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Abstract: We consider simply connected 4 -manifolds admitting Lefschetz fibrations over the 2 -sphere. We explicitly
construct nonhyperelliptic and hyperelliptic Lefschetz fibrations of genus 4 on simply-connected 4 -manifolds which are
exotic symplectic 4 -manifolds in the homeomorphism classes of CP 2#8CP 2 and CP 2#9CP 2 , respectively. From these,
we provide upper bounds for the minimal number of singular fibers of such fibrations. In addition, we prove that this
number is equal to 18 for g = 3 when such fibrations are hyperelliptic. Moreover, we discuss these numbers for higher
genera.
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1. Introduction
Due to the pioneering works of Donaldson [13] and Gomp [21], Lefschetz pencils and Lefschetz fibrations play
an important role in studying 4 -manifold topology. Donaldson proved that every symplectic 4 -manifold, up to
blow-ups, corresponds to a Lefschetz fibration with a finite number of singularities of a prescribed type, which
provides a way to study combinatorially via a positive factorization of its monodromy if exists. Conversely,
Gompf showed that any 4 -manifold admitting a genus-g Lefschetz fibration is a symplectic 4 -manifold if
g ≥ 2 .

Every nontrivial Lefschetz fibration admits certain singular fibers associated to its monodromy. The
number of its singular fibers provides us important information about its total spaces such as the Euler
characteristic, the signature, and so on. Since it has been known that the number of singular fibers in a Lefschetz
fibration cannot be arbitrary, determining the minimal number of singular fibers in a Lefschetz fibration is an
interesting problem to be investigated.

Let N(g, h) be the minimal number of singular fibers in all nontrivial relatively minimal genus-g Lefschetz
fibrations of over the oriented closed surface of genus-h . For h ≥ 1 , the exact value of the number N(g, h) is
almost known (except N(g, 1) for g ≥ 3 and N2,2 ) [23, 25, 26, 31, 37]. For h = 0 , it is known that N(2, 0) = 7

by Xiao’s construction [38] and also by the existence of a relation among seven positive Dehn twists in the
mapping class group of genus-2 surface with one boundary component obtained by Baykur and Korkmaz [6].
However, the exact value of this number is not known for h = 0 and g ≥ 3 . The best known estimates for
N(g, 0) : N(g, 0) ≤ 2g+4 if g is even and N(g, 0) ≤ 2g+10 if g is odd [10, 11, 24]. If we consider hyperelliptic
Lefschetz fibrations, i.e. their vanishing cycles are invariant under a hyperelliptic involution ι (see for instance
∗Correspondence: atulin@metu.edu.tr
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Figure 5), then some results about this number are known. Let M(g, h) denote the minimal number of singular
fibers in all nontrivial genus-g hyperelliptic Lefschetz fibrations over the 2 -sphere. Baykur and Korkmaz [7]
constructed a hyperelliptic genus-3 Lefschetz fibration over the 2 -sphere with 12 singular fibers and then they
proved that M(3, 0) = 12 . In [3], the author proved the following result:
(1) M(4, 0) = 12 and M(6, 0) = 16 ,
(2) M(8, 0) = 19 or 20 and M(10, 0) = 23 or 24 ,
(3) M(5, 0) ≥ 15 , M(7, 0) ≥ 17 , and M(9, 0) ≥ 24 .
Moreover, when the total spaces of such fibrations are complex surfaces, she proved that it is equal to 2g+4 if
g ≥ 4 and even and it has a lower bound 2g+6 if g ≥ 7 and odd. Thus, the exact value of the number M(g, 0)

is not known (except for g = 3, 4 and 6). Therefore, this question is also open for hyperelliptic Lefschetz
fibrations.

Lefschetz fibration structures on various smooth 4 -manifolds with small numbers of singular fibers may
provide us the existence of symplectic structures on 4 -manifolds in the homeomorphism classes of simply-
connected 4 -manifolds with very small topology, which has been an interesting topic containing several con-
struction techniques (e.g., [1, 2, 4, 12, 16–20, 28, 34–36]). Recently, some authors have studied Lefschetz
fibration structures to produce exotic 4 -manifolds (which are homeomorphic but not diffeomorphic to standard
ones). Since it is natural to relate small (as in small second homology) exotic 4 -manifolds to small (as in small
number of positive Dehn twists) Lefschetz fibrations, it is of interest to find the minimal number of singular
fibers in Lefschetz fibrations on simply connected 4 -manifolds.

Let Ng be the minimal number of singular fibers in all genus-g Lefschetz fibrations on a simply-connected
4 -manifold over the 2 -sphere having at least one singular fiber. It is known that the minimal number of singular
fibers in all torus Lefschetz fibrations is 12 . One can conclude that N1 = 12 by the existence of torus Lefschetz
fibrations with 12 singular fibers on the elliptic surface E(1) = CP 2#9CP 2 . A genus-2 Lefschetz fibration
with 14 singular fibers on a symplectic 4 -manifold which is an exotic copy of CP 2#7CP 2 was constructed by
Baykur and Korkmaz [6]. By [6, Theorem 2 ], one can obtain that N2 = 14 .

Let us define Mg as the minimal number of singular fibers in all hyperelliptic Lefschetz fibrations on a
simply-connected 4 -manifolds over S2 having at least one singular fiber. By the same argument above, M1 = 12

and M2 = 14 .
The purpose of the present paper is to estimate the numbers of Ng and Mg . In this direction, in

Section 2, we first give some preliminary information and results. In Section 3, we explicitly construct two
genus-4 Lefscherz fibrations on simply connected 4 -manifolds. To do this, we first mention the positive
factorizaton W for a genus-3 hyperelliptic Lefschetz fibration given by Baykur [5]∗ . Then we construct a
genus-4 nonhyperelliptic Lefschetz fibration (X1, f1) using the Baykur’s monodromy and the monodromy that
gives the smallest genus-2 Lefschetz fibration. Here, we use the breeding technique to construct this positive
factorization (see [5, 7] for more applications of this technique). We also prove that the 4 -manifold X1 is an
exotic copy of CP 2#8CP 2 (Theorem 3.2). Similarly, we produce another monodromy which gives a genus-4
hyperelliptic Lefschetz fibration (X2, f2) using the monodromy of generalized Matsumoto’s fibration for g = 4

and again the monodromy of the smallest genus-2 Lefschetz fibration. We prove that the 4 -manifold X2 is an
exotic CP 2#9CP 2 (Theorem 3.3). In the last section, we examine the numbers Ng and Mg for g ≤ 4 . We
first give a different proof for the result N2 =M2 = 14 given in [6, Theorem 2 ] (Proposition 4.4(a)). Moreover,

