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Abstract: This paper deals with an exterior algebra of a vector space whose base field is of positive characteristic.
In this work, a minimal set of generators forming the annihilator of even neat elements of such an exterior algebra is
exhibited. The annihilator of some special type of even neat elements is determined to prove the conjecture established

in [3]. Moreover, a vector space basis for the annihilators under consideration is calculated.
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1. Introduction

Let V be a finite dimensional vector space over a field F', and let E(V) be the exterior algebra on V. An

element £ € E(V) is called a decomposable m—vector if £ = x1 Axg A+ Ay, for some x1,29, -+ , &, € V. A
sum =& + & + -+ & of decomposable elements of E(V) is said to be neat if & A& A--- A& # 0. This
neat element p is called even if each term & = xp1 A g2 A -+ A Xy, for each k € {1,2,...,s} is nip—vector

with even ny.

In this paper we want

(i) to prove the annihilator of even neat element p =& + & + - -+ + & is generated as an ideal by products

of the form

(&1 - g]&) T (&r - gjr)ukl"'ukt

where ug, € My, and {i1,...,0;01,.. ., Jr; k1, .., kef = {1,2,...,s} with 2r +t = s when Char(F) =
p> =5

(ii) to determine minimal generators of the annihilator of p for all characteristics,

(iii) to describe the vector space structure of both the principal ideal (1) and its annihilator Ann(u) in E(V)

by using stack-sortable polynomials introduced in [1] and the results of [2].

Remark 1.1 The first aim is achieved in [3] under the assumption the characteristic of the field is zero.
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To begin with we give the notations that will be used throughout the text.

S={1,...,s}

2
s*

I : the ideal of the polynomial ring F[zy,...,z ] generated by z%,..., x
A=Flzy,...,z5]/T = F[&1,...,&] with & =2;+T.

Ay : the homogeneous component of A consisting of homogeneous elements of degree k.
p=bt

M, : the set of t-th degree monomials My = &, -+ - &, where K = {ky,...,k} C {1,...,s}.

G, : the set of elements of the form
V1,0 = (& — &) (G — &) - (&G, — &50)
where I = {iy,...,i.} and J = {j1,...,Jr} are disjoint subsets of S.
Gs : the set of all products of the form ~y; ;Mg with JUJUK =S and |I|+|J| + | K| =S|
Ps : the set of stack-sortable polynomials

(Cory =m) -+~ (Co(a) — ma) With o is a stack-sortable permutation,
where 0, = &y, (x =&r—1 and 1ng =0 when s is odd, [2].

In [3, Theorem 14] it is proved that if Char(F) =0, then Ann(Gs) = (u), equivalently Ann(u) = (Gs).
Also, the nonzero characteristic cases, i.e. Char(F) = p are discussed in [3, Proposition 15]. In the case

Char(F) =p, for n =& - &{muamUamtr - - - us with u; € M;, we have
(a) n € Ann(Gs), and
(b) n € Ann(p) if and only if m < p.

As a corollary of Proposition 15, it is proved that if Char(F) =p > % then any element of the form
N ==& EmUamUamt1 - - Us is in (u). Hence when Char(F)=p > s;—l we have Ann(Gs) = (). On the other
hand it can be constructed several examples that Ann(Gs) # (u) in the case Char(F) =p < =,
For example, consider p = & +&3+&3. Then Ann(Gs) is generated by (&1 —&2)us, (&1 —&3)us, and (&2 —E&3)uy.
Observe that 1€ € Ann(Gs) but &€ ¢ (1) in the case that Char(F) = 2.

In this paper to reach our aims, in section 2 we show that the algebra A = F[¢;,...,&;] has a nondegen-

erate bilinear form which is also symmetric. That is A is a Frobenius algebra as well as a symmetric algebra.

By [3], the exterior algebra E(V') is a Frobenius algebra. Hence, the following equations hold
dim(E) = dim(FEu) + dim Anng(n) and dim(A) = dim(Ap) + dim Anna ().

