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Abstract: The stresses within the soft tissue are not constant for some shell surfaces. They vary with position along
the mantle edge. In this paper, we show that elliptical geometry is more convenient to describe this type of surface.
Thus, we introduce the elliptical kinematics along an initial curve and construct some accretive surfaces with an elliptical
cross-section. In fact, these surfaces are not only curves with an elliptical cross-sectional curve, but also the material
points of the surface follow an elliptical trajectory during their formation. This situation can be easily explained through
elliptical motion and elliptical quaternion algebra. Then, we investigate the relationship between velocity and eccentricity
of the surfaces and compare it to the case of circular motion. Furthermore, we visualize some examples to support the
theoretical results through the MAPLE program.
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1. Introduction
Every natural growth or motion pattern inevitably follows one or more geometric shapes. From DNA molecules
to our spiral galaxy, many things can be explained with geometric codes. There are endlessly different structures
in nature including turtles, snails, seashells, etc. The growth of such structures takes place by adding mass
at the boundary of the structure. During this process, various structures are formed with more than one
patterning and it usually causes self-similar complex constructions. However, the complexity of these forms
makes it difficult to geometrically model them. As B. Mandelbrot says “Clouds are not spheres, mountains
are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line”.
Therefore, the way to construct a mathematically and physically elegant model is to choose an appropriate
geometry while investigating the growth of objects.

The first attempts to understand the biological structures mathematically begin with Moseley whose
study describes the mathematical aspects of the molluscan shell in terms of elegance and beauty [11]. Then,
much of the initial work is done by focusing on the shape of the shells and understanding the evolution of the
shell form undergrowth process [2, 6, 8, 16, 17]. However, there was no complete understanding of how the
molluscan grows mathematically. Then, Davis mathematically formulated this problem in the complex space
[3]. After then, Illert gives an elegant, logical and physically meaningful formulation for the investigation of
sea shells growth using such complex coordinates [9]. In [10], the author formulates the seashells in real space
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E3 and obtains equations which can be used for computer simulations. Later, Moulton et al. developed an
appropriate mathematical framework and it is not bounded by computer algorithms to generate surfaces [12].
Then, in [19], the authors consider a space curve instead of a planar curve and they use alternative moving
frame {N,C,W} on the initial curve. This frame ideally describes the growth in the direction of the Darboux
vector. In [20], it is investigated that the time dimension in the method effects the growth of the surfaces.
Thus, they introduce the model of the growth function in three-dimensional Minkowski space with a timelike
or a spacelike generating curve.

The elliptical, circular or commarginal cross-section of a shell, effects its growth velocity. For instance,
among the coiled shells of mollusks with nearly circular or elliptical shell margin, ammonites have the slowest
expanding. In [4], authors modelled the mechanics of commarginal rib formation via elliptical geometry. They
also demonstrated that there is a strong effect of the curvature on the ribbing pattern that manifests in the
shell expansion. In three-dimensional spaces, a rotation can be described as only four numbers such that the
norm of the quaternion is equal to 1, i.e. a unit quaternion. Quaternions were introduced by Hamilton [7].
Then, Shoemake described the rotation by using the quaternions [18]. Then, in [15], the authors described
the elliptical motions through the elliptical quaternions. Quaternions have various applications in computer
programs, computer graphics, video games, robotic systems, navigation systems, etc. In mathematics, various
surfaces can be constructed by using the quaternions [1, 5]. Some physical law can be described via quaternions
[13, 14]. The elliptical motion on an ellipsoid is an important concept since planets usually have ellipsoidal shapes
and elliptical orbits, some plants, creatures in nature, some tissues in our body have (elliptical) ellipsoidal shapes
and elliptical cross-section. We generate accretive surfaces which have elliptical cross-sections using the elliptical
motion and elliptical quaternion algebra in the current work. We provide analytical solutions of the differential
equation system obtained by using the elliptical metric and elliptical rotation matrix. Also, we illustrated
several examples of the accretive surfaces which can be considered to be more realistic models of the growth
processes of some shell species. Furthermore, we demonstrate that the eccentricity of the initial curve strongly
effects both the shell expansion rate and energy along the shell margin.

2. Basic concepts and notions

The real vector space R3 furnished with a positive definite, symmetric bilinear form defined as

B : R3 × R3 → R; B(u,v) = a1x1y1 + a2x2y2 + a3x3y3,

which is called B− inner product or elliptical inner product, is represented by R3
a1,a2,a3

or R3
B , where u =

(u1, u2, u3), v = (v1, v2, v3) ∈ R3 and a1, a2, a3 ∈ R+. B can be written as B(u,v) = utΩv , where the
associated matrix is

Ω =

 a1 0 0
0 a2 0
0 0 a3

 .
The length of any u in R3

a1,a2,a3
is given by

∥u∥B =
√
B(u,u).
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In R3
a1,a2,a3

, any two vectors u and v are called elliptically orthogonal if and only if B(u, v) = 0 . The angle
between two vectors u ̸= 0 and v ̸= 0 is defined as

cos θ =
B(u, v)

∥u∥B ∥v∥B
,

where θ is compatible with the parameters of the angular parametric equations of an ellipse or elliptical 2-sphere
[15].

