http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: 1119 - 1131
© TÜBİTAK
doi:10.3906/mat-2112-6

# On the inclusion properties for $\vartheta$-spirallike functions involving both Mittag-Leffler and Wright function 

Şahsene ALTINKAYA ©
Department of Mathematics, Faculty of Arts and Sciences, Beykent University, İstanbul, Turkey
Received: 02.12.2021 • Accepted/Published Online: 24.02.2022 $\quad$ - Final Version: 11.03 .2022


#### Abstract

By making use of the both Mittag-Leffler and Wright function, we establish a new subfamily of the class $S_{\vartheta}$ of $\vartheta$-spirallike functions. The main object of the paper is to provide sufficient conditions for a function to be in this newly established class and to discuss subordination outcomes.


Key words: Wright function, Mittag-Leffler function, Spirallike function, Subordination, Convolution.

## 1. Introduction and Preliminaries

The well-known Wright function $W_{\alpha, \beta}(z)(\alpha>-1, \beta, z \in \mathbb{C})$ is expressed by

$$
\begin{equation*}
W_{\alpha, \beta}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+\beta) n!} \tag{1.1}
\end{equation*}
$$

It is well known that for $\alpha>-1$ and every $z \in \mathbb{C}$ the series (1.1) is absolutely convergent. In the case $\alpha=-1$, this series is absolutely convergent in $U=\{z \in \mathbb{C}:|z|<1\}$. For $\alpha>-1$, the function $W_{\alpha, \beta}$ is an entire function [37]. The various properties of the Wright function and its applications were investigated in a series of papers [1], [20-26], [33].

The Mittag-Leffler function $E_{\alpha}(z)(\alpha \in \mathbb{C}, \Re(\alpha)>0)$ is expressed by

$$
E_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+1)}
$$

and its generalization with two parameters $E_{\alpha, \beta}(z)(\alpha, z \in \mathbb{C}, \Re(\alpha)>0, \Re(\beta)>0)$ is expressed by [36]

$$
E_{\alpha, \beta}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+\beta)}
$$

where $\Gamma$ stands for the Gamma function. It is clear that $E_{\alpha, \beta}(z)$ is related $E_{\alpha}(z)$ with the below relation

$$
E_{\alpha, 1}(z)=E_{\alpha}(z)
$$

## ALTINKAYA/Turk J Math

Afterwards, it has been generalized in different ways over the years [7], [10-12], [14, 15], [17], [30]. While the Wright function has a major role due to its applications in partial differential equations of fractional order, the Mittag-Leffler function has gained a major importance in engineering, physics, chemistry, biology as well as mathematics and mathematical physics.

Next, assume that $\mathcal{A}$ is the family of functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1.2}
\end{equation*}
$$

which are analytic in $U$ with the normalization $f(0)=f^{\prime}(0)-1=0$. Furthermore, assume that $\mathcal{S}$ is the subfamily of $\mathcal{A}$ comprising of univalent functions.

If $f_{1}$ and $f_{2}$ are analytic in $U$, then we call that $f_{1}$ is subordinated to $f_{2}$, showed by $f_{1} \prec f_{2}$, for the Schwarz function

$$
\varpi(z)=\sum_{n=1}^{\infty} \mathbf{c}_{n} z^{n} \quad(\varpi(0)=0,|\varpi(z)|<1)
$$

analytic in $U$ such that

$$
f_{1}(z)=f_{2}(\varpi(z)) \quad(z \in U)
$$

On the other hand, the convolution of functions $f_{1}(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $f_{2}(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ is expressed by

$$
f_{1}(z) * f_{2}(z)=\left(f_{1} * f_{2}\right)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \quad(z \in U)
$$

A logarithmic $\vartheta$-spiral is a curve defined by

$$
\omega=\omega_{0} \exp \left(-e^{-i \vartheta} t\right) \quad\left(-\infty<t<\infty, \vartheta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)
$$