∗ https://people.math.umass.edu/~baykur/docs/Genus3LPsFINAL.pdf
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we prove that M3 = 18 (Proposition 4.4(b)). Similarly, using the existence of genus-4 nonhyperelliptic and
hyperelliptic Lefschetz fibrations (X1, f1) and (X2, f2) constructed in Section 3, we conclude that N4 ≤ 23

and M4 ≤ 24 . We then give better estimates for the number M4 (Proposition 4.4(c)). Finally, we discuss the
numbers Ng and Mg for higher genus.

2. Preliminaries
This section presents the necessary background and the known results used in our proofs.

2.1. Mapping class groups
Let us denote a compact connected oriented smooth surface of genus g with n ≥ 0 boundary components by Σng .
Let Modng denote the mapping class group of Σng , i.e., the group of isotopy classes of orientation-preserving self-
diffeomorphisms of Σng fixing all points on the boundary. We assume all isotopies are identity on the boundary.
When n = 0 , we will denote Modng and Σng by Modg and Σg , respectively. Throughout the paper we do not
distinguish a diffeomorphism from its isotopy class. For the composition of two diffeomorphisms, we use the
functional notation; if g and h are two diffeomorphisms, then the composition gh means that we apply h first
and then g .

Now, let us remind the following basic properties of Dehn twists. Let a and b be simple closed curves
on Σng and f ∈ Modng .

• Commutativity: If a and b are disjoint, then tatb = tbta .

• Conjugation: If f(a) = b , then ftaf
−1 = tb .

( Here, ta denotes the positive Dehn twist about a simple closed curve a .)

2.2. Lefschetz fibrations
We remind some basic definitions and facts about Lefschetz fibrations. Throughout the paper we denote the
2 -sphere by S2 . Let M be a closed connected oriented smooth 4 -manifold. A Lefschetz fibration on M is a
smooth surjective map if it has only finitely many critical points {p1, p2, . . . , pn} such that around each of which
it is expressed in the form of f(z1, z2) = z21+z

2
2 with respect to some local complex coordinates compatible with

the orientations of M and S2 (In general, the base of a Lefschetz fibration can be a closed orientable surface
of genus h ≥ 0 , but throughout this paper, we only consider S2 ). The genus-g of a regular fiber is defined
to be the genus of the fibration. The inverse image of a critical value is called a singular fiber. We assume
that each singular fiber contains only one critical point, which can be obtained by a small perturbation. Each
singular fiber is obtained by collapsing a simple closed curve, called vanishing cycle, on a nearby regular fiber
to a point. If the vanishing cycle is nonseparating (respectively separating), then the corresponding singular
fiber is called irreducible (respectively reducible). Throughout the paper, we also assume that all Lefschetz
fibrations are nontrivial and relatively minimal, i.e. they have at least one singular fiber and no fiber containing
a (−1) -sphere.

A Lefschetz fibration can be described via its monodromy, which is an element in the mapping class group
Modg . The monodromy of a Lefschetz fibration f :M → S2 is given by a positive factorization

ta1ta2 · · · tam = 1
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in Modg up to Hurwitz moves (exchanging subwords taitai+1 = tai+1tt−1
ai+1

(ai)
) and global conjugations (changing

each tai with tφ(ai) for some φ ∈ Modg ), where ai ’s are vanishing cycles of the singular fibers. A map

σ :M → S2 is a section if f ◦ σ = idS2 . If a positive relation ta1ta2 · · · tam = 1 in Modg has a lifting to Modkg

so that
tã1tã2 · · · tãm = tn1

δ1
tn2

δ2
· · · tnk

δk
,

where each ni is integer and δi is a boundary curve, then the Lefschetz fibration f : M → S2 admits k

disjoint sections S1, . . . , Sk , where Sj is of self-intersection −nj and vice versa [8]. We say that two Lefschetz
fibrations f1 :M1 → S2 and f2 :M2 → S2 are isomorphic if there exist orientation preserving diffeomorphisms
G :M1 →M2 and g : S2 → S2 such that f2 ◦G = g ◦ f1 .

The hyperelliptic mapping class group HModg of Σg is defined as the subgroup of Modg that is the
centralizer of a hyperelliptic involution ι : Σg → Σg . A Lefschetz fibration is said to be hyperelliptic if its
vanishing cycles are invariant under the hyperelliptic involution ι up to isotopy.

For a genus-g Lefschetz fibration f :M → S2 , the Euler characteristic, e(M) , of the 4 -manifold M can
be computed as

e(M) = 4− 4g + n+ s,

where n and s are the numbers of nonseparating and separating vanishing cycles, respectively. Also we define
the following invariant associated to the 4 -manifold M :

χh(M) =
e(M) + σ(M)

4
,

where σ(M) is the signature of M . Let us note that if M is a complex surface, χh(M) is the holomorphic
Euler characteristic.

It follows from the theory of Lefschetz fibrations that if a Lefschetz fibration f :M → S2 with a regular
fiber Σg and the monodromy tα1

tα2
· · · tαm

= 1 admits a section, then the fundamental group π1(M) of M is
isomorphic to the group π1(Σg) divided by the normal closure of the vanishing cycles (cf [21]), that is,

π1(M) ∼= π1(Σg)/⟨α1, α2, . . . αm⟩

The signature σ(M) of M , which is another invariant of the Lefschetz fibration f : M → S2 can be
computed using several techniques. For instance, Endo and Nagami [15] gave a useful method which uses the
signatures of the relations involved in its monodromy. For an integer-valued function Ig on the set of relators
of Modg (see [15] for its definition and properties), the following theorem holds:

Theorem 2.1 [15] Let f : M → S2 be a genus-g Lefschetz fibration with the monodromy tc1tc2 · · · tcn = 1 .
Then the signature of M is

σ(M) = Ig(c1c2 · · · cn).

