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Abstract: Given a finite group G and x ∈ G , the class size of x in G is called odd-square-free if it is not divisible
by the square of any odd prime number. In this paper, we show that if G is a nonsolvable finite group, all of whose
class sizes are odd-square-free, then we have some control on the structure of G , which is an answer to the dual of the
question mentioned by Huppert in [5].
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1. Introduction
Given a finite group G , a deep-rooted area of research in finite group theory relates to the connection of the
structure of the group G and the set of positive integers, which can inherently be associated to G . The set of
the conjugacy class sizes, sometimes called indices denoted by cs(G) , is one of these sets of positive integers.
The main question, which arises in this area of research is which information one can obtain from the size of
conjugacy classes. In view of this question, Sylow in 1872 discussed the case where there was information about
the size of all conjugacy classes. In contrast, Burnside in 1904 commented on the strong influence of the size
of just one conjugacy class on the structure of the group. On the other hand, a group of authors exchanged
views about the set of irreducible character degrees of a finite group G , which is denoted by cd(G) , and tried
to explain how much this set may control the group theoretical structure of G .

In order to progress of the above cases, the authors mostly considered two different cases, regarding
solvability or nonsolvability of G . As an example, it is straightforward to observe that if S is a finite solvable
group, all of whose irreducible character degrees are prime-square-free numbers, which are not divisible by
any prime in {2, 3, 5, 7} , then Alt(7) × S is a nonsolvable group, all of whose irreducible character degrees
are prime-square-free. With regard to this example in [7], considering the case where all irreducible character
degrees of a given nonsolvable group G are odd-square-free, Huppert and Manz proved that G ∼= Alt(7) × S ,
where S is a solvable group with the above mentioned properties. Instead, in [8], Lewis considered those finite
groups whose character degrees are 4 -free. Moreover, in the conclusion section of the paper [5], Huppert posed
the following question:

Question 1 What are those simple groups whose all character degrees are of the form 2kp1p2...pn , where pi s
are distinct odd primes and k and n are positive integers?
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As an answer to the above mentioned question, Lewis and White in [9], classified those nonsolvable groups all
of whose character degrees are odd-square-free.

It should be mentioned that the dual question has been taken into consideration for the set of class sizes
of a finite group. In particular, Chillag and Herzog in [2], clarified that if the class sizes of a finite group G are
all prime-square-free, then G is supersolvable.

Motivated by the results in [9], in this paper, we aim to characterize those nonsolvable groups, all of
whose class sizes are odd-square-free, which is an answer to the dual of Question 1.

Notation. Suppose n is a positive integer. n is called prime-square-free if it is not divisible by a square
of a prime number. In particular, n is called odd-square-free if it is not divisible by a square of an odd prime
number. Given a finite group G , we denote the conjugacy class of x ∈ G in G by xG , and the set of conjugacy
class sizes by cs(G) .

2. Simple groups

Let N be a normal subgroup of G . The notable facts that for x ∈ N , |xN | divides |xG| and if x ∈ G ,
then |xNG/N | divides |xG| , showing that, in particular, if G is a finite group all of whose class sizes are
odd-square-free, then so are N and G/N . We proceed by expressing some results on nonabelian finite simple
groups.

According to the classification of finite simple groups, it is a well-known result that if S is a nonabelian
finite simple group, then S is an alternating group Alt(n) where n ≥ 5 , or a classical group of Lie type, or
an exceptional group of Lie type, or a sporadic simple group. In this section, considering these four cases, we
classify those finite nonabelian simple groups, all of whose class sizes are odd-square-free.

Lemma 2.1 Suppose S ∼= Alt(n) , where n ≥ 5 . All class sizes of S are odd-square-free if and only if
S ∼= Alt(5) .

Proof First, suppose n ≥ 10 . Let α := (1 2 3 4 5)(6 7)(8 9) . As a consequence of a famous result, we obtain
that

|αAlt(n)| = n!

