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Abstract: This paper focuses on the oscillation criteria for the third-order neutral differential equations with unbounded
neutral coefficients and distributed deviating arguments. Using comparison principles, new sufficient conditions improve
some known existing results substantially due to less constraints on the considered equation. At last, two examples are
established to illustrate the given theorems.
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1. Introduction
Differential equations have played important roles in several practical applications, such as population growth,
economics, engineering and neural networks. The study of oscillation criteria for first-, second-, third-, and
high-order differential equations are significant for practical reasons and the development of qualitative theory;
see [3, 9, 25, 37]. The problem of establishing sufficient conditions for the oscillatory and asymptotic behavior
of third-order neutral functional differential equations and dynamic equations on time scales has attracted
much research attention during the last few decades, and we refer the reader to the papers [1, 2, 4–8, 12, 14–
16, 20, 22, 24, 26, 27, 32, 35, 36]. Chatzarakis et al. [14] considered the following differential equation

z′′′(t) + q(t)xλ(g(t)) = 0, (1.1)

and explored some new oscillation criteria for solutions of (1.1), where z(t) = x(t)+p(t)x(η(t)) , and p(t) ≥ 1 is
the unbounded neutral coefficient. The obtained results essentially improved the related results in the literature.

Recently, much research activity has been focused on the oscillation of various of classes of third-order
neutral differential and dynamic equations with distributed deviating arguments; see for example [10, 11, 13,
17, 23]. In what follows, the following differential equation

(
b(t)(y′′(t))α

)′
+

∫ d

c

q(t, ξ)f(x(σ(t, ξ)))dξ = 0, (1.2)

and its special cases have been well studied, where y(t) = x(t)+p(t)x(τ(t)) or y(t) = x(t)+
∫ b

a
p(t, ξ)x(τ(t, ξ))dξ .

Sun and Zhao [31], Tian et al. [33], Xiang [38] and Zhang et al. [39] studied the oscillation of (1.2) under the
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assumption 0 ≤ p(t) ≤ P < 1 or 0 ≤
∫ b

a
p(t, ξ)dξ ≤ P < 1 , while Jiang and Li [18] investigated the oscillatory

and asymptotic behavior of (1.2) by assuming that 0 ≤ p(t) ≤ p0 < ∞ . We can see that the neutral coefficient
p(t) in such papers are bounded. To the best of our knowledge, there are few results dealing with the oscillation
of third-order differential equations with distributed deviating arguments and unbounded neutral coefficients. In
this case, Sun and Zhao [28–30] and Tunç [34] gave some oscillation criteria for third-order differential equations
with distributed deviating arguments and assumed p(t) ≥ 1 . On the other hand, some additional conditions are
also needed in certain papers, such as Jiang et al. [17], Sun and Zhao [28] and Tian et al. [33] needed α ≥ 1 ,
which is a ratio of odd positive integers.

In this paper, we will consider (1.2), where y(t) = x(t) +m(t)x(τ(t)) , t ≥ t0 > 0 , c < d , and α is the
ratio of odd positive integers. In this paper, the following conditions are assumed to hold:

(D1) b(t), m(t) ∈ C([t0,∞),R) , b(t) > 0 ,
∫∞
t0

b−
1
α (t)dt = ∞ , m(t) ≥ 1 and m(t) ̸≡ 1 ;

(D2) q(t, ξ) ∈ C([t0,∞)× [c, d], [0,∞)) and q(t, ξ) ̸≡ 0 for large t ;

(D3) τ(t) ∈ C([t0,∞),R) ≤ t is a strictly increasing function, limt→∞ τ(t) = ∞ , and σ(t, ξ) ∈ C([t0,∞) ×
[c, d],R) is nonincreasing for ξ satisfying lim inft→∞ σ(t, ξ) = ∞ for ξ ∈ [c, d] ;

(D4) f(x) ∈ C(R,R) and there exists K > 0 such that f(x)/xα ≥ K for any variable x ̸= 0 .