The elliptical cross product of two vectors in R3
a1,a2,a3

is given by

u×E v = ∆

∣∣∣∣∣∣
e1
a1

e2
a2

e3
a3

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ , (2.1)

where ∆ =
√
a1a2a3, a1, a2, a3 ∈ R+ [15]. In Euclidean 3-space E3 , rotations occur on the sphere x2+y2+z2 =

r2 and a rotation matrix rotates a point or a rigid body through a circular angle about an axis. Thus, the motion
actualizes on a circle. In the scalar space R3

a1,a2,a3
, rotations occur on the ellipsoid a1x

2+a2y
2+a3z

2 = r2 and
a rotation matrix rotates a point or a rigid body through an elliptical angle about an axis. Therefore, elliptical
rotation is the motion of a point on an ellipse through some angle about a vector (see in Figure 1), [15].

Figure 1. An example for elliptical rotation, [15].
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Theorem 2.1 Let T be a skew symmetric matrix in the following form

T = ∆

(
0 −

√
a2√
a1√

a1√
a2

0

)

such that the equality T tΩ = −ΩT is satisfied. Then, the matrix exponential

RB,u
θ = eTθ = I + sin θT + (1− cos θ)T 2

gives an elliptical rotation on the ellipse a1x
2 + a2y

2 = A, ai, A ∈ R+, i ∈ {1, 2}. Furthermore, the matrix
RB,u

θ can be expressed as: (
cos θ −

√
a2√
a1

sin θ
√
a1√
a2

sin θ cos θ

)
,

where θ is the elliptical rotation angle [15].

The set of elliptical quaternions is an associative, noncommutative division ring with the basic elements
{1, i, j, k} and it will be denoted by HE(a1, a2, a3) :

HE(a1, a2, a3) = {q : q = q0 + q1i+ q2j + q3k, qi ∈ R, i2 = −a1, j2 = −a2, k2 = −a3, i = 0, 1, 2, 3}.

The quaternion product of the elliptical quaternions p0 + p1i + p2j + p3k and q0 + q1i + q2j + q3k related to
the elliptical inner product (.) and the elliptical cross product × is given by

p⊗ q = p0q0 − (Vp.Vq) + p0Vq + q0Vp + Vp × Vq. (2.2)

The matrix representation of the quaternion product is given by

p⊗ q =


p0 −a1p1 −a2p2 −a3p3
p1 p0 −p3 ∆

a1
p2

∆
a1

p2 p3
∆
a2

p0 −p1 ∆
a2

p3 −p2 ∆
a3

p1
∆
a3

b0



q0
q1
q2
q3

 . (2.3)

Let q = q0 + q1i + q2j + q3k be a quaternion. The conjugate q̄ of the quaternion q is analogues to complex
number; that is, q̄ = q0 − q1i− q2j − q3k . Then the norm of q is defined as

Nq =
√
qq̄ =

√
q̄q =

√
q20 + a1q21 + a2q22 + a3q23 .

For a nonzero quaternion q , its inverse is given as q−1 = q̄
N2

q
. Also, each quaternion q = q0 + q1i + q2j + q3k

can be written in the form
q = Nq(cosφ+ ω0 sinφ), (2.4)

where cosφ = q0
Nq
, sinφ =

√
a1q21+a2q22+a3q23

Nq
, ω0 = (q1,q2,q3)√

a1q21+a2q22+a3q23
, and ∥ω0∥ = 1 , [15].

The set of the unit elliptical quaternions gives rotations in R3
a1,a2,a3

. Thus, the quaternion equation
q = cosφ + ω0 sinφ produces an elliptical rotation matrix Mq

φ by the angle 2φ about the axis ε0 on the
ellipsoid S2a1,a2,a3

, [15].
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Theorem 2.2 Let q = q0 + q1i+ q2j + q3k = cosφ+ ω0 sinφ be a unit quaternion in R3
a1,a2,a3

then q defines
a linear map F : R3 → R3 , defined by Fφ(x) = qxq−1 , where x ∈ R3 . F generates a rotation about the axis
ω0 and through the angle 2φ . Since F is a linear map, it defines a matrix defined as

Ma
φ =

 q20 + a1q
2
1 − a2q

2
2 − a3q

2
3 2a2q1q2 − 2 ∆

a1
q0q3 2a3q1q3 + 2 ∆

a1
q0q2

2a1q1q2 + 2 ∆
a2
q0q3 q20 − a1q

2
1 + a2q

2
2 − a3q

2
3 2a3q2q3 − 2 ∆

a2
q0q1

2a1q1q3 − 2 ∆
a3
q0q2 2a2q2q3 + 2 ∆

a3
q0q1 q20 − a1q

2
1 − a2q

2
2 + a3q

2
3

 , (2.5)

for the ellipsoid, a1x2 + a2y
2 + a3z

2 = 1 , [15].

Definition 2.3 Let us consider that two spaces M (moving) and M∗ (fixed), then the one-parameter elliptical
homothetic motion of a body defined by

F :M →M∗;X → ςUX + T = Y,

where U is an elliptical orthogonal matrix, ς is a homothetic scalar, and T is a translation vector.