This method allows us to compute the signature of a Lefschetz fibration f : M → S2 as the sum of basic
relations in its monodromy. Let us recall some signatures that we will need later. For the proof, see [15].

• Ig(a) = −1 , where a is the isotopy class of a separating curve.
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• Ig((B0B1 · · ·BgC)2) = −4 if g is even.

Here, the word (B0B1 · · ·BgC)2 is the relator coming from Matsumoto’s relation which is explained later
(see 2.4).

One can also use Ozbagci’s algorithm [32] to compute the signature of a Lefschetz fibration f :M → S2 .
For hyperelliptic Lefschetz fibrations, we have the following useful lemma:

Lemma 2.2 [14, 29, 30] Let f : M → S2 be a genus-g hyperelliptic Lefschetz fibration. Let n and s =
∑[g/2]
h=1 sh

denote the numbers of nonseparating and separating vanishing cycles of this fibration, respectively, where sh is
the number of separating vanishing cycles that separate the genus-g surface into two surfaces one of which has
genus h . Then the signature of M is

σ(M) = − g + 1

2g + 1
n+

[g/2]∑
h=1

(
4h(g − h)

2g + 1
− 1

)
sh.

Remark 2.3 One can easily obtain that σ(M) ≤ n − s − 2 using b1(M) ≤ 2g − 1 by the handlebody
decomposition of nontrivial Lefschetz fibrations f : M → S2 and the fact that such fibrations have at least
one non-separating vanishing cycle. If the Lefschetz fibration f : M → S2 is hyperelliptic, then Ozbagci [32]
proved that σ(M) ≤ n − s − 4 . Later, for every Lefschetz fibration f : M → S2 , Cadavid [10] improved the
upper bound of signature σ(M) showing that

σ(M) ≤ n− s− 2(2g − b1(M)). (2.1)

When the 4-manifold X is simply-connected, the above inequality becomes

σ(X) ≤ n− s− 4g. (2.2)

For a closed orientable surface of genus g ≥ 1 , the first homology group H1(HModg;Z) of the hyperelliptic
mapping class group HModg has the following isomorphism:

H1(HModg;Z) ∼=

{
Z/4(2g + 1), if g is odd,
Z/2(2g + 1), if g is even,

which can be proven by the presentation of the hyperelliptic mapping class group HModg [9]. In the hyperelliptic
mapping class group HModg , all Dehn twists about nonseparating simple closed curves are nontrivial and each
of them maps to the same generator in H1(HModg;Z) under the natural map HModg → H1(HModg;Z) .
Thus, the number of twists of a factorization of identity in HModg consisting of positive Dehn twists about
nonseparating simple closed curves is divisible by 2(2g + 1) (respectively 4(2g + 1)) if g is even (respectively
odd). We say that a separating simple closed curve on Σg is of type h if it separates Σg into two subsurfaces of
genera h and g−h . It is known that each separating simple closed curve of type h can be written as a product
of 2h(4h+ 2) positive Dehn twists about nonseparating simple closed curves. Therefore, we have the following
lemma which gives a relation between the number of nonseparating vanishing cycles and that of separating
vanishing cycles in a genus-g hyperelliptic Lefschetz fibration:
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Lemma 2.4 [3] Let n (or s) be the number of nonseparating (resp. separating) vanishing cycles in a genus-g
hyperelliptic Lefschetz fibration over S2 . Then, we have

n+

[g/2]∑
h=1

2h(4h+ 2)sh ≡

{
0 (mod 4(2g + 1)), if g is odd,
0 (mod 2(2g + 1)), if g is even,

where sh is the number of separating vanishing cycles of type h with s =
∑[g/2]
h=1 sh .

2.3. The smallest genus two Lefschetz fibration

In [6], Baykur and Korkmaz obtained the following relation in Mod12 :

tetx1
tx2
tx3
tdtCtx4

= tδ,

which can be rewritten as
tetx1

tx2
tx3
tdtB2

tC = tδ,

where tc(x4) = B2 . Set T = tetx1
tx2
tx3
tdtB2

tC . They also showed that the positive factorization T = tδ realizes
the smallest genus-2 Lefschetz fibrations whose total space is diffeomorphic to (T2 × S2)#3CP 2 . Stipsicz and
Yun [37] obtained the following lifting of T :

T = tetx1
tx2
tx3
tdtB2

tC = tδ1tδ2 (2.3)

in Mod22 , where the curves xi , B2 , C , d , e , δ1 , and δ2 are as depicted in Figure 1. The relation (2.3) and
also a further lift to Mod32 is given by Baykur [5].

Figure 1. The curves xi , B2 , C , d , and e on the surface Σ2
2 .

2.4. Generalized Matsumoto’s relation
A relation with eight positive Dehn twists was discovered by Matsumoto [30], which is the global monodromy
of a Lefschetz fibration on (T2 × S2)#4CP 2 . It is later generalized to higher genus surfaces by Korkmaz [24],

1273



ALTUNÖZ/Turk J Math

independently by Cadavid [10] and recently by a different proof [11]. A lift of this relation to Mod1g was first

discovered by Ozbagci and Stipsicz [33] and another lift to Mod2g by Korkmaz [27]. However, we will use the

following lift to Mod2g proved by Hamada [22]:

Vg =

{
(tB0

tB1
· · · tBg

tC)
2 if g = 2k,

(tB0
tB1

· · · tBg
t2at

2
b)

2 if g = 2k + 1,

where δi are the boundary parallel curves, and the curves Bi and C are as shown in Figure 2.

Figure 2. The curves Bi , Ai , C , a , and b on the surface Σ2
g .

One may rewrite the generalized Matsumoto’s relation for g = 2k as follows:

(tB0
tB1

· · · tBg
tC)

2 = (tB0
tB1

· · · tBg
tC)(tB0

tB1
· · · tBg

tC)

= (tCtt−1
C (B0)

tt−1
C (B1)

· · · tt−1
C (Bg)

)(tB0
tB1

· · · tBg
tC) = tδ1tδ2 .