1n−9(n− 9)!222!511!
=

n(n− 1)...(n− 8)

235

Therefore, we have the following three cases where for an integer k , (k)3 denotes the largest 3 -power, which
divides k :

• If n ≡ 0, mod(3) , then (n(n− 3)(n− 6))3 ≥ 33 ;

• If n ≡ 1, mod(3) , then ((n− 1)(n− 4)(n− 7))3 ≥ 33 ;

• If n ≡ 2, mod(3) , then ((n− 2)(n− 5)(n− 8))3 ≥ 33 ;

This confirms that, for n ≥ 10 , the alternating group Alt(n) includes a permutation whose index is not
odd-square-free. Furthermore, the use of GAP with n < 10 proves the claim. 2

Lemma 2.2 Let S be a sporadic simple group all of whose class sizes are odd-square-free. Then S ∼= J1 .
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Proof Let r be the largest prime divisor of |S| . By the application of the results in ATLAS of finite groups
[3], we conclude that S has a cyclic Sylow r -subgroup, say R , which is self-centralizer. Considering a as a
generator of the cyclic group R , it can be noticed that the index of a in S is odd-square-free if and only if |S|
is odd-square-free. Therefore, S ∼= J1 . 2

Lemma 2.3 Let S be a classical group of Lie type. The class sizes of S are odd-square-free if and only if S

is isomorphic to one of the following groups:

(i) PSL(2, q) , where q ≥ 5 is an odd prime and q2 − 1 is odd-square-free.

(ii) PSL(2, 2k) , where n ≥ 2 and 22n − 1 is prime-square-free.

Proof It is a long-familiar fact that while q is odd and q ≡ ε mod(4) , we have

cs(PSL(2, q)) = {1, (q2 − 1)/2, q(q + ε)/2, q(q − ε)/2, q(q + ε)}

Suppose the class sizes of S are all odd-square-free. The matter that q is a divisor of some class sizes of S

determines that q is a prime. Besides, as gcd(q2− 1, q) = 1 and ε = ±1 , we come to the conclusion that q2− 1

is odd-square-free.
Considering the case where q is even, we have

cs(PSL(2, q)) = {1, q2 − 1, q(q + 1), q(q − 1)}

Seeing that q2 − 1 is an odd number, it can be verified that the class sizes of S are odd-square-free if and only
if q2 − 1 is prime-square-free.

If S is not isomorphic to PSL(2, q) , the application of Theorem 4.1 and Lemma 4.6 [1] shows the existence
of a cyclic subgroup T of S with the property that for some g ∈ T \ {1} , we have T = CS(g) . Now, we should
deal with the following eight cases:

• If S ∼= PSL(3, q) , where q ≥ 3 , then |T | = q3−1
(q−1)gcd(3,q−1) , which implies that q3(q − 1)2 divides some

conjugacy class size of S .

• If S ∼= PSL(n, q) , where n ≥ 4 , then |T | = qn−1
(q−1)gcd(n,q−1) , which implies that q3(q − 1)2 divides some

conjugacy class size of S .

• If S ∼= PSU(3, q) , where q > 2 , then |T | = q3+1
(q+1)gcd(3,q+1) , which implies that q3(q + 1)2 divides some

conjugacy class size of S .

• If S ∼= PSU(n, q) , where n ≥ 4 , then |T | = qn+(−1)n−1

(q+1)gcd(n,q+1) , q3(q + 1)2 divides some conjugacy class size

of S .

• If S ∼= PSP(2m, q) , where m ≥ 2 and (m, q) ̸= (2, 2) , then |T | = qm−1
gcd(2,q−1) , which implies that q4(q2−1)2

divides some conjugacy class size of S .

• If S ∼= PΩ(2m + 1, q) , where m ≥ 3 and q is odd, then |T | = qm+1
2 , which implies that q4(q2 − 1)2

divides some conjugacy class size of S .
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• If S ∼= PΩ+(2m, q) , where m ≥ 4, m ≡ 0(2) , then |T | = (qm−1+1)(q+1)
(2,q−1)2 , which implies that q4(q2 − 1)2

divides some conjugacy class size of S .

• If S ∼= PΩ+(2m, q) , where m ≥ 5, m ≡ 1(2) , then |T | = (qm−1+1)(q+1)
(4,qm−1) , which implies that q4(q2 − 1)2

divides some conjugacy class size of S .

• If S ∼= PΩ−(2m, q) , where m ≥ 4 , then |T | = qm+1
(4,qm+1) , which implies that q4(q2 − 1)2 divides some

conjugacy class size of S .