3. Elliptical accretive growth model

Let us take an initial curve ψ0(s) : [0, L] → R3
a1,a2,a3

, where s is the material parameter at the time t = 0

and we denote ψ0(s) := ψ(s, 0) . The accretive surface growth is formed by the evolution of the curve ψ(s, 0)

through the vector field υ(s, t) . The vector field υ(s, t) is called the growth velocity of the material point s
at time t . The growth velocity leads to the evolution of the initial curve and generates a surface ψ(s, t) . The
t−parameter curves r(s0, t) corresponds to the cell tracks determined with a fixed initial material point s0 [12].

Proposition 3.1 Let ψ(s, 0) be a curve in R3
a1,a2,a3

and D = (d1,d2,d3) be an orthonormal frame along this
curve and

U = ∆

 0 −u3/a1 u2/a1
u3/a2 0 −u1/a2
−u2/a3 u1/a3 0

 ,W = ∆

 0 −w3/a1 w2/a1
w3/a2 0 −w1/a2
−w2/a3 w1/a3 0

 (3.1)

be two skew-symmetric matrices in R3
a1,a2,a3

, where ∆ =
√
a1a2a3 . These matrices called as the elliptical

Darboux matrices. Then the components of the matrices U and W satisfy the following nonlinear first order
partial differential equations for a given growth velocity υ :

∂Sυ1
∆

+ u2υ3 − u3υ2 = ξw2, (3.2)

∂Sυ2
∆

+ u3υ1 − u1υ3 = −ξw1, (3.3)

∂Sυ3
∆

+ u1υ2 − u2υ1 =
∂tξ

∆
, (3.4)

∂tu1 − ∂sw1

∆
= u2w3 − u3w2, (3.5)

∂tu2 − ∂sw2

∆
= u3w1 − u1w3, (3.6)

∂tu3 − ∂sw3

∆
= u1w2 − u2w1, (3.7)
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where ξ = (0, 0, ξ) is the stretch factor.

Proof Let D = (d1,d2,d3) be an orthonormal frame along the curve ψ(s, 0) . The unit tangent vector defined
by

∇∗
sψ(s, t) = Dv = ξd3, (3.8)

where Dv = a1v1d1 + a2v2d2 + a3v3d3 represents the elliptical product for v ∈ R3
a1,a2,a3

.
The derivations of the frame for the parameters s and t can be given as,

∇∗
sD = DU , (3.9)

∇∗
tD = DW, (3.10)

where ∇∗ is the elliptical connection on R3
a1,a2,a3

defined as ∇∗
wxi =

1
ai
∂wxi, U and W are elliptical Darboux

matrices. They are skew-symmetric elliptical orthogonal matrices in R3
a1,a2,a3

, that is DtΩD = Ω . The matrix
U describes the rotation of the local basis at a fixed point t . The matrix W characterizes the angular velocity
of the local basis at a fixed point s .

Attach a general frame {d1,d2,d3} to the initial curve at every point. The basis {d1,d2} is determined
by elliptical rotation with the angle φ between the normal vector n and d1 . When φ = 0 , it corresponds to
the Frenet frame of the curve. Since the vectors (d1,d2) lie in the normal plane, we have the elliptical rotation
along the ellipse a1x2 + a2y

2 = A, A, a1, a2 ∈ R+ as follows:

d1 = n cosφ+ b

√
a2√
a1

sinφ,

d2 = −n
√
a1√
a2

sinφ+ b cosφ.

As a consequence of the elliptical rotation, the growth velocity vector υ(s, t) through the initial curve can be
defined as:

∇∗
t r = υ(s, t) = Dq, (3.11)

where υ = (υ1, υ2, υ3) . By using the differentiability conditions on ψ(s, t) we obtain

∇∗
s(∇∗

t r) = ∇∗
t (∇∗

sr), (3.12)

∇∗
s(∇∗

tD) = ∇∗
t (∇∗

sD). (3.13)

Substitute Eqs. (3.8) and (3.11) in Eq. (3.12), then we obtain

D(Uq +∇∗
sq) = D(Wξ +∇∗

t ξ).

Since the general basis of D is orthonormal (i.e. DTΩD = Ω), we reach the following equation

Ω(Uq +∇∗
sq) = Ω(Wξ +∇∗

t ξ). (3.14)
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Writing Eq. (3.13) in terms of the components gives a1 0 0
0 a2 0
0 0 a3

 (∆

 0 −u3/a1 u2/a1
u3/a2 0 −u1/a2
−u2/a3 u1/a3 0

 υ1
υ2
υ3

+

 ∂Sυ1/a1
∂Sυ2/a2
∂Sυ3/a3

)
=

 a1 0 0
0 a2 0
0 0 a3

 (∆

 0 −w3/a1 w2/a1
w3/a2 0 −w1/a2
−w2/a3 w1/a3 0

 0
0
ξ

+

 0
0

∂tξ/a3

).
Then, Equations (3.2–3.4) are obtained. On the other hand, if we write Eqs.(3.9) and (3.10) in Eq.(3.13) we
have

D(UW +∇∗
sW ) = D(WU +∇∗

tU).

