α is a nonzero real
constant.

2. Coefficient bounds of the functions class βµ
q,Σ(λ, x, α)

Theorem 2.1 Let the function f ∈ Σ given by (1) belong to class βµ
q,Σ(λ, x, µ) . Then

|b0| ≤
2 |α|x

√
2 |α|x√

|β1|
, (12)
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and

|b1| ≤
2 |α|x

(µ+ λ([3, q]− 1)
+

8 |α|3 x3

|β1|
, (13)

where

β1 =


α(µ+ λ([2, q]− 1))2 − 2[α2((µ− 1)(µ+ 2λ[2, q])

+2(µ(1− λ) + λ[3, q])−
(µ+ λ([2, q]− 1))2)−
α(µ+ λ([2, q]− 1))2]x2

 . (14)

Proof It follows from (10) and (11) that

(1− λ)

(
f(z)

z

)µ

+ λDqf(z)

(
f(z)

z

)µ−1

= 1 + Cα
1 (x)u(z) + Cα

2 (x)u
2(z) + ..., (15)

and

(1− λ)

(
g(w)

w

)µ

+ λDqg(w)

(
g(w)

w

)µ−1

= 1 + Cα
1 (x)v(w) + Cα

2 (x)v
2(w) + ..., (16)

where u(z) and v(w) are analytic functions of the following form

u(z) = c1z + c2z
2 + c3z

3 + ... (z ∈ U), (17)

and
v(w) = d1w + d2w

2 + d3w
3 + ...(w ∈ U), (18)

respectively, and u(0) = v(0) = 0 and |u(z)| < 1 , |v(w)| < 1 for all z, w ∈ U.

Thus, in view of (17) and (18), (15) and (16) become

 (1− λ)
(

f(z)
z

)µ
+

λDqf(z)
(

f(z)
z

)µ−1

 =

{
1 + Cα

1 (x)c1z+
(Cα

1 (x)c2 + Cα
2 (x)c

2
1)z

2 + ...

}
, (19)

and  (1− λ)
(

g(w)
w

)µ
+

λDqg(w)
(

g(w)
w

)µ−1

 =

{
1 + Cα

1 (x)c1z+
(Cα

1 (x)c2 + Cα
2 (x)c

2
1)z

2 + ...

}
. (20)

Now, equating the corresponding coefficients in (19) and (20), we get

(µ+ λ([2, q]− 1))b0 = Cα
1 (x)c1. (21)

{ (
µ−1
2

)
[(µ+ 2λ([2, q]− 1)]b20+

[(µ+ λ([3, q]− 1)]b1

}
= Cα

1 (x)c2 + Cα
2 (x)c

2
1, (22)

−(µ+ λ([2, q]− 1))b0 = Cα
1 (x)d1, (23)
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and 
1
2 [(µ(1− λ)(µ+ 3) + λ(µ− 1)

(µ+ 2([2, q] + 1))
+4λ[3, q]]b20−

[(µ+ λ([3, q]− 1)]b1

 = Cα
1 (x)d2 + Cα

2 (x)d
2
1. (24)

From (21) and (23), we have
c1 = −d1, (25)

and

b0 =
[Cα

1 (x)]
2(c21 + d21)

2(µ+ λ([2, q]− 1))2
. (26)

By summing (22) and (24), we get{
[(µ− 1)(µ+ 2λ[2, q])+
2(µ(1− λ) + λ[3, q])]b20

}
= Cα

1 (x)(c2 + d2) + Cα
2 (x)(c

2
1 + d21). (27)

It follows from (26) that{
(µ− 1)(µ+ 2λ[2, q]) + 2(µ(1− λ) + λ[3, q])−

2Cα
2 (x)

[Cα
1 (x)]2 (µ+ λ([2, q]− 1))2

}
b20 = Cα

1 (x)(c2 + d2). (28)

Also, we know that, if |u(z)| < 1, (z ∈ U) and |v(w)| < 1, (w ∈ U) , then

|ci| ≤ 1 and |di| ≤ 1 for all i ∈ N. (29)

By using (5) and (29) in (28), we obtained the desired inequality (12) with β1 defined in (14).
Now, by subtracting (24) from (22), we get

2(µ+ λ([3, q]− 1))b1 − 2(µ+ λ([3, q]− 1))b20) = Cα
1 (x)(c2 − d2) + Cα

2 (x)(c
2
1 − d21). (30)

Moreover, in view of (25), (30) becomes

b1 =
Cα

1 (x)

2(µ+ λ([3, q]− 1))
(c2 − d2) + b20. (31)

Hence, by using (5), (29), and (26), we obtained the desired inequality (13) with β1 defined in (14),
which completes the proof. 2

In this part of the paper, we discuss some consequences deduced from Theorem 1. Sitting q → 1− in
Theorem 1, we obtain the following consequence.