Since the Dehn twist tC commutes with tδ1 and tδ2 , we get

Vg = t2CtA0
tA1

· · · tAg
tB0

tB1
· · · tBg

= tδ1tδ2 (2.4)

in Mod2g , where each Ai = t−1
C (Bi) is shown in Figure 2. Note that the total space of the genus-g Lefschetz

fibration is diffeomorphic to (Σk×S2)#4CP 2 (respectively (Σk×S2)#8CP 2 ) if g = 2k (respectively g = 2k+1).

3. Small Lefschetz fibrations of fiber genus 4 on simply connected 4-manifolds
In this section, our aim is to construct small genus-4 Lefschetz fibrations on simply connected 4 -manifolds. In
order to make our construction, we will first derive a positive factorization of tδ1tδ2 in Mod22 with (n, s) = (4, 3) ,
which will be one of our building blocks. For completeness of our contructions, using the breeding technique [5, 7],
we also give the positive factorization W of tδ1tδ2 in Mod23 with (n, s) = (12, 6) constructed by Baykur [5].
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Afterwards, we derive a nonhyperelliptic genus-4 Lefschetz fibration on an exotic copy of CP 2#8CP 2 by
breeding the factorization W with the Matsumoto’s genus-2 factorization V2 given in (2.4). Moreover, we
construct a hyperelliptic genus-4 Lefschetz fibration on an exotic copy of CP 2#9CP 2 using again the breeding
technique to the generalized Matsumoto’s factorization V4 given in (2.4) and the factorizations which give the
smallest genus-2 Lefschetz fibration.

Consider the curves x′1 , x′2 , x′3 , B2 , C , d′ , and e′ on the genus-2 surface Σ2
2 shown in Figures 1 and

3. Note that the closed surface Σ2 is embedded in R3 in such a way that it is invariant under the involution υ

shown in Figure 3. One can observe that these curves can be obtained by applying the involution υ to the curves
contained in factorization (2.3). Then the relation in the following lemma is obtained from the relation (2.3)
by rotating the surface Σ2

2 . A proof of this relation using Alexander’s method can be found in the appendix.

Lemma 3.1 There is a relation

te′tx′
1
tx′

2
tx′

3
td′tB2tC = tδ1tδ2 . (3.1)

in Mod22 , where the curves x′i , C , d′ , and e′ are as in Figure 3 and B2 is as in Figure 1.

We remark that any genus-2 Lefschetz fibration prescribed by a monodromy with (n, s) = (4, 3) has total
space diffeomorphic to (T2 × S2)#3CP 2 . So the corresponding genus-2 Lefschetz fibration to our monodromy
is diffeomorphic to the smallest genus-2 Lefschetz fibration constructed by Baykur and Korkmaz [6].

Figure 3. The curves x′
i , d′ , e′ , γj ’s on the surface Σ2

2 and the involution υ on the surface Σ2 .

One of the building blocks of our monodromy construction is the monodromy of a genus-3 Lefschetz
fibration on an exotic copy of CP 2#7CP 2 given by Baykur [5]. For completeness, we give the construction of
this monodromy in detail.

Set T ′ = te′tx′
1
tx′

2
tx′

3
td′tB2

tC or T ′ = te′P
′tC so that T ′ = te′P

′tC = tδ1tδ2 in Mod22 . Since tC and the
factorization te′P

′ commute, we have

T ′ = te′P
′tC = tCte′P

′ = tδ1tδ2 (3.2)
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Similarly, let us write the positive factorization T in (2.3) as T = tePtC , where P = tx1tx2tx3tdtB2 so
that T = tePtC = tδ1tδ2 in Mod22 . By the commutativity of tC and teP , we have

T = tePtC = tCteP = tδ1tδ2 . (3.3)

Let us embed the relation (3.3) into Mod23 so that the boundary parallel curve δ2 in Figure 1 is mapped
to the curve C ′ in Figure 4. Hence, we get the following relation:

T = tePtC = tCteP = tδ1tC′ . (3.4)

We also embed the relation (3.2) into Mod23 so that the curve δ1 in Figure 1 is mapped to the curve C in
Figure 4. In this case, the curves B2 and C appearing in the factorization T ′ are mapped to the curves B′

2

and C ′ in Figure 4 so that the factorization P ′ = tx′
1
tx′

2
tx′

3
td′tB′

2
. We thus have

T ′ = te′P
′tC′ = tC′te′P

′ = tCtδ2 . (3.5)

Combining the relations (3.4) and (3.5), the following relation in Mod23 holds:

TT ′ = (tCteP )(te′P
′tC′) = tδ1tC′tCtδ2 .

By the fact that tC commutes with tePte′P
′tC′ and the curves δ1 , δ2 , C and C ′ are all disjoint, the relation

can be written as
TT ′ = tePte′P

′tC′tC = tδ1tδ2tC′tC ,

which gives the following relation
tePte′P

′tC′tCt
−1
C t−1

C′ = tδ1tδ2 .

Finally, we obtain the following identity in Mod23 :

tePte′P
′ = tδ1tδ2 . (3.6)

Consider the diffeomorphism φ = t3a3tb2tc1 , where the curves are shown in Figure 5. One can easily verify

that φ(C) = e . Then by conjugation of T ′ by φ , we obtain the following factorization of tδ1tδ2 in Mod23 :

(T ′)φ = tφ(C′)tφ(e′)(P
′φ) = tφ(C)tφ(δ2),

which can be written as
(T ′)φ = tC′tφ(e′)tφ(x′

1)
tφ(x′

2)
tφ(x′

3)
tφ(d′)tφ(B′

2)
= tetδ2 ,

since φ(C ′) = C ′ and φ(δ2) = δ2 , where (T ′)φ denotes the conjugate factorization. Let us denote (P ′)φ by P

and denote φ(α′) = α for every curve α′ appearing in the factorization te′P
′ . Therefore, we have the following

relation:

(T ′)φ = tC′teP = tC′tetx1
tx2
tx3
tdtB2

= tetδ2 , (3.7)

where the curves e , xi ’s, d , and B2 are shown in Figure 5. Therefore, the relation (3.7) together with the
relation (3.6) give rise to the following relation in Mod23 :

(tePte′P
′)(tC′teP ) = (tδ1tδ2)(tetδ2),
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Figure 4. The curves coming from the factorizations T and T ′ and the generators of π1(Σg) .

which implies that

t−1
e tePte′P

′tC′teP = tδ1t
2
δ2

by commutativity of the curve te and tδ1tδ2 . Finally, by canceling the te factors, we get the desired equation
in Mod23 :

Pte′P
′tC′teP = tδ1t

2
δ2 .