Then, we reach the following equation

Ω(UW +∇∗
sW ) = Ω(WU +∇∗

tU). (3.15)

If Eq. (3.15) is rewritten in terms of the components, we get a1 0 0
0 a2 0
0 0 a3

 (∆

 0 −u3/a1 u2/a1
u3/a2 0 −u1/a2
−u2/a3 u1/a3 0

∆

 0 −w3/a1 w2/a1
w3/a2 0 −w1/a2
−w2/a3 w1/a3 0

) (3.16)

+

 a1 0 0
0 a2 0
0 0 a3

∆

 0 −∂Sw3/a1a3 ∂Sw2/a1a2
∂Sw3/a2a3 0 −∂Sw1/a2a1
−∂Sw2/a3a2 ∂Sw1/a3a1 0


=

 a1 0 0
0 a2 0
0 0 a3

 (∆

 0 −w3/a1 w2/a1
w3/a2 0 −w1/a2
−w2/a3 w1/a3 0

∆

 0 −u3/a1 u2/a1
u3/a2 0 −u1/a2
−u2/a3 u1/a3 0

)
+

 a1 0 0
0 a2 0
0 0 a3

∆

 0 −∂tu3/a1a3 ∂tu2/a1a2
∂tu3/a2a3 0 −∂tu1/a2a1
−∂tu2/a3a2 ∂tu1/a3a1 0

 .
Then, Eq. (3.16) gives us Equations (3.5–3.7). 2

Thus, the elliptical accretive surfaces are obtained by integrating the equation ∇∗
sψ(s, t) = Dυ.

Proposition 3.2 Let ψ(s, 0) be a curve in R3
a1,a2,a3

and D = (d1,d2,d3) be the Frenet frame along this
curve . Then, the elliptical Frenet frame formulas obtained as follows: ∂Sd1

∂Sd2

∂Sd3

 =

 0 −τ κ
τ 0 0
−κ 0 0

 d1

d2

d3

 , (3.17)

where κ = B(∂sd3,d1) and τ = B(∂sd1,d2).

Proof Suppose D = (d1,d2,d3) be the Frenet frame along the curve ψ(s, 0) and U be a skew-symmetric
matrix in R3

a1,a2,a3
. Then, we have ∇∗

sD
t = UDt. This implies,

∇∗
S

 d1

d2

d3

 = ∆

 0 −u3/a1 u2/a1
u3/a2 0 −u1/a2
−u2/a3 u1/a3 0

 d1

d2

d3

 . (3.18)
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Then, we deduce  ∂sd1
1
a1

∂sd2
1
a2

∂sd3
1
a3

 = ∆

 0 −u3/a1 u2/a1
u3/a2 0 −u1/a2
−u2/a3 u1/a3 0

 d1

d2

d3

 . (3.19)

This gives  ∂sd1

∂sd2

∂sd3

 = ∆

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 d1

d2

d3

 . (3.20)

To attach adapted frame, if we choose ∆u2 = κ = B(∂sd3,d1) an ∆u3 = τ = B(∂sd1,d2), and u1 = 0, we
calculate  ∂sd1

∂sd2

∂sd3

 =

 0 −τ κ
τ 0 0
−κ 0 0

 d1

d2

d3

 . (3.21)

2

Next, we determine the growth velocity components in case of growing in-plane and out-of-plane.

Theorem 3.3 Let ψ(s, 0) be a unit speed arbitrary planar curve with the elliptical frame {d1,d2,d3} and the
shape variables be u1 = u3 = 0, u2 = ξκ(s, 0) . Then, the form of the growth velocity components is:

υ1 = c1β1 + c2β3 + α1, (3.22)

υ3 = c1β3 − c2β1 + α3, (3.23)

to keep the shape of the curve constant in the plane where it lies. Here ∂sβ1 = −∆u2β3,

∂sβ3 = ξ +∆u2β1 , ∂sα1 = −∆u2α3, ∂sα3 = ∆u2α1, c1 = ∂t(ξ)
ξ , c2 = w2(t), and ∆ =

√
a1a2a3.

Proof Let ψ(s, 0) be an arbitrary planar curve which is parameterized by arc-length. For the generate surfaces
whose generating curve keeps its shape constant, we take ∥∂sr∥ = ξ

√
1− (∂tξ)2 and κ(s, t) = 1

ξκ(s, 0), here

κ(s, 0) is the initial curvature. By using the Frenet frame and the shape variables u1 = u3 = 0, u2 = ξκ(s, 0),

we calculate the following second order nonlinear differential equation

∂2sυ1 +∆∂su2υ3 +∆2u22υ1 +∆u2∂tξ − ∂sξw2 = 0. (3.24)

The solution of this equation provides the accretive surfaces whose generating curve keeps its shape constant
in-plane. Now, we find the general solution of Eq. (3.24). The growth velocity can be written in the following
form

υ = c1(t)ψ + c2(t)ψ
⊥ + a(t),

where the first, second, and third terms represent dilation, rotation, and a rigid translation, respectively. We
can write them as a combination of the frame vectors as follows:

ψ = β1d1 + β3d3, ψ
⊥ = β3d1 − β1d3, a = α1d1 + α3d3, (3.25)

where βi = B(ψ,di), αi = B(a,di) . Therefore, the components of the growth velocity are written as follows:

υ1 = c1β1 + c2β3 + α1, υ3 = c1β3 − c2β1 + α3. (3.26)
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Then using the Frenet equations, we have

∂Sd1 = −∆u2d3, ∂Sd3 = ∆u2d1, (3.27)

∂sβ1 = −∆u2β3, ∂sβ3 = ξ +∆u2β1, (3.28)

and
∂sα1 = −∆u2α3, ∂sα3 = ∆u2α1. (3.29)

Considering Equations (3.25)–(3.29) with Eq. (3.24), we obtain

c1 =
∂tξ

ξ
, c2 = w2(t).