A function x(t) is a solution of (1.2), if it satisfies (1.2) on the interval [Tx,∞) and has the properties
y(t) , y′(t) and b(t)(y′′(t))α ∈ C1([Tx,∞),R) , respectively. We consider only those solutions to (1.2) here,
which satisfy the condition sup{|x(t)| : t ≥ T} > 0 for every T ≥ Tx and assume that (1.2) possesses such
solutions. A solution of (1.2) is said to be oscillatory if it has arbitrarily large zeros on [Tx,∞) ; otherwise it is
called nonoscillatory. Equation (1.2) is said to be oscillatory if all its solutions are oscillatory.

The objective of this paper is to obtain some new oscillation criteria for solutions of (1.2) by using
comparison principles. Moreover, our proposed results improve a number of related results in the literature due
to less restrictive assumptions on the coefficients of (1.2), and can easily be extended to more general third-order
differential equations with unbounded neutral coefficients and distributed deviating arguments. In what follows,
all functional inequalities are assumed to hold eventually.

2. Some lemmas
We begin this section with some lemmas, which are essential in establishing our main results. For simplicity,
the following notations are used:

σ̄(t) = σ(t, c), σ̃(t) = σ(t, d),

δ1(t, t1) =

∫ t

t1

b−
1
α (s)ds for t ≥ t1 > t0,

δ2(t, t2) =

∫ t

t2

δ1(s, t1)ds for t ≥ t2 > t1.

1100



SUN et al./Turk J Math

Furthermore, we assume that

m1(t) =
1

m(τ−1(t))

(
1− 1

m(τ−1(τ−1(t)))

)
≥ 0, (2.1)

m2(t) =
1

m(τ−1(t))

(
1− δ2(τ

−1(τ−1(t)), t2)

m(τ−1(τ−1(t)))δ2(τ−1(t), t2)

)
≥ 0, (2.2)

where τ−1(t) is the inverse function of τ(t) . Let

Q1(t) = K

∫ d

c

q(t, ξ)mα
1 (σ(t, ξ))dξ,

Q2(t) = K

∫ d

c

q(t, ξ)mα
2 (σ(t, ξ))dξ.

Lemma 2.1 Assume that conditions (D1)-(D4) hold, and x(t) is an eventually positive solution of (1.2). Then
for sufficiently large t , y(t) satisfies either

(I) y(t) > 0 , y′(t) > 0 , y′′(t) > 0 and
(
b(t)(y′′(t))α

)′ ≤ 0 ;
or

(II) y(t) > 0 , y′(t) < 0 , y′′(t) > 0 and
(
b(t)(y′′(t))α

)′ ≤ 0 .

The proof of this lemma is similar to that of some existing papers, such as Elabbasy and Moaaz ([10],
Lemma 2.1), Sun and Zhao ([29], Lemma 2.1), and Tian et al. ([33], Lemma 2.1). So it is omitted.

Lemma 2.2 Assume that conditions (D1)-(D4) and (2.2) hold, and x(t) is an eventually positive solution of
(1.2) with y(t) satisfying case (I) of Lemma 2.1. Then for sufficiently large t , we get

(
b(t)(y′′(t))α

)′
+Q2(t)y

α(τ−1(σ̃(t))) ≤ 0. (2.3)

Proof Since x(t) is an eventually positive solution of (1.2), there exists t1 ≥ t0 such that x(t) > 0 , x(τ(t)) > 0

and x(σ(t, ξ)) > 0 , ξ ∈ [c, d] for t ≥ t1 . It is easy to yield y(t) > x(t) > 0 eventually, and

y(τ−1(t)) = x(τ−1(t)) +m(τ−1(t))x(t), (2.4)

based on the definition of y(t) . Following from (2.4), we have

x(t) =
1

m(τ−1(t))

(
y(τ−1(t))− x(τ−1(t))

)
=

y(τ−1(t))

m(τ−1(t))
− y(τ−1(τ−1(t)))− x(τ−1(τ−1(t)))

m(τ−1(t))m(τ−1(τ−1(t)))