where $\omega_{0}$ is a nonzero complex number. Since $\omega=\omega(t)$ is a logarithmic $\vartheta$-spiral, $\Im\left[e^{i \vartheta} \log \omega(t)\right]=$ constant. Observe that 0 -spirals are radial half-lines. For each $\vartheta\left(|\vartheta|<\frac{\pi}{2}\right)$, there is a unique $\vartheta$-spiral which joins a given point $\omega \neq 0$ to the origin (see [13]). A domain $D$ containing the origin is named $\vartheta$-spirallike if for each point $\omega \neq 0$ in $D$ the arc of the $\vartheta$-spiral from $\omega$ to the origin lies entirely in $D$. That is, $D$ is simply connected. An analytic univalent function $f$ is named $\vartheta$-spirallike if its range is $\vartheta$-spirallike. The class of $\vartheta$-spirallike functions is indicated by $\mathcal{S}_{\vartheta}$. Analytically, this means that a function $f \in \mathcal{A}$ is in $\mathcal{S}_{\vartheta}$ iff $\Re\left(e^{i \vartheta \frac{z f^{\prime}(z)}{f(z)}}\right)>0$. The class $\mathcal{S}_{\vartheta}$ of $\vartheta$-spirallike functions was expressed by Spaček [31] and he proved that $\mathcal{S}_{\vartheta} \subset \mathcal{S}$. Explicitly, let $\vartheta$ and $\sigma$ be real numbers, where $|\vartheta|<\frac{\pi}{2}$ and $0 \leq \sigma<1$. Libera [19] adopted this concept to functions $\vartheta$-spirallike of order $\sigma$ indicated by $\mathcal{S}_{\vartheta}(\sigma)$ as follows (see also [18]):

$$
\Re\left(e^{i \vartheta} \frac{z f^{\prime}(z)}{f(z)}\right)>\sigma \cos \vartheta
$$

Clearly, $\mathcal{S}_{\vartheta}(\sigma) \subset \mathcal{S}_{\vartheta}$.
The $q$-calculus presents different tools which have been studied in special functions. While Jackson was one of the leading authors among mathematicians working on the $q$-calculus theory [16], the use of $q$-calculus within the context of Geometric Function Theory was partially provided by Srivastava [32]. In course of this

## ALTINKAYA/Turk J Math

paper, assume $q \in(0,1)$ and the definitions of $q$-derivative operators are dealt with the complex-valued function $f$.

Now, we consider the following $q$-derivative of $f$ introduced by [16]:

$$
D_{q} f(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z}, & z \neq 0  \tag{1.3}\\ f^{\prime}(0), & z=0\end{cases}
$$

We would like to point out that if $f$ is differentiable at $z$, then

$$
\lim _{q \rightarrow 1^{-}} D_{q} f(z)=\lim _{q \rightarrow 1^{-}} \frac{f(z)-f(q z)}{(1-q) z}=f^{\prime}(z)
$$

Recently, Bansal and Mehrez [4] defined the function

$$
T_{\alpha, \beta}(\gamma ; z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+\beta)[\gamma n!+(1-\gamma)]}, \quad(0 \leq \gamma \leq 1)
$$

which enables us to discuss both Mittag-Leffler and Wright function, that is,

$$
\begin{aligned}
& T_{\alpha, \beta}(0 ; z)=E_{\alpha, \beta}(z) \\
& T_{\alpha, \beta}(1 ; z)=W_{\alpha, \beta}(z)
\end{aligned}
$$

Observe that the function $T_{\alpha, \beta}(\gamma ; z)$ is not an element of $\mathcal{A}$. Hence, the function $T_{\alpha, \beta}(\gamma ; z)$ must be normalized as follows [2]

$$
\mathbb{T}_{\alpha, \beta, \gamma}(z)=\Gamma(\beta) z T_{\alpha, \beta}(\gamma ; z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]} z^{n}
$$

This function holds for complex-valued $\alpha, \beta$ and $z \in \mathbb{C}$. However, throughout this paper, we restrict our attention to the case real-valued $\alpha, \beta$ with $\alpha>0, \beta>0$ and $z \in U$.

On the other hand, the function $\mathbb{T}_{\alpha, \beta, \gamma}$ is a natural extension of the exponential, hyperbolic and trigonometric functions, and some special cases can be given as follows; for example [2]

$$
\begin{array}{lll}
\mathbb{T}_{0,1,0}(z)=\frac{z}{1-z}, & \mathbb{T}_{1,2,0}(z)=e^{z}-1, & \mathbb{T}_{0,1,1}(z)=z e^{z} \\
\mathbb{T}_{1,1,0}(z)=z e^{z}, & \mathbb{T}_{2,2,0}(z)=\sqrt{z} \sinh (\sqrt{z}), & \mathbb{T}_{2,1,0}(z)=z \cosh (\sqrt{z})
\end{array}
$$

Furthermore, for a function $f \in \mathcal{A}$, we get

$$
\begin{equation*}
\mathcal{T}_{\alpha, \beta, \gamma} f(z)=\mathbb{T}_{\alpha, \beta, \gamma}(z) * f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(\beta) a_{n}}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]} z^{n} \tag{1.4}
\end{equation*}
$$

Thus, with the help of (1.3) and (1.4), we get

$$
D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)=1+\sum_{n=2}^{\infty} \frac{\Gamma(\beta)[n]_{q} a_{n}}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]} z^{n-1}
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q}$.
Recently, a remarkably large number of researchers discussed families of analytic functions involving special functions to present geometric properties such as univalency and starlikeness in $U$. For convenience, many outcomes are available in the literature ([3], [5, 6], [8], [29], [34, 35]). In this organized research, by inserting the normalized function $\mathcal{T}_{\alpha, \beta, \gamma} f(z)$, we shall introduce a new subfamily $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ of $\vartheta$-spirallike functions. Afterwards, we discuss membership conditions, coefficient estimates, the relation of subordination and the Fekete-Szegö functional.