This relationship gives a rule for the local in-plane velocity components to keep the shape of the generating
curve constant. 2

Following theorem gives the growth velocity component υ2 for the accretive surfaces which have elliptical
cross-section.

Theorem 3.4 Let ψ(s, 0) be a unit speed circle(ellipse) in R3
a1,a2,a3

with the elliptical frame {d1,d2,d3} and
the shape variables be u1 = u3 = 0, u2 = ξ . The shape of the curve does not change if out-of-plane velocity
components are written in the following form

υ2 =
σ1(t)

∆
+
σ2(t)

∆
cos∆s+

σ3(t)

∆
sin∆s, (3.30)

where σi , i = {1, 2, 3} are arbitrary smooth functions.

Proof Without loss of generality, let the initial ellipse ψ(s, 0) have the parametric representation ψ(s, 0) =

( cos s√
a1
, sin s√

a2
, 0) . The accretive surface generated by ψ(s, 0) can be written by

ψ(s, t) = p(t)− η(s, t)Φ⃗± µ(s, t)Ψ⃗, (3.31)

where p(t) is a regular unit speed curve and Φ⃗, Ψ⃗ satisfy

Φ⃗ = d̃3 and Ψ⃗ =
cos s
√
a1

d̃1 +
sin s
√
a2

d̃2. (3.32)

In Eq. (3.31), the quantities η(t, s) and µ(t, s) have the form

η(t, s) = ξ∂tξ, µ(t, s) = ξ
√

1− (∂tξ)2. (3.33)

Using Equations (3.2)–(3.7), we get
∂sυ2 = −∆ξw1, (3.34)

∂sw1 = −∆u2w3, (3.35)

∂sw3 = ∆u2w1. (3.36)
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Taking two times derivative of Eq. (3.34) and using Eqs. (3.35) and (3.36), we reach the following third order
nonlinear differential equation

∂(3)s υ2 − (2
∂sξ

ξ
+
∂su2
u2

)∂2sυ2 + (∆2u22 + 2
(∂sξ)

2

ξ2
− ∂2sξ

ξ
+
∂su2∂sξ

u2ξ
) = 0. (3.37)

The general solution of Eq. (3.37) gives Equation (3.30). 2

In the following theorem, we consider an arbitrary generating curve which is called dressing curve to
create a surface via the elliptical motion. For this, we calculate the components of the growth velocity for an
arbitrary curve.

Theorem 3.5 Let p(t) be a unit speed regular curve (dressing curve) attached with a an orthonormal frame

d̃i , i = 1, 2, 3 , such that d̃3 is tangent to p(t) and it lies the plane perpendicular to d̃3 . Then, the shape of
the curve does not change if the components of the growth velocity are written in the following form:

υ1 =
(−µκ∗ ∓ µψ2τ

∗ ± ψ1∂tµ)(∂
2
sψ1) + (±ψ2∂tµ± µψ1τ

∗)(∂2sψ2)√
a1(∂2sψ1)2 + a2(∂2sψ2)2

, (3.38)

υ2 =
(1− ∂tη ∓ µψ1κ

∗)((∂sψ1)(∂
2
sψ2)−(∂sψ2)(∂

2
sψ1))√

a1(∂2sψ1)2 + a2(∂2sψ2)2
,

υ3 =
(−µκ∗ ∓ µψ2τ

∗ ± ψ1∂tµ)(∂sψ1) + (±ψ2∂tµ± µψ1τ
∗)(∂sψ2)√

a1(∂2sψ1)2 + a2(∂2sψ2)2
,

where η(t, s) = ξ∂tξ, µ(t, s) = ξ
√
1− (∂tξ)2, and ξ is the stretch function.

Proof Consider an arbitrary unit speed curve ψ(s, 0) = (ψ1(s, 0), ψ2(s, 0)) with the Frenet apparatus

{d1,d2,d3, κ, τ} and a unit speed curve p(t) with the Frenet apparatus {d̃1, d̃2, d̃3, κ
∗, τ∗} . To generate

a surface we take the dressing curve in the plane of d̃1 and d̃2 . In this case, the dressing curve may be written,

ψ(s) = ψ1d̃1 + ψ2d̃2,

at any time t. Then the surface can be written as

ψ(s, t) = p(t)− η(s, t)Φ⃗± µ(s, t)Ψ⃗, (3.39)

where η(t, s) = ξ∂tξ, µ(t, s) = ξ
√
1− (∂tξ)2 with the scaling ξ, and Φ⃗, Ψ⃗ satisfy

Φ⃗ = d̃3 and Ψ⃗ = ψ1d̃1 + ψ2d̃2. (3.40)

On the other hand, we can calculate the growth velocity field as

∂tψ = υ1d1 + υ2d2 + υ3d3, (3.41)

where di, i = 1, 2, 3 are the local basis for the dressing curve ψ(s, 0) . Then the growth velocity components
are:

υ1 = B(∂tψ,d1), (3.42)

υ2 = B(∂tψ,d2),

υ3 = B(∂tψ,d3).
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Using the Frenet frame d̃i , i = 1, 2, 3 on the curve p(t) and ∂tp = d̃3 , we have,

∂td̃1 = −κ∗d̃3 + τ∗d̃2, (3.43)

∂td̃2 = −τ∗d̃1,

∂td̃3 = κ∗d̃1.