≥ y(τ−1(t))

m(τ−1(t))
− y(τ−1(τ−1(t)))

m(τ−1(t))m(τ−1(τ−1(t)))
. (2.5)

From (1.2), (D2) and (D4), we get (
b(t)(y′′(t))α

)′ ≤ 0,
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and b(t)(y′′(t))α is nonincreasing for t ≥ t1 , from which we have

y′(t) = y′(t1) +

∫ t

t1

(
b(s)(y′′(s))α

) 1
α

b
1
α (s)

ds ≥ b
1
α (t)y′′(t)δ1(t, t1), (2.6)

since y(t) satisfies the case (I) of Lemma 2.1. We can see from (2.6) that( y′(t)

δ1(t, t1)

)′
≤ 0 for t ≥ t2 > t1,

which yields that y′(t)/δ1(t, t1) is nonincreasing for t ≥ t2 . Furthermore, we obtain

y(t) = y(t2) +

∫ t

t2

y′(s)

δ1(s, t1)
δ1(s, t1)ds

≥ δ2(t, t2)

δ1(t, t1)
y′(t) for t ≥ t2, (2.7)

which leads to ( y(t)

δ2(t, t2)

)′
≤ 0 for t ≥ t3 > t2.

Then we have

y(τ−1(τ−1(t))) ≤ δ2(τ
−1(τ−1(t)), t2)y(τ

−1(t))

δ2(τ−1(t), t2)
(2.8)

for t ≥ t3 , in views of the fact that τ−1(t) ≤ τ−1(τ−1(t)) . Substituting (2.8) into (2.5), we get

x(t) ≥ m2(t)y(τ
−1(t)),

which yields that

x(σ(t, ξ)) ≥ m2(σ(t, ξ))y(τ
−1(σ(t, ξ)))

≥ m2(σ(t, ξ))y(τ
−1(σ̃(t))). (2.9)

Combining (1.2) and (2.9), we arrive at (2.3), due to the monotonicity of y(t) and τ(t) . 2

3. Main results
Theorem 3.1 Assume that conditions (D1)-(D4) hold. Furthermore, assume that there exists a function
g(t) ∈ C([t0,∞),R) such that σ(t, ξ) ≤ g(t) < τ(t) for t ≥ t0 . If the two first-order delay differential equations

z′(t) +Q2(t)δ
α
2 (τ

−1(σ̃(t)), t2)z(τ
−1(σ̃(t))) = 0 (3.1)

and
ω′(t) +Q1(t)G

α(t)ω(τ−1(g(t))) = 0 (3.2)

oscillate for large t ≥ t2 > t1 ≥ t0 , where

G(t) =

∫ τ−1(g(t))

τ−1(σ̄(t))

δ1(τ
−1(g(t)), l)dl,

then (1.2) is oscillatory.
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Proof Suppose to the contrary that x(t) is a nonoscillatory solution of (1.2). In general, we assume that x(t)

is eventually positive, since −x(t) is also a solution of (1.2), and the proof is similar when x(t) < 0 eventually.
Then there exists t1 ≥ t0 such that x(t) > 0 , x(τ(t)) > 0 and x(σ(t, ξ)) > 0 , ξ ∈ [c, d] for t ≥ t1 . y(t) satisfies
two possible cases (I) and (II) following from Lemma 2.1.

Firstly, if case (I) holds, then we obtain (2.3), (2.5) and (2.6), proceeding as in the proof of Lemma 2.2.
Integrating (2.6) from t2(t2 > t1) to t , we get

y(t) ≥ b
1
α (t)y′′(t)δ2(t, t2). (3.3)

Substituting (3.3) into (2.3), we have

(
b(t)(y′′(t))α

)′
+Q2(t)b(τ

−1(σ̃(t)))(y′′(τ−1(σ̃(t))))αδα2 (τ
−1(σ̃(t)), t2) ≤ 0

with τ−1(σ̃(t)) ≥ t2 . Letting z(t) = b(t)(y′′(t))α , we can see that z(t) is a positive solution of the following
first-order delay differential inequality

z′(t) +Q2(t)δ
α
2 (τ

−1(σ̃(t)), t2)z(τ
−1(σ̃(t))) ≤ 0.