Definition 1.1 A function $f \in \mathcal{A}$ is in $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ provided that

$$
\Re\left(e^{i \vartheta} \frac{z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)}{\mu z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)+(1-\mu) \mathcal{T}_{\alpha, \beta, \gamma} f(z)}\right)>\sigma \cos \vartheta
$$

where $|\vartheta|<\frac{\pi}{2}, 0 \leq \sigma<1,0 \leq \mu<1,0 \leq \gamma \leq 1$.

## 2. Membership conditions and coefficients estimates

Theorem 2.1 Assume $f \in \mathcal{A}$ and $p$ is a real number with $0 \leq p<1$. If

$$
\begin{equation*}
\left|\frac{z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)}{\mu z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)+(1-\mu) \mathcal{T}_{\alpha, \beta, \gamma} f(z)}-1\right| \leq 1-p, \tag{2.1}
\end{equation*}
$$

then $f \in \mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ provided that $|\vartheta| \leq \cos ^{-1}\left(\frac{1-p}{1-\sigma}\right)$.
Proof It follows from (2.1) that

$$
\frac{z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)}{\mu z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)+(1-\mu) \mathcal{T}_{\alpha, \beta, \gamma} f(z)}=(1-p) \varpi(z)+1 .
$$

Further computations give

$$
\begin{aligned}
\Re\left\{e^{i \vartheta} \frac{z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)}{\mu z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)+(1-\mu) \mathcal{T}_{\alpha, \beta, \gamma} f(z)}\right\} & =\Re\left\{e^{i \vartheta}(1-p) \varpi(z)+e^{i \vartheta}\right\} \\
& =(1-p) \Re\left\{e^{i \vartheta} \varpi(z)\right\}+\cos \vartheta \\
& \geq-(1-p)\left|e^{i \vartheta} \varpi(z)\right|+\cos \vartheta \\
& =-(1-p)+\cos \vartheta .
\end{aligned}
$$

Indeed, $-(1-p)+\cos \vartheta=\sigma \cos \vartheta$ provided that $|\vartheta| \leq \cos ^{-1}\left(\frac{1-p}{1-\sigma}\right)$.
Corollary 2.2 Assume $p=1-(1-\sigma) \cos \vartheta$. If

$$
\left|\frac{z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)}{\mu z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)+(1-\mu) \mathcal{T}_{\alpha, \beta, \gamma} f(z)}-1\right| \leq(1-\sigma) \cos \vartheta
$$

then $f \in \mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$.

Next, we discuss another sufficient condition.

Theorem 2.3 A function $f \in \mathcal{A}$ belongs to $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ when

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left\{(1-\mu)\left([n]_{q}-1\right) \sec \vartheta+(1-\sigma)\left(1-\mu+\mu[n]_{q}\right)\right\} \\
& \times \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}\left|a_{n}\right|  \tag{2.2}\\
& \leq 1-\sigma
\end{align*}
$$

Proof In view of above Corollary 2.2, since

$$
\begin{aligned}
& \left|\frac{z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)}{\mu z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)+(1-\mu) \mathcal{T}_{\alpha, \beta, \gamma} f(z)}-1\right| \\
= & (1-\mu)\left|\frac{\sum_{n=2}^{\infty}\left([n]_{q}-1\right) \frac{\Gamma(\beta) a_{n} z^{n-1}}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}}{\Gamma+\sum_{n=2}^{\infty}\left(1-\mu+\mu[n]_{q}\right) \frac{\Gamma(\beta) a_{n} z^{n-1}}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}}\right| \\
< & (1-\mu) \frac{\sum_{n=2}^{\infty}\left([n]_{q}-1\right) \frac{\Gamma(\beta)\left|a_{n}\right|}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}}{1-\sum_{n=2}^{\infty}\left(1-\mu+\mu[n]_{q}\right) \frac{\Gamma(\beta)\left|a_{n}\right|}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}}
\end{aligned}
$$

we get

$$
\begin{aligned}
& \sum_{n=2}^{\infty}(1-\mu)\left([n]_{q}-1\right) \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}\left|a_{n}\right| \\
\leq & (1-\sigma) \cos \vartheta\left\{1-\sum_{n=2}^{\infty}\left(1-\mu+\mu[n]_{q}\right) \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}\left|a_{n}\right|\right\}
\end{aligned}
$$

which means

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left\{(1-\mu)\left([n]_{q}-1\right) \sec \vartheta+(1-\sigma)\left(1-\mu+\mu[n]_{q}\right)\right\} \\
& \times \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}\left|a_{n}\right| \\
& \leq 1-\sigma .
\end{aligned}
$$

Our next outcome includes the general coefficient estimate.

