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Abstract: This note is written to show that the definition of the LA -semihypergroup by V. Amjad, K. Hila and F.
Yousafzai “Generalized hyperideals in locally associative left almost semihypergroups, New York J. Math. 2014” should
be corrected and that it is not enough to replace the multiplication “ ·” of an LA -semigroup by the hyperoperation “◦”
to pass from an LA -semigroup to an LA -semihypergroup. The two examples of the paper based on the definition of the
LA -semihypergroup are wrong that is a further indication that this definition needs correction. According to the last
section of the paper, the paper generalizes the results of an LA -semigroup by M. Akram, N. Yaqoob and M. Khan “On
(m,n) -ideals of left almost semigroups, Appl. Math. Sci. (Ruse) 2013” while the paper duplicates, without citation, the
section 4 of the paper by W. Khan, F. Yousafzai, W. Guo and M. Khan “On (m,n) -ideals of left almost semigroups, J.
Semigroup Theory Appl. 2014” with the usual change of “ ·” to “◦”.
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According to the introduction of [2], “a left almost semigroup (LA -semigroup) is a groupoid S whose
elements satisfy the following left invertive law (ab)c = (cb)a for all a, b, c ∈ S ” (“left invertive” according to
the bibliography —should be possibly changed to “left invertible”, “left inverted” or “left inverse”). The concept
“LA -semigroup” gives the impression that this is a semigroup having the LA -property. The fact that each
commutative groupoid is a semigroup is no excuse for being called “almost semigroup”. Many structures could
be called almost semigroups if we adopt this definition. This structure being a groupoid and not a semigroup,
the term LA -semigroup should be replaced by AG -groupoid also called Abel-Grassmann’s groupoid (see, for
example, [3, 12, 13, 17, 18]). Some authors use the concept “nonassociative ordered semigroup” which is certainly
wrong as an ordered semigroup cannot be nonassociative. Phrases like “this is a structure midway between a
groupoid and a commutative semigroup” make the very simple definition incomprehensible.

Again by the introduction, an LA -semigroup is a generalization of a semigroup and it has vast applications
in semigroups as well as in other branches of mathematics [2, p. 1064, l. 12–14]. That means that every
semigroup is an LA -semigroup. How is it possible ? In fact, a semigroup is a generalization of a commutative
LA -semigroup.

The Definition of the LA-semigroup in [2]: A map ◦ : H×H → P∗(H) is called hyperoperation or
join operation on the set H , where H is a nonempty set and P∗(H) = P(H)\∅ denotes the set of all nonempty
subsets of H . A hypergroupoid is a set H together with a (binary) hyperoperation. Let A and B be two
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nonempty subsets of H , then we denote A ◦ B =
∪

a∈A,b∈B

a ◦ b , a ◦ A = {a} ◦ A and a ◦ B = {a} ◦ B . A

hypergroupoid (H, ◦) is called an LA -semihypergroup if (x ◦ y) ◦ z = (z ◦ y) ◦ x for all x, y, z ∈ H .

We cannot write (x◦y)◦z as x◦y is a subset of H , z an element of H and ◦ is an “operation” between
two elements of H called hyperoperation as it assigns to each couple of elements a, b of H a nonempty subset
(instead of an element) of H . It could also be called operation. Even if we identify the z by the singleton {z} ,
we cannot write (x ◦ y) ◦ {z} as x ◦ y and {z} are sets while ◦ operation between elements. We will justify
what we say using the two examples in [2]. In addition, we cannot write A ◦B , as ◦ is an “operation” between
elements. We cannot use the same symbol both for elements and sets (different subjects); if we do that, a
great confusion arises (see also [8]). To use a single symbol to represent different operations could possibly be
a fruitful idea when implementing algorithms in a computer using a table of multiplication, but definitely not
suitable for a research article on pure mathematics.

We will use the terms AG -groupoid, AG -hypergroupoid instead of the LA -semigroup, LA -semihypergroup
given in [2].

This is the Example 4 in [2]: The set H = {a, b, c, d, e} with the hyperoperation ◦ given by Table 1, is an
AG -hypergroupoid.

Table 1. The hyperoperation of Example 4 in [2].