We conclude from [21] that (3.1) also has a positive solution, which contradicts the fact that (3.1) oscillates.
Secondly, we assume that case (II) holds. Since y′(t) < 0 and τ(t) ≤ t , we have

y(τ−1(t)) ≥ y(τ−1(τ−1(t))). (3.4)

Combining (2.5) and (3.4), we get
x(t) ≥ m1(t)y(τ

−1(t)),

and

x(σ(t, ξ)) ≥ m1(σ(t, ξ))y(τ
−1(σ(t, ξ))). (3.5)

Substitute (3.5) into (1.2) and use (D4) to obtain

(
b(t)(y′′(t))α

)′
+K

∫ d

c

q(t, ξ)mα
1 (σ(t, ξ))y

α(τ−1(σ(t, ξ)))dξ ≤ 0,

which indicates that (
b(t)(y′′(t))α

)′
+Q1(t)y

α(τ−1(σ̄(t))) ≤ 0. (3.6)

Since y(t) > 0 , y′(t) < 0 , y′′(t) > 0 and
(
b(t)(y′′(t))α

)′ ≤ 0 , one can get for t2 ≤ u ≤ v ,

y′(v)− y′(u) =

∫ v

u

(
b(s)(y′′(s))α

) 1
α

b
1
α (s)

ds,

which yields that

−y′(u) ≥ b
1
α (v)y′′(v)δ1(v, u).
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Integrating the above inequality from u to v , we obtain

y(u) ≥ y(v) + b
1
α (v)y′′(v)

∫ v

u

δ1(v, l)dl

≥ b
1
α (v)y′′(v)

∫ v

u

δ1(v, l)dl. (3.7)

From the fact that σ̄(t) ≤ g(t) and τ(t) is strictly increasing, we get τ−1(σ̄(t)) ≤ τ−1(g(t)) . Substituting
u = τ−1(σ̄(t)) and v = τ−1(g(t)) into (3.7), we have

y(τ−1(σ̄(t))) ≥ G(t)b
1
α (τ−1(g(t)))y′′(τ−1(g(t))). (3.8)

Using (3.6) and (3.8), one can see that

(
b(t)(y′′(t))α

)′
+Q1(t)G

α(t)b(τ−1(g(t)))(y′′(τ−1(g(t))))α ≤ 0.

Letting ω(t) = b(t)(y′′(t))α , we deduce that ω(t) is a positive solution of the following differential inequality

ω′(t) +Q1(t)G
α(t)ω(τ−1(g(t))) ≤ 0.

The rest of the proof is similar to that of the former case, and so we omit it here. This completes the proof. 2

Next, we introduce a well-known result. Consider the first-order delay differential equation

x′(t) +R(t)x(τ(t)) = 0, (3.9)

under the conditions R(t) ∈ C([t0,∞), [0,∞)) , τ(t) ∈ C([t0,∞),R) , τ(t) < t and limt→∞ τ(t) = ∞ . From
[19], if

lim inf
t→∞

∫ t

τ(t)

R(s)ds >
1

e
,

then (3.9) is oscillatory. Hence, combine Theorem 3.1 and this result to derive the following result.

Corollary 3.2 Assume that conditions (D1)-(D4) hold. Furthermore, assume that there exists a function
g(t) ∈ C([t0,∞),R) such that σ(t, ξ) ≤ g(t) < τ(t) for t ≥ t0 . If for large t ≥ t2 > t1 ≥ t0 ,

lim inf
t→∞

∫ t

τ−1(σ̃(t))

Q2(s)δ
α
2 (τ

−1(σ̃(s)), t2)ds >
1

e
,

and

lim inf
t→∞

∫ t

τ−1(g(t))

Q1(s)G
α(s)ds >

1

e
, (3.10)

where G(t) is defined as in Theorem 3.1, then (1.2) is oscillatory.