This relation is the monodromy factorization for our genus-3 Lefschetz fibration. Observe that it admits two
sections: one is of (−1) self-intersection and the other is of (−2) . Capping off the boundary components, the
factorization Pte′P

′tC′teP gives the following factorization of the identity in Mod3 :

tx1
tx2
tx3
tdtB2

te′tx′
1
tx′

2
tx′

3
td′tB′

2
tC′tetx1

tx2
tx3
tdtB2

= 1. (3.8)

Let W be the positive factorization given in (3.8) and let (X, f) be the corresponding genus-3 Lefschetz
fibration which admits 18 singular fibers with (n, s) = (12, 6) . It is proved by Baykur in [5] that the 4 -manifold
X is an exotic CP 2#7CP 2 .

Since the Lefschetz fibration (X3, f3) is hyperelliptic, using the signature formula for hyperelliptic
fibrations in Lemma 2.2, the signature σ(X3) of X3 is given by
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Figure 5. The curves xi
′s , B2 , d , e and the hyperelliptic involution ι .

3.1. Constructing a small nonhyperelliptic genus-4 Lefschetz fibration on a simply-connected 4-
manifold.

Consider the relation (3.8) in Mod23 , which can be rewritten as

W = Pte′P
′tC′teP

= tePPte′P
′tC′

= tetx1tx2tx3tdtB2
tx1tx2tx3tdtB2te′tx′

1
tx′

2
tx′

3
td′tB′

2
tC′

= tδ1t
2
δ2 ,

since the factorization teP commutes with tδ1 and tδ2 . We embed this relation into the surface Σ2
4 so that

the boundary parallel curve δ2 is mapped to C ′′ , where the curves are as in Figure 6. We also consider the
Matsumoto’s relation (2.4) in Mod22

V2 = t2CtA0tA1tA2tB0tB1tB2 = tδ1tδ2 ,

and embed it into Σ2
4 in such a way that the curves δ1 = ∂Σ2

2, Ai, Bi , and C are mapped to the curves
C ′, A′′

i , B
′′
i and C ′′ for i = 0, 1, 2 , respectively, where the curves are depicted in Figure 6. Thus, we get

V2W =
(
t2C′′tA′′

0
tA′′

1
tA′′

2
tB′′

0
tB′′

1
tB′′

2

)(
tePPte′P

′tC′
)
=

(
tC′tδ2

)(
tδ1t

2
C′′

)
,

which gives the relation

t−2
C′′

(
t2C′′tA′′

0
tA′′

1
tA′′

2
tB′′

0
tB′′

1
tB′′

2

)(
tePPte′P

′tC′
)
t−1
C′ = tδ1tδ2 ,
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by the commutativity of Dehn twists tC′ , tC′′ , tδ1 and tδ2 . Therefore, we reach the following relation in Mod24 :

tA′′
0
tA′′

1
tA′′

2
tB′′

0
tB′′

1
tB′′

2
tePPte′P

′ = tδ1tδ2 ,

which gives the monodromy factorization for our first genus-4 Lefschetz fibration. Note that it admits two
sections of self-intersection (−1) . By capping of the boundary components, we get the following factorization
of identity in Mod4 :

tA′′
0
tA′′

1
tA′′

2
tB′′

0
tB′′

1
tB′′

2
tetx1tx2tx3tdtB2

tx1tx2tx3tdtB2te′tx′
1
tx′

2
tx′

3
td′tB′

2
= 1. (3.9)

Let us denote the positive factorization (3.9) by W1 and the corresponding genus-4 Lefschetz fibration
by (X1, f1) . It admits 23 singular fibers with (n, s) = (18, 5) . Observe that the Lefschetz fibration (X1, f1) is
nonhyperelliptic. Since it admits a section, the fundamental group π1(X1) of the 4 -manifold X1 is isomorphic
to the quotient of π1(Σ4) by the normal subgroup generated by the vanishing cycles of the Lefschetz fibration
(X1, f1) .

We now show that the 4 -manifold X1 is simply connected.
Consider the generators ai , bi of π(Σ4) depicted in Figure 4 for g = 4 . Thus, π1(X1) has a presentation

with generators a1, a2, a3, a4, b1, b2, b3, b4 and with defining relations

b−1
4 b−1

3 b−1
2 b−1

1 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 )(a4b4a

−1
4 ) = 1. (3.10)

xi = x′i = xi = d = d′ = d = B2 = B′
2 = B2 = e′ = e = A′′

i−1 = B′′
i−1 = 1, i = 1, 2, 3,

where the curves shown in Figure 6. One can get that π1(X1) has the following relations (among many others):

x1 = b1b2a
−1
2 a1b2a

−1
2 a1 = 1, (3.11)

x′1 = b2a
−1
2 a3b2a

−1
2 a3b3 = 1, (3.12)

x1 = a−1
1 a2b2a

−1
2 a3b3a

3
3a

−1
1 a2b2a

−1
2 a3 = 1, (3.13)

x2 = a21b1b
2
2a

−1
2 a1 = 1, (3.14)

B2 = a−1
2 [a1, b

−1
1 ]a−1

1 = 1, (3.15)

B′
2 = a−1

3 a2b
−1
2 a−1

2 [a1, b
−1
1 ]b2a

−1
2 = 1, (3.16)

B2 = a−1
3 a2b

−1
2 a−1

2 [a1, b
−1
1 ]b22a

−1
2 = 1, (3.17)

B
′′

0 = b3b4 = 1, (3.18)

B
′′

1 = a−1
4 b−1

4 b−1
3 a−1

3 = 1, (3.19)

B
′′

2 = b4a
−1
4 b−1

4 a−1
3 = 1. (3.20)

The relations (3.16) and (3.17) imply that b2 = 1 . It follows from the relations (3.18) and (3.19) that we
get b3 = b−1

4 and a3 = a−1
4 , which also implies that [a4, b4] = 1 by (3.20). Using these relations, one can

obtain [a1, b1] = 1 by the relation (3.10). Moreover, by considering the relations (3.15) and (3.16), we get
a1 = a−1

2 = a3 = a−1
4 . Thus, the relations (3.11) and (3.12) imply that b1 = b3 = b−1

4 = a−4
1 .
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Figure 6. The curves on the surface Σ2
4 .