In section 3, we determine generators of Ann(Gs) and show that Ann(Gg) = Ap for positive characteristic

greater than % in Theorem 3.5. In the last section, regarding A as a subalgebra of an exterior algebra

E(V) we determine the annihilator of p in E. By using techniques of [2] and linearly independence of

{0 (&mn) | T € Stipm==) } proved in [2, Theorem 3] we determine the minimal generators of u for all

characteristics.
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2. Frobenius algebra structure of multilinear polynomials

Recall that a finite dimensional algebra is called a Frobenius algebra if there is a nondegenerate bilinear form
B satisfying the associativity condition B(ab,c) = B(a,bc) for all elements a, b, and ¢ of the algebra. Further,
if B is symmetric the algebra is called a symmetric algebra. The exterior algebra is an important example of

Frobenius algebras [3]. First of all we note that A is a symmetric algebra.

Lemma 2.1 A= F[&,...,&] is a symmelric algebra, i.e. it has a nondegenerate symmetric bilinear form

B:AxA—F such that B(ab,c) = B(a,bc) for all a,b,c€ A

Proof Let ¢ be the linear form on A sending each a € A to its leading coefficient i.e. the coefficient of the

monomial & ...&s in the expression for a. Then
B(a,b) = p(ab)
provides a bilinear form whose matrix relative to the standard basis of monomials is a permutation matrix since

1oif {ig, - ik, Jr, - iy =95
B(£i1"'§ik7£j1"'§jl):{ 0 { otherwise }

The last part follows at once from the associativity in A. O

3. Annihilators of principal ideals of the exterior algebra

In this section we will describe generators of Anna(p) where Char(F) > =L, First we give the following

lemmas that are used in several proofs in this paper.

Lemma 3.1 Let n € Gg. Then un = 0.

Proof Since n € Gg, we write
n= fkl t fkt(fil - €j1)(§iz - gjz) T (Eu - 5]%)

where {i1,...,0r; 51,y dri k1, ket ={1,...,8} = S.

(14 + &)k &y (§i — &) -+ (&in — &5
(&, + &)+ i+, Er &y — &51) -+ (& — &)

mn

since &, &k, =0 forallu=1,2,...¢.
Also, for all u=1,2,...r, (&, +&.) (&, — &) = &in& — &u&in = 0. Then we get un = 0. O

Lemma 3.2 Let w € A, such that w = wy + w1&s with wo,w1 € F[&1,...,&s—1] where
wo =wp(&1 + - +&-1) and wi —wy = w6+ + &)

then w = w'p for some W' € F&q,. .., &].
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Proof Suppose w € A, as defined in the hypothesis. Then

w = wo(€r+ -+ &) Fwi(6r+ -+ 1€ + wpls
= wo(&t+-F&)twi(G+ o+ &1+ 68
= (Wh+wig) (&t 8&) =
where W’ € F[&1,...,&]. O

Lemma 3.3 If Char(F) >r > 3, then M, C Ap.

Proof Since s < 2r, it follows from s — r < r that
G+ +&..,) =0

for any J = {j1,...,Js—r} C S. Therefore for each I = {i1,...,4,} by considering its complement J =
{j1,---,Js—r} in S, we obtain

1 T

GG = (Gt
1 I Tl T
= G = (C1 (G e+ )

Take a = &;1 + -+ &;T and b = (71)(51'1 + -+ gjs—r)' Then

1 T

gh"'é—ir — E(G/T_b )
1 r—1 r—2 r—1
= ﬁ(afb)(a +a" "+ 0T

B
= %(fil +o & G e+ )B
= %(51+'~'+£S)B

where TUJ =S for some § € A. O

Proposition 3.4 If w € A, annihilates all elements of the form
iyt (G — &) (G — &) - (& — &)
then w € A._1p.

Proof We use induction on the pairs (s,7) where 2r < s with respect to lexicographic ordering. The case

(s,1) is trivial. Suppose the assertion is true for all (s',7") < (s,r). Let

w€k1 ...gkt<£il _gjl)(giz _§j2>"'<£ir _fjr) =0 when JUJUK = S.

There are two cases to consider.