Corollary 2.4 If $f \in \mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$, then

$$
\left|a_{n}\right| \leq \frac{1-\sigma}{C_{n}} \quad(n \geq 2)
$$

where

$$
C_{n}=\left\{(1-\mu)\left([n]_{q}-1\right) \sec \vartheta+(1-\sigma)\left(1-\mu+\mu[n]_{q}\right)\right\} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)[\gamma(n-1)!+(1-\gamma)]}
$$

The outcome is sharp for $f_{n}(z)=z+\frac{1-\sigma}{C_{n}} z^{n}$.

## 3. Subordination results

In order to discuss subordination outcomes for the class $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$, we shall look at some definitions and lemmas due to Wilf [35].

Definition 3.1 Assume $K$ is the subfamily of $\mathcal{S}$ including convex functions, defined analytically with the equivalences

$$
h \in K \Leftrightarrow \Re\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\}>0
$$

Definition 3.2 The complex numbers sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ is named a subordinating factor sequence if, whenever

$$
h(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

is regular, univalent and convex in $U$, we get

$$
\sum_{n=1}^{\infty} b_{n} t_{n} z^{n} \prec h(z) \quad(z \in U)
$$

Lemma 3.3 The sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ is a subordinating factor sequence iff

$$
\Re\left\{1+2 \sum_{n=1}^{\infty} t_{n} z^{n}\right\}>0
$$

Theorem 3.4 Assume $f \in \mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ and $h \in K$. Then

$$
\begin{equation*}
\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)}(f * h)(z) \prec h(z), \tag{3.1}
\end{equation*}
$$

where

$$
C_{2}=\{(1-\mu) q \sec \vartheta+(1-\sigma)(1+\mu q)\} \frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

and

$$
\begin{equation*}
\Re\{f(z)\}>-\frac{1-\sigma+C_{2}}{C_{2}} . \tag{3.2}
\end{equation*}
$$

The constant factor $\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)}$ cannot be changed with a larger number.

## ALTINKAYA/Turk J Math

Proof From Definition 3.2, the subordination (3.1) will be fulfilled if the sequence

$$
\left\{\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)} a_{n}\right\}_{n=1}^{\infty}
$$

is a subordinating factor sequence with $a_{1}=1$. Then by Lemma 3.3, it is evident to prove

$$
\Re\left\{1+2 \sum_{n=1}^{\infty} \frac{C_{2}}{2\left(1-\sigma+C_{2}\right)} a_{n} z^{n}\right\}>0
$$

In view of (2.2), for $|z|=r<1$, we get

$$
\begin{aligned}
\Re\left\{1+\frac{C_{2}}{\left(1-\sigma+C_{2}\right)} \sum_{n=1}^{\infty} a_{n} z^{n}\right\} & \geq 1-\frac{C_{2}}{1-\sigma+C_{2}}\left|\sum_{n=1}^{\infty} a_{n} z^{n}\right| \\
& =1-\frac{C_{2}}{1-\sigma+C_{2}} r-\frac{1}{1-\sigma+C_{2}} \sum_{n=2}^{\infty}\left|a_{n}\right| C_{n} r^{n} \\
& =1-\frac{1-\sigma+C_{2}}{1-\sigma+C_{2}} r>0
\end{aligned}
$$

Hence, equation (3.1) holds. Now, by taking $h(z)=\frac{z}{1-z}=z+\sum_{n=2}^{\infty} z^{n}$ in (3.1), we obtain the inequality (3.2). That is,

$$
\begin{aligned}
\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)} f(z) & \prec h(z) \\
\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)} \Re\{f(z)\} & >\Re\{h(z)\} \\
\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)} \Re\{f(z)\} & >-\frac{1}{2} .
\end{aligned}
$$

Next, for the sharpness, let us assume a function

$$
F(z)=z-\frac{1-\sigma}{1-\sigma+C_{2}} z^{2}
$$

Clearly $F \in \mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$. By (3.1), since

$$
\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)}(F * h)(z) \prec \frac{z}{1-z},
$$

we infer that

$$
\min \left[\Re\left\{\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)} F(z)\right\}\right]=-\frac{1}{2}
$$

This shows that the constant $\frac{C_{2}}{2\left(1-\sigma+C_{2}\right)}$ cannot be changed with any larger one.