Considering these cases, we notice that none of the above groups satisfy the odd-square-free condition on its
class sizes, which proves that the case that S is not isomorphic to PSL(2, q) is impossible, and the proof is now
complete. 2

Lemma 2.4 Suppose S is an exceptional group of Lie type. The class sizes of S are all odd-square-free if and
only if S ∼=2B2(q) , where q = 22m+1 ≥ 8 and (q − 1)(q2 − 1) is prime-square-free.

Proof The results in [10] confirms the truth that while S ∼=2B2(q) we have:

cs(S) = {q2(q2 + 1), q2(q − 1)(q −
√

2q + 1), q2(q − 1)(q +
√
2q + 1)}

Since gcd(q− 1, q2 +1) = 1 and q2 +1 = (q−
√
2q+1)(q+

√
2q+1) , it can be deduced that the condition that

all class sizes of S are odd-square-free occurs if and only if the odd number (q− 1)(q2+1) is prime-square-free.
Otherwise, if S is not isomorphic with 2B2(q) , Theorem 3.1 of [1] shows the existence of a cyclic subgroup

of S , say T , such that, for some g ∈ T \ {1} we have T = CS(g) . Now considering the orders of such cyclic
subgroups, we have the following cases, which demonstrates that this event will not occur:

• If S ∼=2D4(q) , then |T | = q4 − q2 + 1 , which implies that q12(q − 1)2 divides some class sizes of S .

• If S ∼= G2(q) , where q ≥ 3 , then |T | = q2 + q + 1 , which implies that q6(q − 1)2 divides some class sizes
of S .

• If S ∼=2G2(q) , where q = 32k+1 ≥ 27 , then |T | = q +
√
3q + 1 , which implies that q3 divides some class

sizes of S .

• If S ∼= F4(q) , then |T | = q4 − q2 + 1 , which implies that q24(q − 1)4 divides some class sizes of S .

• If S ∼=2F4(q) , where q = 22k+1 ≥ 8 , then |S| = q2 +
√

2q3 + q +
√
2q + 1 , which implies that q12(q − 1)2

divides some class sizes of S .

• If S ∼= E6(q) , then |T | = q6+q3+1
gcd(3,q−1) , which implies that q36(q − 1)4 divides some class sizes of S .

• If S ∼=2E6(q) , then |T | = q6−q3+1
gcd(3,q−1) , which implies that q36(q2 − 1)2 divides some class sizes of S .

• If S ∼= E7(q) , then |T | = (q7−1)
(2,q−1) , which implies that q63(q − 1)4 divides some class sizes of S .

• If S ∼= E8(q) , then |T | = q8 − q4 + 1 , which implies that q120(q − 1)8 .
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• If S ∼=2F4(2)
′ , then |T | = 13 , which implies that 2332 divides some class sizes of S .

The proof is complete now. 2

Theorem 2.5 Let S be a finite nonabelian simple group. Then the class sizes of S are all odd-square-free if
and only if one of the following statements holds:

(1) S ≃ Alt(5) ;

(2) S ≃ J1 ;

(3) S ≃ PSL(2, q) , where q = p ≥ 5 is an odd prime and q2 − 1 is odd-square-free.

(4) S ≃ PSL(2, 2n) , where n ≥ 2 and 22n − 1 is prime-square-free.

(5) S ≃2B2(q) , where q = 22m+1 ≥ 8 and (q − 1)(q2 − 1) is prime-square-free.

Proof Lemma 2.1, Lemma 2.2, Lemma 2.3, and Lemma 2.4 finalizes the proof. 2

Considering the orders of finite nonabelian simple groups and the results in Theorem 2.5, it is straight-
forward to deduce the following corollary:

Corollary 2.6 Suppose S is a finite nonabelian simple group. The class sizes of S are all odd-square-free if
and only if |S| is odd-square-free.

Corollary 2.7 Suppose S is a finite nonabelian simple group, which is not isomorphic to Alt(7) . All class
sizes of S are odd-square-free if and only if all irreducible character degrees of S are odd-square-free.

Proof Theorem 2.5 and Theorem A of [9] complete the proof. 2

3. Main theorems
Lemma 3.1 Let G be a finite group all of whose class sizes are odd-square-free. If M and N are normal
subgroups of G such that N > M and N/M is a non-abelian chief factor, then N/M is a simple group all of
whose class sizes are odd-square-free.