803



ESIN/Turk J Math

Case 1: s > 2r. In this case by writing w = wg + w1§s with wg, w1 € F[&1,...,&—1] we obtain

wgkl e gk’t (511 - 5j1)(§i2 - §j2) e (Elr - ng) =0.

We may assume WLOG that &, = &. Then

Wy Ep 1 &Gy — §0) (G — Gia) - (&G, — &) = 0

(wo + w18s)€ky =+ ke &s(Gin = &0 ) (§in — &) -+ (&3, = &5,) = 0
wolky =+ Ehey & (&in — €0) (i — &) -+ (&, — &) = 0

wolky &y (Gin — &) (Gin — &) - (& — &) = 0

when TUJUK =S — {s}. Application of the induction hypothesis to the pair of (s — 1,7) gives

wo = ap(&1+---+&-—1) where ag € F[&1,...,&-1]
ao(§r+ -+ &s—1) T wiés

= ao(&i+ -+ &)+ (w1 —a0)és

= aop+ (w1 — ap)és.

Consequently,

wgkl e gkt (511 - 5j1)(§i2 - §j2) e (517‘ - ng) = 0
(o 4 (w1 = 0)&s) &y = €y (&iy — &) iy — &5) - (&, —&5,.) = 0

when TUJUK = § and by Lemma 3.1 we get,
(W1 = @0)&s8ky -~ ke (§ir = &50) (G = &) -+ (&3, — &5,) = 0.
Now, we may assume WLOG &;, = &, and so
(W1 = @0)&sbhy + Sk, (&ir — &5u) (& — &)+ (&irsy — &5, ) (G, — &) =0
when T UJ UK = S. Hence

(wl - a0)§s§k1 T Ek?t (521 - §j1 )(512 - 532) e (fir—l - fjr—l)fir =0
(wl - ao)flﬁ o gkt (521 - fjl)(glé - £j2) e (gir71 - gjr—l)gir =0

when TUJUK =S — {s}, and the induction hypothesis yields
wi —ap =0 ({1 4+ 1)

and hence by Lemma 3.2 w = w’p for some w’ € F[y,...,&] as asserted.

Case 2: s =2r. Again we write w = wp + w1&s with wp and wy in F[&y,...,&—1] of degrees r and

r — 1, respectively. Since s — 1 < 2r, by Lemma 3.3, wg = ap(&1 + -+ &s—1) and therefore

w = wot+wiés

= app+ (w1 — ap)és.
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with ap and wy; — ag of degree » — 1 in F[&1,...,&s—1] as in Case 1. Thus, we have
(w1 — 0)&s(&iy — & )(&in — &) (Giny — &Goni)&inliey =&k = 0
(w1 —a0)(&iy = &) (ia — &)+ (i = §5omi )G Chy &k = 0
and it yields that
wi—ag= P&+ +&-1)
by induction applied to the pair (s — 1,7 — 1). By Lemma 3.2, w = w’p and the proof is completed. O

Now we can establish the following theorem.

Theorem 3.5 Using the notation given in the introduction, we have Ann(Gs) =Au and hence
AGs = Ann(Ap) and dim(AGg) + dim(Ap) = dim(A) = 2°

Proof The inclusion Ay C Ann(Gs) is obvious. It remains to prove Ann(Gg) CAp. Thus, take any

w € Ann(Gs) of degree r and show that w € Ap. If » > 5 the assertion follows from Lemma 3.3. In the

case r < %, letting t = s — 2r we can write

w&ﬁ é‘kt(é-ll _€j1)<§i2 _§J2)(§’LT _g.jr) =0 when IJUJUK =S

and the result follows from Proposition 3.4. O

As a final remark for this section, we exhibit a basis for Ann(Ap). Since every element in Gg is a linear

combination of stack-sortable polynomials (see [1]), we achieve the equality
Ann(Ap) = APg.