## ALTINKAYA/Turk J Math

## 4. The Fekete-Szegö functional

The Fekete-Szegö problem, stated by Fekete and Szegö [9], aims to find the maximum value of the functional $\Theta_{\Psi}(f)=\left|a_{3}-\Psi a_{2}^{2}\right|$, where $f \in \mathcal{S}$ and $\Psi \in[-1,1]$.

Recall the following pivotal observation to find sharp upper bounds for functions in $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$.
Lemma 4.1 [27] Assume $\varpi$ is a Schwarz function. Then

$$
\left|\mathbf{c}_{1}\right| \leq 1, \quad\left|\mathbf{c}_{2}\right| \leq 1-\left|\mathbf{c}_{1}\right|^{2}
$$

and for any complex number $\Psi$

$$
\left|\mathbf{c}_{2}-\Psi \mathbf{c}_{1}^{2}\right| \leq \max \{1,|\Psi|\}
$$

This outcome is sharp for $\varpi(z)=z$ and $\varpi(z)=z^{2}$.
For the constants $\vartheta\left(|\vartheta|<\frac{\pi}{2}\right)$ and $\sigma(0 \leq \sigma<1)$, assume

$$
P(z)=\frac{1+e^{-i \vartheta}\left(e^{-i \vartheta}-2 \sigma \cos \vartheta\right) z}{1-z}(z \in U)
$$

This function maps $U$ onto the half-plane [28]

$$
H=\left\{z \in \mathbb{C}: \Re\left(e^{i \vartheta} z\right)>\sigma \cos \vartheta\right\} .
$$

If $P(z)=1+\sum_{n=1}^{\infty} P_{n} z^{n}$, then $P_{n}=2 e^{-i \vartheta}(1-\sigma) \cos \vartheta$.
Now, we will solve the Fekete-Szegö problem for the class $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ with $\Psi$ real parameter.

Theorem 4.2 Let $f \in \mathcal{A}$ belong to $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ and $\Psi$ be a real number. Then

$$
\begin{aligned}
& \left|a_{3}-\Psi a_{2}^{2}\right| \leq \\
& \begin{cases}\frac{2 \Gamma(\alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)}\left[1+\frac{2(1-\sigma)(1+\mu q)}{q(1-\mu)}-\Psi \frac{2(\Gamma(\alpha+\beta))^{2}(1-\sigma)(1+q)}{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma) q(1-\mu)}\right] & \Psi \leq \xi_{1} \\
\frac{2 \Gamma(\alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)} & \xi_{1} \leq \Psi \leq \xi_{2}, \\
\frac{2 \Gamma(\alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)}\left[\Psi \frac{2(\Gamma(\alpha+\beta))^{2}(1-\sigma)(1+q)}{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma) q(1-\mu)}-\frac{2(1-\sigma)(1+\mu q)}{q(1-\mu)}-1\right] & \Psi \geq \xi_{2}\end{cases}
\end{aligned}
$$

where

$$
\begin{equation*}
\xi_{1}=\frac{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma)(1+\mu q)}{(\Gamma(\alpha+\beta))^{2}(1+q)} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi_{2}=\frac{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma)(1+q-\sigma(1+\mu q))}{(\Gamma(\alpha+\beta))^{2}(1+q)(1-\sigma)} . \tag{4.2}
\end{equation*}
$$

All estimates are sharp.

## ALTINKAYA/Turk J Math

Proof Suppose $f \in \mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$. From Definition 3.2, we can write

$$
\frac{z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)}{\mu z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)+(1-\mu) \mathcal{T}_{\alpha, \beta, \gamma} f(z)}=P(\varpi(z)),
$$

which gives

$$
\begin{aligned}
& 1+\frac{\Gamma(\beta) q(1-\mu)}{\Gamma(\alpha+\beta)} a_{2} z \\
& +\left\{\frac{\Gamma(\beta) q(1+q)(1-\mu)}{\Gamma(2 \alpha+\beta)(1+\gamma)} a_{3}-\left(\frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)}\right)^{2} q(1+\mu q)(1-\mu) a_{2}^{2}\right\} z^{2}+\cdots \\
& =1+P_{1} \mathbf{c}_{1} z+\left(P_{1} \mathbf{c}_{2}+P_{2} \mathbf{c}_{1}^{2}\right) z^{2}+\cdots
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
a_{2}=\frac{\Gamma(\alpha+\beta) P_{1}}{\Gamma(\beta) q(1-\mu)} \mathbf{c}_{1} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{\Gamma(2 \alpha+\beta)(1+\gamma) P_{1}}{\Gamma(\beta) q(1+q)(1-\mu)}\left[\mathbf{c}_{2}+\left(1+\frac{(1+\mu q) P_{1}}{q(1-\mu)}\right) \mathbf{c}_{1}^{2}\right] . \tag{4.4}
\end{equation*}
$$