Proof Since the order of each conjugacy class of N/M divides the order of a conjugacy class of G , then all
class sizes of N/M are odd-square-free. There is a non-abelian simple group S such that N/M ∼= S1 × ...× Sn

and Si
∼= S for each i .

Obviously there is a class size of S that is divisible by an odd prime q . If n ≥ 2 , then q2 divides some
class size in N/M . Thus, we must have n = 1 , and the lemma is proved. 2

Theorem 3.2 Suppose that G is a finite group all of whose class sizes are odd-square-free and such that all
minimal normal subgroups of G are non-abelian. Then we have one of the following cases:

(i) G has a unique minimal normal subgroup S and S is a simple group all of whose class sizes are odd-
square-free. In particular, S ≤ G ≤ Aut(S) ;
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(ii) G has exactly two minimal normal subgroups S and T , these are simple groups all of whose class sizes
are odd-square-free and π(S) ∩ π(T ) = {2} . In particular, S × T ≤ G ≤ Aut(S)× Aut(T ) .

Proof Let N be a minimal normal subgroup of G . Then N is a simple group, all of whose class sizes are
odd-square-free by Lemma 3.1. Let C := CG(N) . Then C ∩ N = 1 and C is normal in G . If M is another
minimal normal subgroup of G , then M ∩N = 1 and M ≤ C . If C = 1 , then G is an almost simple group with
socle N and (i) holds with N = S . Suppose now that C ̸= 1 . Then there exists a minimal normal subgroup of
G , say M , contained in C . Similar to the case of N , we can observe that M is one of the non-abelian simple
groups mentioned in Theorem 2.5. Let D := CG(M) . Likewise, one can see that D∩M = 1 , D�G , G/D can
be embedded in Aut(M) , and N ⊆ D . The fact that N ×M �G , leads to the conclusion that all nontrivial
class sizes of N ×M must be odd-square-free. Thus, π(N) ∩ π(M) = {2} . It can be viewed that G/C ∩D is
isomorphic with a subgroup of Aut(N)× Aut(M) . For this reason, if C ∩D = 1 ,

N ×M ≤ G ≤ Aut(N)× Aut(M)

, which implies part (ii) for S := N and T := M .
We state that the case C ∩D ̸= 1 is impossible. Otherwise, C ∩D contains a minimal normal subgroup

of G , say T . In the manner of the previous cases, we can observe that N ×M × T �G , where T is one of the
simple groups mentioned in Theorem 2.5. Using the classification of finite simple groups, we know that every
nonabelian simple group has a class, which is divisible by 3 or 5 . This assures the existence of a class in G

whose size is divisible by 32 or 52 , which is a contradiction. Hence, C ∩D = 1 which completes the proof. 2

Theorem 3.3 Let G be a finite nonsolvable group, all of whose class sizes are odd-square-free. Then, G has
normal subgroups N and R such that R is a solvable group whose class sizes are all odd-square-free, and one
of the following holds for G := G/R :

(i) G is an almost simple group with socle N , which is a simple group all of whose class sizes are odd-square-
free and is the only minimal normal subgroup of G and

N ≤ G ≤ Aut(N),

(ii) N = S × T , where S, T are simple groups all of whose class sizes are odd- square-free, are the only
non-abelian chief factors of G , and π(S) ∩ π(T ) = {2} . Moreover

S × T ≤ G ≤ Aut(S)× Aut(T ).

Proof Let R be the solvable radical of G which is maximal among solvable normal subgroups of G . The
condition on class sizes of G clarifies that both R and G := G/R are groups whose all class sizes are odd-
square-free. Moreover, it can be seen that every minimal normal subgroup of G is non-abelian. Now Theorem
3.2 implies that either G is an almost simple group whose socle which is its unique minimal normal subgroup is
isomorphic with one of the groups mentioned in Theorem 2.5; or, G has exactly two minimal normal subgroups,
say S and T with the following properties:
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(i) S and T are one of the groups mentioned in Theorem 2.5;

(ii) π(S) ∩ π(T ) = {2} ;

(ii) S × T ≤ G ≤ Aut(S)× Aut(T ) .

2
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