Directly from Theorem 3.1, we get an oscillatory criterion as below.
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Theorem 3.3 Assume that conditions (D1)-(D4) hold, and σ(t, ξ) < τ(t) for t ≥ t0 . If the two first-order
delay differential equations

z′(t) +Q2(t)δ
α
2 (σ̃(t), t2)z(σ̃(t)) = 0 (3.11)

and
ω′(t) +Q1(t)Ḡ

α(t)ω(τ−1(σ̄(t))) = 0 (3.12)

oscillate for large t ≥ t2 > t1 ≥ t0 , where

Ḡ(t) =

∫ ∞

τ−1(σ̄(t))

δ1(τ
−1(σ̄(t)), s)ds,

then (1.2) is oscillatory.

Proof Let x(t) be a nonoscillatory solution of (1.2). We may assume that x(t) is eventually positive. Then
there exists t1 ≥ t0 such that x(t) > 0 , x(τ(t)) > 0 and x(σ(t, ξ)) > 0 , ξ ∈ [c, d] for t ≥ t1 . Lemma 2.1 yields
that y(t) satisfies either case (I) or case (II).

Firstly, we assume that case (I) satisfies. Proceeding as in the proof of Theorem 3.1, we get (3.3). Since
τ(t) ≤ t , we can see that t ≤ τ−1(t) and σ̃(t) ≤ τ−1(σ̃(t)) . Then we obtain y(σ̃(t)) ≤ y(τ−1(σ̃(t))) , due to
y′(t) > 0 . Based on (2.3) and this inequality, we have(

b(t)(y′′(t))α
)′
+Q2(t)y

α(σ̃(t)) ≤ 0. (3.13)

Substituting (3.3) into (3.13) yields that(
b(t)(y′′(t))α

)′
+Q2(t)δ

α
2 (σ̃(t), t2)b(σ̃(t))(y

′′(σ̃(t)))α ≤ 0

for σ̃(t) ≥ t2 > t1 . Letting z(t) = b(t)(y′′(t))α , we conclude that z(t) is a positive solution of

z′(t) +Q2(t)δ
α
2 (σ̃(t), t2)z(σ̃(t)) ≤ 0,

which is a contradiction to that (4.1) oscillates.
Secondly, we assume that case (II) holds. Proceeding as in the proof of Theorem 3.1, we have (3.6). Since

y(t) > 0 , y′(t) < 0 , y′′(t) > 0 and
(
b(t)(y′′(t))α

)′ ≤ 0 , we get for t2 ≤ s ≤ t ,

y′(t)− y′(s) =

∫ t

s

(
b(u)(y′′(u))α

) 1
α

b
1
α (u)

du,

which means that
−y′(s) ≥ b

1
α (t)y′′(t)δ1(t, s). (3.14)

Integrating (3.14) from t to v (v > t) and letting v → ∞ , we get

y(t) ≥ b
1
α (t)y′′(t)

∫ ∞

t

δ1(t, s)ds.

and then
y(τ−1(σ̄(t))) ≥ Ḡ(t)b

1
α (τ−1(σ̄(t)))y′′(τ−1(σ̄(t))). (3.15)
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Substitute (3.15) into (3.6) to obtain

(
b(t)(y′′(t))α

)′
+Q1(t)Ḡ

α(t)b(τ−1(σ̄(t)))(y′′(τ−1(σ̄(t))))α ≤ 0.

Similarly, letting ω(t) = b(t)(y′′(t))α , we get a contradiction to the fact that (4.2) oscillates. This completes
the proof. 2

Remark 3.4 The result of case (I) in Theorem 3.3 is directly obtained from Theorem 3.1. Hence, the
corresponding results are similar. The main difference between Theorems 3.1 and 3.3 is the result about case
(II). Especially, (4.2) does not need the reference function g(t) .

Analogously, based on Theorem 3.3 and the well-known result in [19], we can get the following result.