Further computations give

$$
\begin{aligned}
& \left|a_{3}-\Psi a_{2}^{2}\right| \leq \frac{\Gamma(2 \alpha+\beta)(1+\gamma)\left|P_{1}\right|}{\Gamma(\beta) q(1+q)(1-\mu)} \\
& \times\left\{\left|\mathbf{c}_{2}\right|+\left|1+\frac{P_{1}}{q(1-\mu)}\left\{1+\mu q-\Psi \frac{(\Gamma(\alpha+\beta))^{2}(1+q)}{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma)}\right\}\right|\left|\mathbf{c}_{1}\right|^{2}\right\} \\
& \leq \frac{2 \Gamma(2 \alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)}\left[\left(1-\left|\mathbf{c}_{1}\right|^{2}\right)+\left|1+B e^{-i \vartheta} \cos \vartheta\right|\left|\mathbf{c}_{1}\right|^{2}\right]
\end{aligned}
$$

where

$$
B=\frac{2(1-\sigma)}{q(1-\mu)}\left\{1+\mu q-\Psi \frac{(\Gamma(\alpha+\beta))^{2}(1+q)}{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma)}\right\} .
$$

Or, equivalently

$$
\left|a_{3}-\Psi a_{2}^{2}\right| \leq \frac{2 \Gamma(2 \alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)}\left[1+\left(\sqrt{1+B(2+B) \cos ^{2} \vartheta}-1\right)\left|\mathbf{c}_{1}\right|^{2}\right] .
$$

Let us put

$$
F(x, y)=1+\left(\sqrt{1+B(2+B) x^{2}}-1\right) y^{2},
$$

where $x=\cos \vartheta, y=\left|\mathbf{c}_{1}\right|^{2}$ and $(x, y) \in[0,1] \times[0,1]$.

## ALTINKAYA/Turk J Math

Simple calculation shows that the function $F(x, y)$ does not have a local maximum at any interior point of the open rectangle $(0,1) \times(0,1)$. Therefore, the maximum must be attained at the boundary point. Since $F(x, 0)=1, F(0, y)=1$ and $F(1,1)=|1+B|$, it follows that the maximal value of $F(x, y)$ may be $F(0,0)=1$ or $F(1,1)=|1+B|$. So,

$$
\begin{equation*}
\left|a_{3}-\Psi a_{2}^{2}\right| \leq \frac{2 \Gamma(\alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)} \max \{1,|1+B|\} \tag{4.5}
\end{equation*}
$$

Case 1 If $\Psi \leq \xi_{1}$, where $\xi_{1}$ is given by (4.1), then $B \geq 0$ implies $|1+B| \geq 1$. Now from (4.5) we find

$$
\left|a_{3}-\Psi a_{2}^{2}\right| \leq \frac{2 \Gamma(\alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)}\left[1+\frac{2(1-\sigma)(1+\mu q)}{q(1-\mu)}-\Psi \frac{2(\Gamma(\alpha+\beta))^{2}(1-\sigma)(1+q)}{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma) q(1-\mu)}\right]
$$

Case 2 If $\Psi \geq \xi_{2}$, where $\xi_{2}$ is given by (4.2), then $B \leq-2$. Now from (4.5) we find

$$
\left|a_{3}-\Psi a_{2}^{2}\right| \leq \frac{2 \Gamma(\alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)}\left[\Psi \frac{2(\Gamma(\alpha+\beta))^{2}(1-\sigma)(1+q)}{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma) q(1-\mu)}-\frac{2(1-\sigma)(1+\mu q)}{q(1-\mu)}-1\right]
$$

Case 3 If $\xi_{1} \leq \Psi \leq \xi_{2}$, then $|1+B| \leq 1$. Now from (4.5) we find

$$
\left|a_{3}-\Psi a_{2}^{2}\right| \leq \frac{2 \Gamma(\alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)}
$$

In view of Lemma 4.1, the outcomes are sharp for $\varpi(z)=z$ and $\varpi(z)=z^{2}$ or one of their rotations.
Next, we consider the Fekete-Szegö problem for the class $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ with $\Psi$ complex parameter.