Corollary 2.2 [3] Let the function f (z) given by (1) belong to class βµ
Σ(λ, x, α) . Then

|b0| ≤
2 |α|x

√
2 |α|x√

|α(µ+ λ)2 − 2[α(1 + α)(µ+ λ)2 − α2(µ+ 2λ)(1 + µ)]x2|
, (32)

and

|b1| ≤
2 |α|x

(µ+ 2λ)
+

4 |α|2 x2

(µ+ λ)2
. (33)
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Sitting q → 1− and α = 1 in Theorem 1, we obtain the following consequence.

Corollary 2.3 [7] Let the function f (z) given by (1) belong to class βµ
Σ(λ, x) . Then

|b0| ≤
2x

√
2x√

|(µ+ λ)2 − 2[2(µ+ λ)2 − (µ+ 2λ)(1 + µ)]x2|
, (34)

and

|b1| ≤
2x

(µ+ 2λ)
+

4x2

(µ+ λ)2
. (35)

Sitting q → 1− and µ = α = 1 in Theorem 1, we obtain the following consequence.

Corollary 2.4 [8] Let the function f (z) given by (1) belong to class βΣ(λ, x) . Then

|b0| ≤
2x

√
2x√

|(1 + λ)2 − 4λ2x2|
, (36)

and

|b1| ≤
2x

(1 + 2λ)
+

4x2

(1 + λ)2
. (37)

3. Fekete–Szegö inequality for the function class βµ
q,Σ(λ, x, α)

In this section of the paper, we are trying to prove the second theorem, which is based on Fekete–Szegö functional∣∣b1 − ηa22
∣∣ . In Mathematics, the main objective of the inequality is to obtain the coefficients of the univalent

functions, which is due to Fekete–Szegö [17].

Theorem 3.1 Let the function f (z) given by (1) belong to class βµ
q,Σ(λ, x, µ) . Then

∣∣b1 − ηb20
∣∣ ≤


2|α|x

(µ+λ([3,q]−1) , |η − 1| ≤
∣∣∣ β1

4α(µ+λ([3,q]−1)x2

∣∣∣
8|α|3x3|1−η|

|β1| , |η − 1| ≥
∣∣∣ β1

4α(µ+λ([3,q]−1)x2

∣∣∣ . (38)

where β1 is defined by (14).

Proof From (28) and (31),

b1 − ηb20 = Cα
1 (x)


[
h(η) + 1

2(µ+λ([3,q]−1)

]
c2+[

h(η)− 1
2(µ+λ([3,q]−1)

]
d2

 , (39)

where

h(η) =
[Cα

1 (x)]
2(1− η)

ξ
, (40)

and

ξ =

{
[Cα

1 (x)]
2[(µ− 1)(µ+ 2λ[2, q]) + 2(µ(1− λ) + λ[3, q])]−

2Cα
2 (x)[µ+ λ([2, q]− 1)]2

}
. (41)

Then, in view of (5), we obtained the desired inequality (38). 2
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We end this section by defining some consequences related to Theorem 2. These are in the following
corollaries. Sitting q → 1− in Theorem 2, we obtain the following consequence.

Corollary 3.2 [3] Let the function f(z) given by (1) belong to class βµ
Σ(λ, x, α) . Then

∣∣b1 − ηb20
∣∣ ≤


2|α|x

(µ+2λ) , |η − 1| ≤
∣∣∣α(µ+λ)2−2[α(1+α)(µ+λ)2−α2(µ+2λ)(1+µ)]x2

4α(µ+2λ)x2

∣∣∣
8|α|3x3|1−η|

|α(µ+λ)2−2[α(1+α)(µ+λ)2−α2(µ+2λ)(1+µ)]x2| , |η − 1| ≥
∣∣∣α(µ+λ)2−2[α(1+α)(µ+λ)2−α2(µ+2λ)(1+µ)]x2

4α(µ+2λ)x2

∣∣∣ .

(42)

Sitting q → 1− and α = 1 in Theorem 1, we obtain the following consequence.

Corollary 3.3 [8] Let the function f (z) given by (1) belong to class βµ
Σ(λ, x) . Then

∣∣b1 − ηb20
∣∣ ≤


2x

(µ+2λ) , |η − 1| ≤
∣∣∣ (µ+λ)2−2[2(µ+λ)2−(µ+2λ)(1+µ)]x2

4(µ+2λ)x2

∣∣∣
8x3|1−η|

|(µ+λ)2−2[2(µ+λ)2−(µ+2λ)(1+µ)]x2| , |η − 1| ≥
∣∣∣ (µ+λ)2−2[2(µ+λ)2−(µ+2λ)(1+µ)]x2

4(µ+2λ)x2

∣∣∣ . (43)

Sitting q → 1− and µ = α = 1 in Theorem 1, we obtain the following consequence.

Corollary 3.4 [7] Let the function f (z) given by (1) belong to class βΣ(λ, x) . Then

∣∣b1 − ηb20
∣∣ ≤


2x

(1+2λ) , |η − 1| ≤
∣∣∣ (1+λ)2−4λ2x2

4(µ+2λ)x2

∣∣∣
8x3|1−η|

|(1+λ)2−4λ2x2| , |η − 1| ≥
∣∣∣ (1+λ)2−4λ2x2

4(1+2λ)x2

∣∣∣ . (44)
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