Corollary 3.5 Assume that conditions (D1)-(D4) hold, and σ(t, ξ) < τ(t) for t ≥ t0 . If for large t ≥ t2 >

t1 ≥ t0 ,

lim inf
t→∞

∫ t

σ̃(t)

Q2(s)δ
α
2 (σ̃(s), t2)ds >

1

e
,

and

lim inf
t→∞

∫ t

τ−1(σ̄(t))

Q1(s)Ḡ
α(s)ds >

1

e
,

where Ḡ(t) is defined as in Theorem 3.3, then (1.2) is oscillatory.

In the following interesting result, we need to assume that the function σ(t, ξ) is nondecreasing for t .

Theorem 3.6 Assume that conditions (D1)-(D4) hold. Furthermore, assume that σ(t, ξ) is nondecreasing for
t with σ(t, ξ) < τ(t) , t ≥ t0 . If

lim sup
t→∞

δα1 (τ
−1(σ̃(t)), t1)

∫ ∞

t

Q2(s)
δα2 (τ

−1(σ̃(s)), t2)

δα1 (τ
−1(σ̃(s)), t1)

ds > 1, (3.16)

and

lim sup
t→∞

∫ t

τ−1(σ̄(t))

Q1(s)H
α(t, s)ds > 1 (3.17)

for large t ≥ t2 > t1 ≥ t0 , where

H(t, s) =

∫ τ−1(σ̄(t))

τ−1(σ̄(s))

δ1(τ
−1(σ̄(t)), l)dl,

then (1.2) is oscillatory.

Proof Let x(t) be a nonoscillatory solution of (1.2). We may assume that x(t) is eventually positive. Then
there exists t1 ≥ t0 such that x(t) > 0 , x(τ(t)) > 0 and x(σ(t, ξ)) > 0 , ξ ∈ [c, d] for t ≥ t1 . Lemma 2.1 yields
that y(t) satisfies either case (I) or case (II).
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Firstly, we assume that case (I) satisfies. Proceeding as in the proof of Lemma 2.2, we have (2.7), which
means that

y(τ−1(σ̃(t))) ≥ δ2(τ
−1(σ̃(t)), t2)

δ1(τ−1(σ̃(t)), t1)
y′(τ−1(σ̃(t))) (3.18)

for t ≥ t2 > t1 . Substitute (3.18) into (2.3) to get

(
b(t)(y′′(t))α

)′
+Q2(t)

δα2 (τ
−1(σ̃(t)), t2)

δα1 (τ
−1(σ̃(t)), t1)

(y′(τ−1(σ̃(t))))α ≤ 0. (3.19)

Letting z(t) = y′(t) , we have

z(t) > 0, z′(t) > 0,
(
b(t)(z′(t))α

)′ ≤ 0,

and (3.19) can be written as

(
b(t)(z′(t))α

)′
+Q2(t)

δα2 (τ
−1(σ̃(t)), t2)

δα1 (τ
−1(σ̃(t)), t1)

zα(τ−1(σ̃(t))) ≤ 0. (3.20)

Integrating (3.20) from t to u (u > t) and letting u → ∞ , we obtain

b(t)(z′(t))α ≥
∫ ∞

t

Q2(s)
δα2 (τ

−1(σ̃(s)), t2)

δα1 (τ
−1(σ̃(s)), t1)

zα(τ−1(σ̃(s)))ds

≥ zα(τ−1(σ̃(t)))

∫ ∞

t

Q2(s)
δα2 (τ

−1(σ̃(s)), t2)

δα1 (τ
−1(σ̃(s)), t1)

ds. (3.21)

(2.6) can be rewritten as

z(t) ≥ b
1
α (t)z′(t)δ1(t, t1). (3.22)

Substitute (3.22) into (3.21) to get

b(t)(z′(t))α ≥b(τ−1(σ̃(t)))(z′(τ−1(σ̃(t))))αδα1 (τ
−1(σ̃(t)), t1)