Theorem 4.3 Let $f \in \mathcal{A}$ belong to $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ and $\Psi$ be a complex number. Then

$$
\left|a_{3}-\Psi a_{2}^{2}\right| \leq \frac{2 \Gamma(\alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)} \max \{1,|\Omega|\}
$$

where

$$
\begin{equation*}
\Omega=\frac{2 e^{-i \vartheta}(1-\sigma) \cos \vartheta}{q(1-\mu)}\left\{\Psi \frac{(\Gamma(\alpha+\beta))^{2}(1+q)}{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma)}-\mu q-1\right\}-1 \tag{4.6}
\end{equation*}
$$

Proof Suppose $f \in \mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$. Making use of (4.3) and (4.4), we obtain

$$
\begin{aligned}
& \left|a_{3}-\Psi a_{2}^{2}\right| \leq \frac{\Gamma(2 \alpha+\beta)(1+\gamma)\left|P_{1}\right|}{\Gamma(\beta) q(1+q)(1-\mu)} \\
& \times\left|\mathbf{c}_{2}-\left[\frac{P_{1}}{q(1-\mu)}\left\{\Psi \frac{(\Gamma(\alpha+\beta))^{2}(1+q)}{\Gamma(\beta) \Gamma(2 \alpha+\beta)(1+\gamma)}-\mu q-1\right\}-1\right] \mathbf{c}_{1}^{2}\right| \\
& \leq \frac{2 \Gamma(2 \alpha+\beta)(1+\gamma)(1-\sigma) \cos \vartheta}{\Gamma(\beta) q(1+q)(1-\mu)}\left|\mathbf{c}_{2}-\Omega \mathbf{c}_{1}^{2}\right|
\end{aligned}
$$

where $\Omega$ is given by (4.6). The desired inequality follows by appying Lemma 4.1.

## 5. Concluding remarks and future perspectives

In the current paper, we have introduced the family $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ of $\vartheta$-spirallike functions. We have discussed membership conditions, coefficient estimates, the relation of subordination and the Fekete-Szegö functional. Some corollaries are also obtained. Furthermore, the paper includes several various outcomes for special values of the parameters:

Example 5.1 If $\mu=0$, the class $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma)$ can be expressed by

$$
\Re\left(e^{i \vartheta} \frac{z D_{q}\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)}{\mathcal{T}_{\alpha, \beta, \gamma} f(z)}\right)>\sigma \cos \vartheta
$$

where $|\vartheta|<\frac{\pi}{2}, 0 \leq \sigma<1,0 \leq \gamma \leq 1$.

Example 5.2 If $q \rightarrow 1^{-}$, we get the class $\mathcal{S L}_{\vartheta}^{\sigma}(\alpha, \beta, \gamma, \mu)$ can be expressed by

$$
\Re\left(e^{i \vartheta} \frac{z\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{\mu z\left(\mathcal{T}_{\alpha, \beta, \gamma} f(z)\right)^{\prime}+(1-\mu) \mathcal{T}_{\alpha, \beta, \gamma} f(z)}\right)>\sigma \cos \vartheta
$$

where $|\vartheta|<\frac{\pi}{2}, 0 \leq \sigma<1,0 \leq \mu<1,0 \leq \gamma \leq 1$.
On the other hand, by choosing special values of $\alpha, \beta$ and $\gamma$, we obtain the similar outcomes only for Mittag-Leffler function or only for Wright function. Hence, the other interesting remarks of our main result can be obtained similarly. The related results may be left as a practice for the researchers.

Finally, many other problems like Hankel determinant inequalities can be determined for the class $\mathcal{S}_{\vartheta}(\sigma ; \alpha, \beta, \gamma, \mu)$ as a future work. Also, the approach presented here has been extended to establish new subfamilies of univalent functions with the other special functions.

## References

[1] Abadias L, Miana PJ. A subordination principle on Wright functions and regularized resolvent families. Journal of Function Spaces 2015; 2015: 1-9.
[2] Ahuja O, Kumar S, Çetinkaya A. Normalized multivalent functions connected with generalized Mittag-Leffler functions. Acta Universitatis Apulensis 2021; 67: 111-123.
[3] Altınkaya Ş. Some properties for spirallike functions by means of both Mittag-Leffler and Wright function. Comptes Rendus de L'Academie Bulgare des Sciences 2021; 74 (10): 1431-1441.
[4] Bansal D, Mehrez K. On a new class of functions related with Mittag-Leffler and Wright functions and their properties. Communications of the Korean Mathematical Society 2020; 35 (4): 1123-1132.
[5] Baricz A. Generalized Bessel functions of the first kind. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
[6] Bulut S, Keerthi BS, Senthil B. Certain properties of spirallike Sakaguchi type functions connected with $q$ hypergeometric series. Journal of Classical Analysis 2020; 16 (2): 101-114.
[7] Dorrego GA, Cerutti RA. The $k$-Mittag-Leffler function. International Journal of Contemporary Mathematical Sciences 2012; 7 (13-16): 705-716.
[8] Duren PL. Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.