Derivative of Eq. (3.17) with respect to t gives

∂tψ(s, t) = (−µκ∗ ∓ µψ2τ
∗ ± ψ1∂tµ)d̃1 + (±ψ2∂tµ± µψ1τ

∗)d̃2 + (1− ∂tη ∓ µψ1κ
∗)d̃3. (3.44)

On the other hand, the Frenet frame of the unit speed dressing curve defined via the director vectors as,

d1 =
∂sd3

∥∂sd3∥B
=

(∂2sψ1)d̃1 + (∂2sψ2)d̃2√
a1(∂2sψ1)2 + a2(∂2sψ2)2

, (3.45)

d2 = d3 ×E d1 =
((∂sψ1)(∂

2
sψ2)−(∂sψ2)(∂

2
sψ1))d̃3√

a1(∂2sψ1)2 + a2(∂2sψ2)2
,

d3 =
∂sψ

∥∂sψ∥B
= (∂sψ1)d̃1 + (∂sψ2)d̃2.

By substituting d1, d2 and d3 in Eq. (3.20) we obtain

υ1 =
(−µκ∗ ∓ µψ2τ

∗ ± ψ1∂tµ)(∂
2
sψ1) + (±ψ2∂tµ± µψ1τ

∗)(∂2sψ2)√
a1(∂2sψ1)2 + a2(∂2sψ2)2

, (3.46)

υ2 =
(1− ∂tη ∓ µψ1κ

∗)((∂sψ1)(∂
2
sψ2)−(∂sψ2)(∂

2
sψ1))√

a1(∂2sψ1)2 + a2(∂2sψ2)2
,

υ3 =
(−µκ∗ ∓ µψ2τ

∗ ± ψ1∂tµ)(∂sψ1) + (±ψ2∂tµ± µψ1τ
∗)(∂sψ2)√

a1(∂2sψ1)2 + a2(∂2sψ2)2
.

2

4. Elliptical accretive growth model based on elliptical quaternion algebra
For the unit quaternion q = cosψ + ω0 sinψ = q0 + q1i + q2j + q3k , it is an evolution that axis is pure
elliptical quaternion ω0 = (q1,q2,q3)√

a1q21+a2q22+a3q23
. Namely, an ellipse effectively rotates around the pure quaternion

ω0 = (q1,q2,q3)√
a1q21+a2q22+a3q23

with respect to elliptical coordinate systems. Therefore, this elliptical motion produces

accretive surfaces that have elliptical cross-sections.

Theorem 4.1 Let p : I ⊂ R → R3
a1,a2,a3

be an arc-length parameterized curve with the elliptical Frenet frame

apparatus {d̃1, d̃2, d̃3, κ
∗, τ∗} . By using the elliptical quaternion q(s, t) = cos s + d̃3(t) sin s, we obtain the

parametric equation of the elliptical accretive surfaces ψ(s, t) , which are scaling with nonconstant function

ξ(s, t) , are given via the unit elliptical quaternion q(s, t)⊗ d̃1(t) in the following parametric form:

ψ(s, t) = p(t)− η(s, t)d̃3(t) + µ(s, t)⊗ q(s, t)⊗ d̃1(t),
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where η(t, s) = ξ∂tξ, µ(t, s) = ξ
√
1− (∂tξ)2 with the scaling ξ, and Rq

t is the matrix form of the unit elliptical
quaternion q(s, t).

Proof Assume that ψ(s, t) be a quaternionic accretive surface generated by the curve p(t). Then, we have

ψ(s, t) = p(t)− η(s)d̃3(t)± µ(s)(cos s)d̃1(t) + sin sd̃2(t)).

If we use the elliptical quaternion product for unit quaternion q(s, t) = cos s+d̃3(t) sin s and the pure quaternion

d̃1(t) , we obtain

q(s, t)⊗ d̃1(t) = d̃1(t) cos s+ d̃2(t) sin s.

Then using the last equation, we reach the following form of the quaternionic (ECS)

ψ(s, t) = p(t)− η(s, t)d̃3(t)± µ(s, t)q(s, t)⊗ d̃1(t)

and the matrix representation of the surface given as

ψ(s, t) = p(t)− η(s, t)d̃3(t)± µ(s, t)Rq
θd̃1(t).

2

Corollary 4.2 The formation through an elliptical motion of an accretive surface ψ(s, t) can be described by
an elliptical homothetic motion and the parametric form of via the homothetic motion is given as follows:

ψ(s, t) = p(t)− η(s, t)d̃3(t)± µ(s, t)Rq
t d̃1(t).