Note that Z =Ann(Au) is a graded ideal, say
I=12,® - 0T

s+ 1

where d is the integral part of . As stated in [2, Theorem 3 and 4] the set {0(p”(£;7)) | T € StSﬁm‘”} is

a basis for Z,,, and that dim(Z) = (s i d).
4. An F-basis for annihilators of principal ideals

In this section, we regard A as a subalgebra of an exterior algebra E(V'). In addition to the notations given in
the introduction, we also introduce the following notations:
V=Vi& ---&V,: an F—space of dimension n with a direct sum decomposition

X ={%k1,...,Zkn, } : & basis for V
S

X = | Xy, a basis for V
k=1
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E = E(V) : the exterior algebra on V

&k = Tk1...Tkn, and n; ’s are all even

p=Et

A=Fl&,...,&] as a subalgebra of F

Pk ¢ a product of elements of X, different from 1 and &

Px = The set of products of the form pg,..px, for K ={ky,...,k} C S
Gx = Gs_k Pk

A= AG
Now we can state our main result.

Theorem 4.1 The annihilator of p in E is the ideal A generated by elements of the form

(G, = &50) - (& — &G )uny -~ U,

where u € {Tk1, ..., Thn, b and {1, ... ir; g1, oy dri k1, .- ke ={1,...,8} when Char(F) > 551.
Further the elements (&, —&;,) -+ (&, — &)Uk, - - - ug, for which

(€ = &) (G = &)k & € {007 (&) | 7 € ST}
(see [2], Section 8) form a minimal generating set.

Proof Asproved in [3], E is a Frobenius algebra. By Lemma 2.1, A = F[¢;,...,&] is also Frobenius algebra.

Therefore
dim(E) = dim(Fp) 4+ dim Anng(p) and dim(A) = dim(Ap) + dim Ann 4 (p)

Since A C Anng(u) is obvious, for converse inclusion, it is sufficient to show that
dim(A) = dim(E) — dim(Ep).

Hence using the direct sum decomposition

E= D Ap

1< < <Ipg<n

where each py is a product of the zy;, factors of &, we have

Ep = B A, -op,

1<l << <s

= B Aw-& —& - —&)pn -

1<l <<l <s
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As A is spanned by elements of the form

(G, = &) (& — &5 )k &ty DL

it follows that

A= @ @ AGs_rpi, -1,

1<h <-<lpg<s \p1; P, €PL

where we assume p; # 1 and ;. Thus, elements of A are linear combinations of the products

(&ir = &) (G — & )Sky + ERily -+ U,

where the set of indices is equal to S and p; # 1 and &;. Consequently, elements of Ep are linear combinations
of

(§iy + & )8hy &yt -+ - U,

with the set of indices equal to S again.

Thus, by using Theorem 3.5

A = P D A,

1<l <-<lxg<s \piy 1, €PL

= o, B Avg ), m,

1<l <-<lpg<s  \p1, P, €PL

- ) B Anna, (Appc)p, -,

1<h<-<lpg<s \p1; Py, €PL

= @ Anna,, (Appr)Pr
LCS

and

Ep = ) D Aw--m,

1< < <lg<n  \pi; P, €PL

= b B Avuppnop,

I<h < <lg<n \p1,-p1, €PL

= @(AL’ML’)PL :

LCS
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This yields

dimA = > dim(Anna,, (Appr)) Pl and
LCS
dlmE,u == Z dim(AL//,LL/)|PL| .
LCS

By Theorem 3.5, we have
dimAnnAL, (A[//J[/) + dim(AL/,qu) =dimA; = 2|L/|.

Also, we note that the polynomials

S — E le-“Zlk

LCS
|L|=k

are elementary symmetric polynomials in z1, ..., zs and therefore
S
Zskzsfk =(z+2z1) (24 z5).
k=0

By letting z; := 2™ — 2, we conclude that

dim(Ep) +dim A = )" 2lFl@m —2)... (2" —2)
LCS

= i Z 2|L’|(2ﬂ11 —2)-- (2™ —2)

k=0 LCS

which means that A = Anng(u).

The last part of the theorem can be obtained by using the techniques from [2] and linearly independence

of {0(p™(&;m)) | T € St%mfs)} is proved in [2, Theorem 3]. O
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