## ALTINKAYA/Turk J Math

[9] Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. Journal of London Mathematical Society 1933; 8: 85-89.
[10] Garg M, Manohar P, Kalla SL. A Mittag-Leffler-type function of two variables. Integral Transforms and Special Functions 2013; 24: 934-944.
[11] Gehlot KS. The $p-k$ Mittag-Leffler function. Palestine Journal of Mathematics 2018; 7 (2): 628-632.
[12] Gorenflo R, Kilbas AA, Mainardi F, Rogosin SV. Mittag-Leffler Functions. Related Topics and Applications, 2nd ed.; Springer: New York, NY, USA, 2020.
[13] Graham I, Kohr G. Geometric Function Theory in one and higher Dimensions. Marcel Dekker, New York, 2003.
[14] Humbert P. Quelques resultants retifs a la fonction de Mittag-Leffler. Comptes Rendus Hebdomadaires des Seances de 1 Academie des Sciences 1953; 236: 1467-1468.
[15] Humbert P, Agarwal RP. Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bulletin des Sciences Mathematiques 1953; 77: 180-185.
[16] Jackson FH. On $q$-functions and a certain difference operator. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 1908; 46: 253-281.
[17] Kamarujjama M, Khan NU, Khan O, Nieto JJ. Extended type $k$-Mittag-Leffler function and its applications. International Journal of Applied and Computational Mathematics 2019; 5 (3): 1-14.
[18] Keogh FR, Merkes EP. A coefficient inequality for certain classes of analytic functions. Proceeding of American Mathematical Society 1969; 20 (1): 8-12.
[19] Libera RJ. Univalent $\alpha$-spiral functions, Canadian Journal of Mathematics 1967; 19: 449-456.
[20] Luchko Yu, Goreno R. Scale-invariant solutions of a partial differential equation of fractional order. Fractional Calculus and Applied Analysis 1998; 1 (1): 63-78.
[21] Luchko Yu. The Wright function and its applications, in A. Kochubei, Yu.Luchko (Eds.), Handbook of Fractional Calculus with Applications Volume 1: Basic Theory, pp. 241-268, De Gruyter GmbH, 2019, Berlin/Boston, Series edited by J. A.Tenreiro Machado.
[22] Mainardi F, Consiglio A. The Wright functions of the second kind in Mathematical Physics. Mathematics 2020; 8 (6)884: 1-26.
[23] Mainardi F, Pagnini G. The Wright functions as solutions of the time-fractional diffusion equation. Applied Mathematics and Computation 2003; 141 (1): 51-62.
[24] Mustafa N. Integral operators of the normalized Wright functions and their some geometric properties. Gazi University Journal of Science 2017; 30 (1): 333-343.
[25] Mustafa N. Univalence of certain integral operators involving normalized Wright functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 2017; 66 (1): 19-28.
[26] Mustafa N, Altıntaş, O. Normalized Wright functions with negative coefficients and some of their integral transforms. TWMS Journal of Pure and Applied Mathematics, 2018; 9 (2): 190-206.
[27] Nehari Z. Conformal Mapping. McGraw-Hill, London, UK, 1952.
[28] Orhan H, Răducanu D, Çağlar M, Bayram M. Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator. Abstract and Applied Analysis 2013; 2013: 1-7.
[29] Prajapat JK. Certain geometric properties of the Wright function. Integral Transforms and Special Functions 2015; 26 (3): 203-212.
[30] Shukla AK, Prajapati JC. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Application 2007; 336: 797-811.
[31] Spacek L. Contribution a la theorie des fonctions univalentes. Casopis Pro Pestovani Matematiky a Fysiky 1933; 62: 12-19.

## ALTINKAYA/Turk J Math

[32] Srivastava HM. Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions, Fractional Calculus, and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
[33] Stankovic B, Gajic L. Some properties of Wright's function. Publications de l'Institut Mathématique 1976; 34: 91-98.
[34] Swaminathan A. Sufficient conditions for hypergeometric functions to be in a certain class of analytic functions. Computers \& Mathematics with Applications 2010; 59 (4): 1578-1583.
[35] Wilf HS. Subordinating factor sequence for convex maps of the unit circle. Proceeding of American Mathematical Society 1961; 12: 689-693.
[36] Wiman A. Uber den fundamental satz in der theorie der functionen $E_{\alpha}(x)$. Acta Mathematica 1905; 29: 191-201.
[37] Wright EM. On the coefficients of power series having exponential singularities. Journal of London Mathematical Society 1933; 8 (1): 71-79.