Proof If we choose the translation vector and homothetic scalar of the elliptical homothetic motion, respec-
tively, as β(t) := p(t) − η(s, t)d̃3(t) , µ(s, t) . Since Rq

t is an elliptical orthogonal matrix, we can say that

ψ(s, t) = β(t) + µ(s, t)Rq
t d̃1(t) is the elliptical homothetic motion. 2

Corollary 4.3 Let p : I ⊂ R → R3
a1,a2,a3

be an arc-length parameterized curve with the elliptical Frenet

frame apparatus {d̃1, d̃2, d̃3, κ, τ} . By using the elliptical quaternion q(s, t) = cos s + d̃3(t) sin s, we obtain
the parametric equation of the elliptical accretive surfaces ψ(s, t) , which are scaling with constant function

ξ(s, t) = r , are given via the unit elliptical quaternion q(s, t)⊗ d̃1(t) in the following parametric form:

ψ(s, t) = p(t) + rq(s, t)⊗ d̃1(t),

where r is an arbitrary constant.

Corollary 4.4 Let p : I ⊂ R → R3
a1,a2,a3

be an arc-length parameterized curve with the elliptical Frenet

frame apparatus {d̃1, d̃2, d̃3, κ
∗, τ∗} . By using the elliptical quaternion q(s, t) = cos s + d̃3(t) sin s, we obtain

the parametric equation of the elliptical accretive surfaces ψ(s, t) , which are scaling with constant function

ξ(s, t) = r(s) , are given via the unit elliptical quaternion q(s, t)⊗ d̃1(t) in the following parametric form:

ψ(s, t) = p(t) + r(s)q(s, t)⊗ d̃1(t).
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5. Some motivated examples

First we generate surfaces that have an arbitrary cross-section curve with elliptical shell margin by using the
elliptical motion. If we take υ1 = −c, υ2 = σ1

∆ + σ2

∆ (1 + 0.05 ∗ cos(s)) cos∆s, υ3 = 0 . Also, the figures can be
obtained via the elliptical quaternion q = (1 + 0.05 ∗ cos(s))q , where

q = cos s+ d̃3(t) sin s is a unit elliptical quaternion and d̃3 is the tangent vector of the curve p(t) . The images
of the surfaces illustrated in Figure 2.

Figure 2. An arbitrary cross-section surfaces obtained by elliptical motion. (a) a0 = 1, a1 = 1, a2 = 9, a3 = 4, σ1 =
1, σ2 = 0.5, c = 0.025 , (b) a0 = 1, a1 = 16, a2 = 2, a3 = 0.5, σ1 = 1, σ2 = 0.3, c = 0.025 , (c) a0 = 1, a1 = 1, a2 = 4, a3 =
9, σ1 = 2, σ2 = 0.8, c = 0.5 .

Next, choosing the initial curve as an ellipse given by ψ(s, 0) = ( cos s√
a1
, sin s√

a2
, 0) in the following examples to

get elliptical cross-sections. Such a choice provides more realistic examples of the accretive surfaces representing
some biological structures. The figures can be obtained via the unit elliptical quaternion q = cos s+ d̃3(t) sin s ,

where d̃3 is the tangent vector of the curve p(t) .
Let us take the components of the growth velocity as υ1 = −c, υ2 = σ1

∆ + σ2

∆ cos∆s, υ3 = 0 . In this
kind of growth model, the cell tracks follow an elliptical logarithmic spiral (see Figure 3a). When the binormal
growth scales with the stretch factor ξ, i.e. the velocity components are υ1 = −c, υ2 = ξ(σ1

∆ + σ2

∆ cos∆s), υ3 = 0 .
Then, we calculate ξ = 1 + k1t . For this accretive growth form, the cell tracks follow an elliptical algebraic
logarithmic spiral. Then, the obtained surfaces are similar to the Nautilus or ammonite shell forms (see Figure
3b). When we take υ1 = −c, υ2 = σ1

∆ + σ2

∆ ξ(s, t) cos∆s, υ3 = 0 , the cell tracks follow an ellipse (see Figure 3c).
If we take the growth velocity components as follows:

υ1 = −c, υ3 = σ3, υ2 =
σ1
∆

+
σ2
∆

cos(∆s). (5.1)

Then the initial curve follows an elliptical path out of plane. The images of this form surfaces are plotted in
Figures 4 and 5.
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Figure 3. (a) a0 = 1, a1 = 1, a2 = 9, a3 = 4, σ1 = 1, σ2 = 0.5, c = 0.025 , (b) a0 = 1, a1 = 2, a2 = 16, a3 = 0.5, σ1 =
1, σ2 = 0.3, c = 0.025 , (c) a0 = 1, a1 = 1, a2 = 4, a3 = 9, σ1 = 2, σ2 = 0.8, c = 0.5 .

Figure 4. (a) a0 = 0.1, a1 = 4, a2 = 1, a3 = 9, σ1 = 1, σ2 = 0.4, c = −0.025 , (b) a0 = 0.1, a1 = 4, a2 =
1, a3 = 9, σ1 = 1, σ2 = σ1/a0, c = −0.025 , (c) a0 = 0.1, a1 = 4, a2 = 1, a3 = 9, σ1 = 1, σ2 = t, c = −0.025 , (d)
a0 = 0.1, a1 = 4, a2 = 1, a3 = 9, σ1 = 1, σ2 = σ1/a0, c = −0.025.