×
∫ ∞

t

Q2(s)
δα2 (τ

−1(σ̃(s)), t2)

δα1 (τ
−1(σ̃(s)), t1)

ds. (3.23)

Since
(
b(t)(z′(t))α

)′ ≤ 0 and σ̃(t) < τ(t) , one can see that

b(t)(z′(t))α ≤ b(τ−1(σ̃(t)))(z′(τ−1(σ̃(t))))α. (3.24)

Hence, (3.23) and (3.24) yield that

δα1 (τ
−1(σ̃(t)), t1)

∫ ∞

t

Q2(s)
δα2 (τ

−1(σ̃(s)), t2)

δα1 (τ
−1(σ̃(s)), t1)

ds ≤ 1,

which contradicts (3.16).
Secondly, we assume that case (II) holds. Proceeding as in the proof of Theorem 3.1, we have (3.6) and

(3.7). For t2 ≤ s ≤ t , one can see that τ−1(σ̄(t)) ≥ τ−1(σ̄(s)) due to the monotonicity of σ̄(t) and τ−1(t) .
Substitute u = τ−1(σ̄(s)) and v = τ−1(σ̄(t)) into (3.7) to obtain

y(τ−1(σ̄(s))) ≥ H(t, s)b
1
α (τ−1(σ̄(t)))y′′(τ−1(σ̄(t))). (3.25)
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Integrating (3.6) from τ−1(σ̄(t)) to t , we get

b(t)(y′′(t))α − b(τ−1(σ̄(t)))(y′′(τ−1(σ̄(t))))α

+

∫ t

τ−1(σ̄(t))

Q1(s)y
α(τ−1(σ̄(s)))ds ≤ 0.

Combining (3.25) and the above inequality, we conclude that

b(τ−1(σ̄(t)))(y′′(τ−1(σ̄(t))))α ≥b(τ−1(σ̄(t)))(y′′(τ−1(σ̄(t))))α

×
∫ t

τ−1(σ̄(t))

Q1(s)H
α(t, s)ds,

and then ∫ t

τ−1(σ̄(t))

Q1(s)H
α(t, s)ds ≤ 1.

Take limsup as t → ∞ to yield a contradiction to (3.17). This completes the proof. 2

4. Examples
Example 4.1. Consider the following equation

(
(y′′(t))

1
3

)′
+

∫ 1

1
2

8q0ξt
1
3x

1
3

( t

2
− ξ

2

)
dξ = 0, t > 8, (4.1)

where

y(t) = x(t) +
9t+ 8

t+ 1
x
( t

2

)
, m(t) =

9t+ 8

t+ 1
, q(t, ξ) = 8q0ξt

1
3 ,

b(t) = 1 , α = 1/3 , τ(t) = t/2 , f(x) = x1/3 , σ(t, ξ) = t/2 − ξ/2 , c = 1/2 , d = 1 and t0 = 1 . We note that
conditions (D1)-(D4) are satisfied. Choose t1 = 2 and t2 = 4 . Then we get 8 ≤ m(t) < 9 ,

σ̄(t) = σ(t, 1/2) =
t

2
− 1

4
, σ̃(t) = σ(t, 1) =

t

2
− 1

2
,

δ1(t, t1) =

∫ t

2

ds = t− 2,

δ2(t, t2) =

∫ t

4

(s− 2)ds =
1

2
t2 − 2t.

Furthermore, we deduce that

m1(t) >
1

9

(
1− 1

8

)
=

7

72
> 0,

m2(t) >
1

9

(
1− 1

8
·

1
2 (4t)

2 − 2 · 4t
1
2 (2t)

2 − 2 · 2t

)
>

1

24
> 0,

Q1(t) >

∫ 1

1
2

( 7

72

) 1
3

8q0ξt
1
3 dξ = 3q0

( 7t

72

) 1
3

,

Q2(t) >

∫ 1

1
2

( 1

24

) 1
3

8q0ξt
1
3 dξ = 3q0

( t

24

) 1
3

.
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Letting g(t) = t/2− 1/6 , we get