Hence, all relations show that π1(X1) is generated by a single element, say a1 . However, the relation
(3.13) becomes b3 = a−3

1 . Therefore, we conclude that a1 = 1 by the fact that b3 = a−4
1 . Consequently, the
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fundamental group π1(X1) is trivial.

Theorem 3.2 The 4-manifold X1 is an exotic copy of CP 2#8CP 2 .

Proof The Euler characteristic e(X1) of X1 , is given by

e(X1) = 4− 4g + n+ s

= 4− 4(4) + 18 + 5 = 11

for (n, s) = (18, 5) . We compute the signature σ(X1) of X1 using Endo and Nagami’s method. We obtain the
monodromy of X1 by breeding the Matsumoto’s relation with the monodromy W , and then by cancelling the
Dehn twists t2C′′ and tC′ . Theorem 2.1 implies that

σ(X1) = I2(C
′′2A′′

0A
′′
1A

′′
2B

′′
0B

′′
1B

′′
2 ) + I3(e x1 x2 x3 dB2x1x2x3dB2e

′x′1x
′
2x3d

′B′
2C

′) + I2((C
′′)−2) + I3((C

′)−1)

= I2(C
′′2A′′

0A
′′
1A

′′
2B

′′
0B

′′
1B

′′
2 ) + I3(e x1 x2 x3 dB2x1x2x3dB2e

′x′1x
′
2x3d

′B′
2C

′)− 2I2(C
′′)− I3(C

′)

= (−4) + (−6)− 2(−1)− (−1) = −7,

where the numbers I2(C
′′2A′′

0A
′′
1A

′′
2B

′′
0B

′′
1B

′′
2 ) = −4 and I3(e x1 x2 x3 dB2x1x2x3dB2e

′x′1x
′
2x3d

′B′
2C

′) = −6

coming from the genus-2 Matsumoto’s relation and the monodromy W whose corresponding genus-3 Lefschetz
fibration (X, f) has signature −6 proved by Baykur in [5], respectively. By the fact that X1 is simply-connected,
it can be concluded that

e(X1) = 2− 2b1(X1) + b+2 (X1) + b−2 (X1)

= 2 + b+2 (X1) + b−2 (X1) = 11 and

σ(X1) = −7 = b+2 (X1)− b−2 (X1),

which give that (b+2 (X1), b
−
2 (X1)) = (1, 8) . By Freedman’s classification, the 4 -manifold X1 is homeomorphic

to the rational surface CP 2#8CP 2 . However, the 4 -manifold CP 2#8CP 2 does not admit a genus-4 Lefschetz
fibration by Baykur’s result [5, Lemma 2 ]. Hence, it cannot be diffeomorphic to X1 , which implies that X1 is
an exotic copy of CP 2#8CP 2 . 2

3.2. Constructing a small hyperelliptic genus-4 Lefschetz fibration on a simply-connected 4-
manifold

Consider the generalized Matsumoto’s Lefschetz fibration for g = 4 with the monodromy factorization (2.4)

V4 = t2C′(tα0tα1tα2tα3tα4)(tβ0tβ1tβ1tβ3tβ4) = tδ1tδ2 , (3.21)

where we denote the simple closed curves Ai , Bi , and C by αi , βi , and C ′ , respectively, to distuguish them
from some of which appearing before.

We then embed the relation (3.3), T = tδ1tδ2 , in Mod22 into Mod24 in such a way that the boundary
parallel curve δ2 shown in Figure 1 is mapped to the curve C ′ shown in Figure 6. In this case, we get the
relation T = tδ1tC′ in Mod24 . The conjugation of this relation by φ = tb2 gives the following relation:

Tφ = tφ(e)tφ(x1)tφ(x2)tφ(x3)tφ(d)tφ(B2)tφ(C) = tφ(δ1)tφ(C′)

= tf ty1ty2tx3
tdtD2

tC = tδ1tC′ , (3.22)
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where all curves containing the relation (3.22) are depicted in Figures 6 and 7 (here we denote the curves φ(e) ,
φ(x1) , φ(x2) , and φ(B2) by f , y1 , y2 , and D2 , respectively).

Figure 7. The curves on the surface Σ2
4 .

In a similar way, we consider the relation (3.2), T ′ = tδ1tδ2 , in Mod22 , where the curves that appear
in the factorization T ′ are shown in Figures 1 and 3. By conjugating this relation with the diffeomorphism
ψ = t−1

a2 , we get the relation

(T ′)ψ = tψ(e′)tψ(x′
1)
tψ(x′

2)
tψ(x′

3)
tφ(d′)tψ(B2)tψ(C) = tψ(δ1)tψ(δ2)

= te′tψ(x′
1)
tψ(x′

2)
tψ(x′

3)
td′tB2tC = tδ1tδ2

in Mod22 . Now let us embed this relation into Mod24 so that the curves δ1 , e′, ψ(x′i) , d′ , B2 , and C are mapped
to the curves C ′ , e′′ , zi , d′′ , B′′

2 , and C ′′ , respectively, given in Figures 6 and 7. Thus, we get the following
relation in Mod24 :

te′′tz1tz2tz3td′′tB′′
2
tC′′ = tC′tδ2 . (3.23)

The relations (3.21), (3.22), and (3.23) give rise to the following relation:

t2C′(tα0tα1tα2tα3tα4)(tβ0tβ1tβ1tβ3tβ4)(tf ty1ty2tx3tdtD2tC)(te′′tz1tz2tz3td′′tB′′
2
tC′′) = (tδ1tδ2)(tδ1tC′)(tC′tδ2),

which can be written as

t−2
C′ t

2
C′(tα0

tα1
tα2

tα3
tα4

)(tβ0
tβ1
tβ1
tβ3
tβ4

)(tf ty1ty2tx3
tdtD2

tC)(te′′tz1tz2tz3td′′tB′′
2
tC′′) = t2δ1t

2
δ2

since tC′ , tδ1 , and tδ2 all commute with each other, we have the following relation in Mod24 :

(tα0
tα1

tα2
tα3

tα4
)(tβ0

tβ1
tβ1
tβ3
tβ4

)(tf ty1ty2tx3
tdtD2

tC)(te′′tz1tz2tz3td′′tB′′
2
tC′′) = t2δ1t

2
δ2 .