Next, if we take the components of the growth velocity as

υ1 = −c, υ3 = 0, υ2 =
σ1
∆

+
σ2
∆

cos(∆s− σ3t), (5.2)
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Figure 5. (a) a0 = 0.1, a1 = 20, a2 = 4, a3 = 10, σ1 = 0.4, σ2 = 2, c = −0.025 , (b) a0 = 0.1, a1 = 20, a2 = 4, a3 =
10, σ1 = 0.2, σ2 = 2, c = −0.025 , (c) a0 = 0.1, a1 = 14, a2 = 3, a3 = 9, σ1 = 0.2, σ2 = 2, c = −0.025 .

then the initial curve follows an elliptical path out of plane. In the previous examples, each point of the
generating curve follows the planar elliptical trajectories. This form surfaces are illustrated in Figure 6.

Figure 6. (a) a0 = 0.1, a1 = 4, a2 = 1, a3 = 9, σ1 = 1, σ2 = σ1/a0, c = −0.025 , (b) a0 = 0.1, a1 = 4, a2 = 2, a3 = 9, σ1 =
1, σ2 = σ1/a0, c = −0.025 .

6. Discussions and conclusion
The form in Eq. (3.46) implies a general feature of the accretive growth. By using the elliptical kinematics,
we obtain more realistic accretive surfaces. From a global perspective, this relates to the case of the circular
growth model. There is, however, a distinction between the two, which although subtle, is biologically relevant.
The difference is understood in terms of cell tracks, growth velocity and energy. For the circular growth model,
each material point follows a circular trajectory and for the elliptical growth model each material point follows
an elliptical trajectory around the growth axis. This implies differences for the growth velocity of the structure.
For instance, among the coiled shells of mollusks with nearly circular or elliptical shell margin, ammonites have
the slowest expanding. In particular, the growth rate of each material point on a circular generating curve
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is faster than the growth rate of each material point on the elliptical generating curve. This idea is, also,
investigated by Erlich (see [4]) through the effect of the eccentricity e on ribbing pattern. They discussed the
effect of expansion rate on the ribbing pattern at constant eccentricity and effect of the allometric increase in
eccentricity. The change to an elliptical geometry means that the stresses within the soft tissue are not constant
but rather vary with position along the mantle edge. This added complexity renders a force balance description
impractical such as presented in Moulton (see [12]). Therefore, it will be very useful to use elliptical motions
and elliptical quaternion algebra for the growth model to be defined in this form of growth model. Thus, the
key technique of our study is to use elliptical kinematics and is to use elliptical quaternions. This motion
properly describes the accretive growth of the surfaces that have elliptical cross-section. In fact, these surfaces
are not only curves with an elliptical cross-sectional curve, but also the material points of the surfaces follow
an elliptical trajectory (ellipse, elliptical helix, elliptical spiral, etc.) during their formation. Furthermore, the
growth velocity is defined with the help of the eccentricity number e that is a measure of how much it deviates

from being circular and given by the equation e =
√

1− a2

a1
. If we assume that a1 > a2 , then we can give the

reference circle and the related ellipse as in Figure 7.

Figure 7. Reference circle and ellipse.

Choosing the generating curve as the curve ψ(s, 0) = ( cos s√
a1
, sin s√

a2
, 0), i.e. the elliptical cross-section . Then

we have u1 = u3 = 0, u2 = ξ, then from equations (3.2)-(3.7), we can calculate that w1 = σ2

ξ sin(∆s − σ3t),
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w2 = h(t), w3 = −σ2

ξ cos(∆s− σ3t). These gives the components of the velocity q computed as follows:

υ1 = c1 cos(∆s− σ3t) + c2 sin(∆s− σ3t) +
∂tξ

∆
, (6.1)

υ2 = f(t)
σ1
∆

+ g(t)
σ2
∆

cos(∆s− σ3t),

υ3 =
−c2 cos(∆s− σ3t) + c1 sin(∆s− σ3t)

ξ
+
h(t)

∆
.

Now, we specify the velocity field υ(s, t) as follows by choosing σ3 = 0, c1 = 1, c2 = 0, and f(t) = g(t) = 1 ,
we calculate the following equations:

υ1 = cos(∆s),

υ2 =
σ1
∆

+
σ2
∆

cos(∆s),

υ3 = sin(∆s),

where ∆ = a1
√
a3(1− e(t)2) , e(t) is a constant function 0 < e(t) < 1.

In Figure 8, we can say that the growth is faster than a reference circle as e approach to 1 . However,
the growth have the approximately the same speed of the reference circle as e approach to 0 . That is, velocity
increases with increasing eccentricity number.

Figure 8. Growth velocity components of material point s at time t . This graphs are plotted according to the increment
of e in 0.05 for the intervals 0 < e < 1 , i.e. e = {0.05, 0.1, ..., 0.95}.

Consequently, the cross-section and path of the material points of the surfaces effect its growth velocity.
Undoubtedly, since the growth rate is affected by these factors, the change in the growth energy of the accretive
surfaces can be investigated.
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