∫ t

τ−1(σ̃(t))

Q2(s)δ
α
2 (τ

−1(σ̃(s)), t2)ds

>

∫ t

t−1

3q0

( s

24

) 1
3
(1
2
(s− 1)2 − 2(s− 1)

) 1
3

ds > 3q0

(3
2

) 1
3

>
1

e
,

if q0 > 21/3/(34/3e) , and

∫ t

τ−1(g(t))

Q1(s)G
α(s)ds

>

∫ t

t− 1
3

3q0

(7s
72

) 1
3
(∫ s− 1

3

s− 1
2

(s− 1

3
− l)dl

) 1
3

ds > q0

( 1

12

) 2
3

>
1

e
,

if q0 > 122/3/e . Hence, by Corollary 3.2, (4.1) is oscillatory with q0 > 12
2
3 /e .

Example 4.2. Consider the equation

(
(2t)−

5
3 (y′′(t))

5
3

)′
+

∫ 3

1

q0ξ

4t
4
3

x
5
3

( t

3
− 4

3
+

1

ξ

)
dξ = 0, t > 9, (4.2)

where y(t) = x(t) + 30x(t/3) , m(t) = 30 , b(t) = (2t)−5/3 , α = 5/3 , τ(t) = t/3 , q(t, ξ) = q0ξ/(4t
4/3) ,

f(x) = x5/3 , σ(t, ξ) = t/3 − 4/3 + 1/ξ , c = 1 , d = 3 and t0 = 1 . Then conditions (D1)-(D4) also hold.
Choosing t1 = 2 and t2 = 3 , we obtain

σ̄(t) =
t

3
− 1

3
, σ̃(t) =

t

3
− 1,

δ1(t, t1) = t2 − 4, δ2(t, t2) =
1

3
t3 − 4t+ 3,

m1(t) =
1

30

(
1− 1

30

)
=

29

900
> 0,

m2(t) =
1

30

(
1− 1

30
·

1
3 (9t)

3 − 4 · 9t+ 3
1
3 (3t)

3 − 4 · 3t+ 3

)
>

1

450
> 0,

Q1(t) >

∫ 3

1

( 29

900

) 5
3 q0ξ

4t
4
3

dξ =
( 29

900

) 5
3 q0

t
4
3

,

Q2(t) >

∫ 3

1

( 1

450

) 5
3 q0ξ

4t
4
3

dξ =
( 1

450

) 5
3 q0

t
4
3

.

Letting

ρ(t) =
δα2 (τ

−1(σ̃(t)), t2)

δα1 (τ
−1(σ̃(t)), t1)

=
( 1

3 (t− 3)3 − 4(t− 3) + 3

(t− 3)2 − 4

) 5
3

,
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it is easy to verify that ρ(t) is increasing. Then ρ(t) > (51/32)5/3 for t > 9 . Furthermore, we see that

δα1 (τ
−1(σ̃(t)), t1)

∫ ∞

t

Q2(s)
δα2 (τ

−1(σ̃(s)), t2)

δα1 (τ
−1(σ̃(s)), t1)

ds

>((t− 3)2 − 4)
5
3

∫ ∞

t

( 1

450

) 5
3 q0

s
4
3

·
(51
32

) 5
3

ds

>3q0

( 1

9 · 32

) 5
3 ((t− 3)2 − 4)

5
3

t
1
3

> 1,

if q0 > 37/3 · 325/3 , and ∫ t

τ−1(σ̄(t))

Q1(s)H
α(t, s)ds

>

∫ t

t−1

( 29

900

) 5
3 q0

s
4
3

(∫ t−1

s−1

(t2 − l2)dl
) 5

3

ds

>
( 29

900

) 5
3

q0

∫ t

t−1

s
1
3 ds >

( 3

100

) 5
3 3q0

4
> 1,

if q0 > 4 · 100 5
3 /3

8
3 . Hence, by Theorem 3.6, (4.2) is oscillatory with q0 > 37/3 · 325/3 .
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