◦ a b c d e

a {a} {a} {a} {a} {a}
b {a} {a, e} {a, e} {a, c} {a, e}
c {a} {a, e} {a, e} {a, b} {a, e}
d {a} {b} {c} {d} {e}
e {a} {a, e} {a, e} {a, e} {a, e}

We wrote {a} in the table instead of the a in [2]. According to the definition of the AG -hypergroupoid in
[2], to show that this is an AG -hypergroupoid we have to show that (x◦y)◦z = (z ◦y)◦x for every x, y, z ∈ H .
This being so, the (a ◦ b) ◦ d , for example, should be equal to (d ◦ b) ◦ a . We have (a ◦ b) ◦ d = {a} ◦ d and
(d ◦ b) ◦ a = {b} ◦ a , while both the {a} ◦ d and the {b} ◦ a are without meaning.

Let us give now the correct definition to see the difference.

Definition 1 Let H be a nonempty set and ◦ an hyperoperation on H ; that is a mapping of H ×H into the
set P∗(H) of nonempty subsets of H . For two nonempty subsets A and B of H we denote by ∗ the operation
on P∗(H) defined by

∗ : P∗(H)× P∗(H) → P∗(H) | (A,B) → A ∗B :=
∪

a∈A, b∈B

a ◦ b.

Then H is called AG -hypergroupoid if

(a ◦ b) ∗ {c} = (c ◦ b) ∗ {a} for all a, b, c ∈ H.
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When is convenient and no confusion is possible, we identify the singleton {x} with its element and write, for
short, (a ◦ b) ∗ c = (c ◦ b) ∗ a .
As one can easily see, for any a, b we have {a} ∗ {b} = a ◦ b (see, for example [5–7]).
Using this definition, let us check if the Example 4 in [2] (given by Table 1 above) is correct. We have

(d ◦ d) ∗ {b} = {d} ∗ {b} = d ◦ b = {b} ,
(b ◦ d) ∗ {d} = {a, c} ∗ {d} =

∪
x∈{a, c}

x ◦ d = (a ◦ d) ∪ (c ◦ d) = {a} ∪ {a, b} = {a, b} and

(d ◦ d) ∗ {b} ̸= (b ◦ d) ∗ {d} .

So the Example 4 in [2] is wrong.

This is the Example 5 in [2]: The set H = {a, b, c, d} defined by Table 2 is an AG -hypergroupoid.

Table 2. The hyperoperation of Example 5 in [2].

◦ a b c d

a {a} {a} {a} {a}
b {a} {a, b, c, d} {a, b, c} {a, b, c}
c {a} {a, b, c} {a, b, c} {a, b, c}
d {a} {a, b, c} {a, b, c} {a, b, c}

The Example 5 in [2] is also wrong as
(c ◦ d) ∗ {b} = {a, b, c} ∗ {b} =

∪
x∈{a,b,c}

x ◦ b = (a ◦ b) ∪ (b ◦ b) ∪ (c ◦ b) = {a, b, c, d} ,

(b ◦ d) ∗ {c} = {a, b, c} ∗ {c} =
∪

x∈{a,b,c}
x ◦ c = (a ◦ c) ∪ (b ◦ c) ∪ (c ◦ c) = {a, b, c} but

(c ◦ d) ∗ {b} ̸= (b ◦ d) ∗ {c} .
Also,

(b ◦ c) ∗ {d} = {a, b, c} ∗ {d} = (a ◦ d) ∪ (b ◦ d) ∪ (c ◦ d) = {a, b, c} while
(d ◦ c) ∗ {b} = {a, b, c} ∗ {b} = (a ◦ b) ∪ (b ◦ b) ∪ (c ◦ b) = {a, b, c, d} .

It is very difficult (not to say impossible) to check the examples of AG -hypergroupoids given by a table
of multiplication by hand. As we see, the examples in [2] are not correct that means nobody has checked (or
able to check) if they are correct or not during the refereeing process; so it should be mentioned in the papers
the way they have been constructed. On the other hand, such examples can be obtained in a very easy way
from corresponding examples on AG -groupoids which is a much simpler structure but still an explanation is
needed to check if they are correct.