By capping off both boundary components δ1 and δ2 , we get the following factorization of identity in Mod4 :

(tα0tα1tα2tα3tα4)(tβ0tβ1tβ1tβ3tβ4)(tf ty1ty2tx3tdtD2tC)(te′′tz1tz2tz3td′′tB′′
2
tC′′) = 1. (3.24)

Let W2 denote the positive factorization (3.24) and let (X2, f2) be the genus-4 Lefschetz fibration with the
monodromy W2 . It admits 24 singular fibers with (n, s) = (18, 6) . Since its vanishing cycles are invariant
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under the hyperelliptic involution ι , the Lefschetz fibration (X2, f2) is hyperelliptic. Moreover, it admits two
sections of (−2) self-intersection.

We now compute the fundamental group π1(X2) of the 4 -manifold X2 . Since the Lefschetz fibration
(X2, f2) admits a section, its fundamental group π1(X2) is isomorphic to the quotient of π1(Σ4) by the normal
subgroup generated by its vanishing cycles.

Consider the generators ai , bi of π(Σ4) shown in Figure 4. Thus, π1(X2) has a presentation with
generators a1, a2, a3, a4, b1, b2, b3, b4 and with defining relation (3.10) and the relations

αi = βi = zj = y1 = y2 = x3 = f = d = D2 = C = e′′ = d′′ = B′′
2 = C ′′ = 1, i = 0, . . . , 4 and j = 1, 2, 3,

where the curves shown in Figures 6 and 7. One can get that π1(X2) has the following relations (among many
others):

β0 = b1b2b3b4 = 1, (3.25)

β1 = a1b1b2b3b4a4 = 1, (3.26)

β2 = a1b2b3b4a4b
−1
4 = 1, (3.27)

β3 = a2b2b3[b4, a4]a3 = 1, (3.28)

β4 = a−1
3 a2b

−1
2 a−1

2 [a1, b
−1
1 ]b2a

−1
2 = 1, (3.29)

y1 = b1b
2
2a

−1
2 a1b

2
2a

−1
2 a1, (3.30)

D2 = b2a
−1
2 [a1, b

−1
1 ]a−1

1 = 1, (3.31)

C = [a1, b1] = 1, (3.32)

z1 = b3a
−1
3 a4b3a

−1
3 a4b4a

−1
4 = 1, (3.33)

C ′′ = [a4, b4] = 1, (3.34)

The relations (3.25) and (3.26) imply that a1a4 = 1 . Thus, we get b2b3 = 1 using the relation (3.34) and
(3.27). This gives the relations b1b4 = 1 and a2a3 = 1 by the relations (3.25) and (3.28), respectively. We
then have [a2, b2] = 1 from (3.29) and (3.32). Since a2 = a−1

3 and b2 = b−1
3 , we conclude that [a3, b3] = 1 .

By the relations (3.20) and (3.34), we get a3a4 = 1 . Hence, we have a1 = a−1
2 = a3 = a−1

4 . This implies that
b2 = b3 = 1 using the relations (3.31) and (3.32). From this, we obtain the relations b1 = a−4

1 and b1 = a−3
1

using the relations (3.30) and (3.33), respectively. This implies that a1 = 1 and so b1 = b4 = 1 . We, therefore,
get π1(X2) = 1 .

Theorem 3.3 The 4-manifold X2 is an exotic copy of CP 2#9CP 2 .

Proof The Euler characteristic e(X2) of X2 is given by

e(X2) = 4− 4g + n+ s1 + s2

= 4− 4(4) + 18 + 6 + 0 = 12

for (n, s1, s2) = (18, 6, 0) , where s = s1+s2 . Since the Lefschetz fibration (X2, f2) is hyperelliptic, we compute
the signature σ(X2) of X2 using the signature formula given in Lemma 2.2. Thus, the signature σ(X2) is given

1283



ALTUNÖZ/Turk J Math

by

σ(X2) =
1

9
(−5n+ 3s1 + 7s2) = −8.

It follows from π1(X2) = 1 that one can conclude that

e(X2) = 2− 2b1(X2) + b+2 (X2) + b−2 (X2)

= 2 + b+2 (X2) + b−2 (X2) = 12 and

σ(X2) = b+2 (X2)− b−2 (X2) = −8,

which imply that (b+2 (X2), b
−
2 (X2)) = (1, 9) . By Freedman’s classification, the 4 -manifold X2 is homeomorphic

to the 4 -manifold CP 2#9CP 2 . However, the rational surface CP 2#9CP 2 does not admit a genus-4 Lefschetz
fibration by Baykur’s result [5, Lemma 2 ]. Thus, it cannot be diffeomorphic to X2 . We, therefore, conclude
that X2 is an exotic CP 2#9CP 2 . 2

4. The minimal number of singular fibers in Lefschetz fibrations on simply-connected 4-manifolds
In this section, we examine the minimal number of singular fibers in Lefschetz fibrations on simply connected
4 -manifolds. We remind that Ng (respectively Mg ) denotes the minimal number of singular fibers in all genus-
g (respectively hyperelliptic) Lefschetz fibratons on a simply connected 4 -manifold. Also, let us recall that
n and s denote the number of nonseparating and separating singular fibers in a genus-g Lefschetz fibration,
respectively. In the following lemma, based on the Cadavid’s signature inequality (2.2), we reach a lower bound
for n .

Lemma 4.1 Let (X, f) be a genus-g Lefschetz fibration over S2 . Then n ≥ 4g − 2b1(X) + b+2 (X) − 1 . In
particular, for a simply connected X , n ≥ 4g .

Proof For a 4 -manifold X that admits a genus-g Lefschetz fibration on S2 , we have the following inequality:

e(X) + σ(X) ≤
(
4− 4g + n+ s

)
+
(
n− s− 2(2g − b1(X))

)
= 4− 8g + 2n+ 2b1(X).