According to the last section, the results of the paper generalize the result by M. Akram, N. Yaqoob and
M. Khan [1] and by Q. Mushtaq and S.M. Yusuf [16]. The results in [1] are different; regarding [16] the only we
have is the review MR0596763 by M. Friedberg in MathSciNet and the review Zbl 0445.20033 by P. Pondelicek
in Zentralblatt —does not appear to be related to [2].

In what follows, the aim is to show that is not enough to pass from an AG -groupoid to an AG -
hypergroupoid by replacing the multiplication “ ·” of the AG -groupoid by the hyperoperation “◦” of the AG -
hypergroupoid.
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Strange symbols like

[(H ◦R) ◦ (H ◦Rm+n−2)] ◦ [(H ◦ L) ◦ (H ◦ Lm+n−2)],

[{(anm ◦Hm) ◦ amn} ◦H] ◦ {(amn ◦Hn) ◦ ann}

have been used throughout the paper (see, for example p. 1068, l.6; p. 1071, l.10). Unless a clear definition of
the (m,n) -hyperideal and the (m,n) -regularity, some necessary lemmas, and an explanation how they can be
applied to the theorems of the paper, these symbols have no sense. But even in case of a “trivial extension”
in which the contexts between the two structures are different only some necessary lemmas and an explanation
about the rest of the paper is necessary (see, for example, [4, 9, 10]).

The paper by V. Amjad, K. Hila and F. Yousafzai [2] is an exact copy (word by word) of section 4 of the
paper by W. Khan, F. Yousafzai, W. Guo and M. Khan [14], not cited in [2], with the only difference that the
multiplication “ ·” in [14] has been replaced by “◦”.
In fact,

Lemma 1 in [2] is the Lemma 7 in [14];
Theorem 1 in [2] is the Theorem 6 in [14];
Theorem 2 in [2] is the Theorem 7 in [14];
Theorem 3 in [2] is the Theorem 8 in [14];
Theorem 4 in [2] is the Theorem 9 in [14];
Corollary 1 in [2] is the Corollary 5 in [14];
Theorem 5 in [2] is the Theorem 10 in [14];
Lemma 3 in [2] is the Lemma 9 in [14];
Corollary 2 in [2] is the Corollary 6 in [14];
Theorem 6 in [2] is the Theorem 11 in [14];
Theorem 7 in [2] is the Theorem 12 in [14];
Theorem 8 in [2] is the Theorem 13 in [14].

Finally, 29 papers have been cited in References while the paper is based only on [14] not cited in
References.

On the other hand, the paper by W. Khan, F. Yousafzai and M. Khan [15] is an exact copy (word by
word) of the paper by W. Khan, F. Yousafzai, W. Guo and M. Khan [14] with the only difference that 17 papers
have been cited in References in [15] instead of 13 in [14] and a little change in Introduction. The results in [14]
should be checked as well.

The following theorem is useful for applications.

Theorem 2 Let H is an AG -hypergroupoid and A,B,C nonempty subset of H . Then we have

(A ∗B) ∗ C = (C ∗B) ∗A.

Proof Let x ∈ (A ∗ B) ∗ C . Then x ∈ u ◦ c for some u ∈ A ∗ B , c ∈ C . Since u ∈ A ∗ B , we have u ∈ a ◦ b
for some a ∈ A , b ∈ B . Then we have

x ∈ u ◦ c = {u} ∗ {c} ⊆ (a ◦ b) ∗ {c} = (c ◦ b) ∗ {a} ⊆ (C ∗B) ∗A.
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Thus we have (A∗B)∗C ⊆ (C ∗B)∗A . If x ∈ (C ∗B)∗A , then x ∈ u◦a for some u ∈ C ∗B , then u ∈ c◦b for
some c ∈ C , b ∈ B and x ∈ {u}∗{a} ⊆ (c◦b)∗{a} = (a◦b)∗{c} ⊆ (A∗B)∗C and so (C ∗B)∗A ⊆ (A∗B)∗C
and equality holds. 2

Note All the results on hypersemigroups or AG -hypersemigroups obtained using only sets are corollaries of
corresponding results on le -semigroups (: lattice ordered semigroups having a greatest element e with respect
to the order) (see also [11]).

With my best thanks to the anonymous referee for his/her time to read the paper carefully.
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