On the other hand, e(X) + σ(X) can be written as

e(X) + σ(X) =
(
2− 2b1(X) + b+2 (X) + b−2 (X)

)
+

(
b+2 (X)− b−2 (X)

)
= 2− 2b1(X) + 2b+2 (X).

Hence, we obtain the required inequality

n ≥ 4g − 2b1(X) + b+2 (X)− 1.

Moreover, since X is a symplectic 4 -manifold, it satisfies b+2 (X) > 0 . Then we get

n ≥ 4g − 2b1(X).

In particular, for a simply connected 4 -manifold, one can conclude that n ≥ 4g . 2
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Remark 4.2 One can observe that any genus-g ≥ 2 hyperelliptic Lefschetz fibration on a simply connected
4-manifold X must satisfy n+ s > 4g . Otherwise, such a fibration admits n+ s = 4g singular fibers (in this
case s = 0 by Lemma 4.1), then (n, s) = (4g, 0) does not satisfy the equation in Lemma 2.4, which leads to a
contradiction. Hence, we conclude that Mg ≥ 4g + 1 .

Remark 4.3 If there exists a genus-g ≥ 2 Lefschetz fibration on a simply connected 4-manifold X with n = 4g ,
then it follows from the proof of Lemma 4.1 that χh(X) = 1 . Therefore, X satisfies (b+2 (X), b−2 (X)) = (1, 1+s)

and (e(X), σ(X)) = (4 + s,−s) . Now if σ(X) = −s ̸≡ 0 (mod 16) , then X is spin by Rokhlin’s theorem, and
in turn, homeomorphic to CP 2#(1 + s)CP 2 by Freedman. Also, if 0 < s ≤ 8 , then the 4-manifold X is an
exotic copy of CP 2#(1 + s)CP 2 by [5, Lemma 2 ].

It has been known that the minimal number of singular fibers in all torus Lefschetz fibrations is 12 . One
can conclude that N1 = M1 = 12 by the existence of torus Lefschetz fibrations with 12 singular fibers on the
elliptic surface E(1) = CP 2#9CP 2 . Baykur and Korkmaz [6] constructed a genus-2 Lefschetz fibration of type
of (8, 6) , so that its total space is an exotic copy of CP 2#7CP 2 . By [6, Theorem 2 ] one can conclude that
it is the smallest simply connected 4 -manifold which admits a genus-2 Lefschetz fibration. Thus, it follows
immediately that M2 = N2 = 14 . In Proposition 4.4 (a) , we obtain the same result by using slightly different
arguments than those used in the proof of [6, Theorem 2 ].

In the case g = 3 , Baykur constructed a genus-3 hyperelliptic Lefschetz fibration on a 4 -manifold which
is an exotic CP 2#7CP 2 with (n, s) = (12, 6) [5]. Therefore, using also Lemma 4.1 and Remark 4.2, we get
12 ≤ N3 ≤ 18 and 13 ≤M3 ≤ 18 . In Proposition 4.4 (b) , we find the exact value of M3 .

For g = 4 , we have constructed the nonhyperelliptic Lefschetz fibration (X1, f1) of genus-4 with 23

singular fibers whose total space is an exotic copy of CP 2#8CP 2 (see Theorem 3.2). We thus get 16 ≤ N4 ≤
23 . Similarly, the genus-4 hyperelliptic Lefschetz fibration (X2, f2) with 24 singular fibers whose the total
space is an exotic CP 2#9CP 2 (see Theorem 3.3) gives an upper bound for the number M4 . Therefore, using
the lower bound mentioned in Remark 4.2, we get 17 ≤ M4 ≤ 24 . The following proposition gives a better
lower bound for the number M4 .

Proposition 4.4 For the numbers M2 , M3 , and M4 the following holds.

(a) N2 =M2 = 14 ,

(b) M3 = 18 ,

(c) 21 ≤M4 ≤ 24 .

Proof We first prove part (a) . Suppose that there exists a genus-2 Lefschetz fibration on a simply connected
4 -manifold X with n + s < 14 . Note that the Lefschetz fibration may have only type-1 separating vanishing
cycles, s = s1 . By lemmata 2.2 and 2.4 together with the inequality (2.2), we get:

e(X) = n+ s− 4, σ(X) = −1

5
(3n+ s) ≤ n− s− 8 and n+ 2s ≡ 0 (mod 10).
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We have also n ≥ 8 by Lemma 4.1. Thus, the possible values of (n, s) are (8, 1) and (10, 0) . On the other
hand, by the proof of Lemma 4.1, the 4 -manifold X must satisfy χh(X) ≥ 1 . However, both values (8, 1) and
(10, 0) of (n, s) have χh(X) = 0 , which leads to a contradiction. Hence, we conclude that N2 =M2 = 14 .

For the proof of (b) , suppose that there exists a genus-3 hyperelliptic Lefschetz fibration on a simply-
connected 4 -manifold X with n + s < 18 . The 4 -manifold X may admit only separating vanishing cycles of
type-1 , so s = s1 . It follows from Lemmata 2.4 and 2.2 and the inequality (2.2) that we have:

e(X) = n+ s− 8, σ(X) =
1

7
(4n− s) ≤ n− s− 12 and n+ 12s ≡ 0 (mod 28).

Also, Lemma 2.4 implies that n ≥ 12 . Thus, we have only one possible value (16, 1) of (n, s) . On the other
hand, by the proof of Lemma 4.1, the 4 -manifold X must have χh(X) ≥ 1 . However, the pair (16, 1) satisfies
χh(X) = 0 , which gives a contradiction. Hence, M3 = 18 .

The proof of (c) follows slightly along the same lines. Suppose that there exists a genus-4 hyperelliptic
Lefschetz fibration on a simply connected 4 -manifold Y with n+ s < 24 , where s = s1 + s2 . By Lemmata 2.4
and 2.2, we have the following:

e(Y ) = n+ s1 + s2 − 12, σ(Y ) =
1

9
(−5n+ 3s1 + 7s2) and n+ 12s1 + 4s2 ≡ 0 (mod 18).

It follows from Lemma 2.4 that n ≥ 16 . From these, we obtain the possible six values (16, 1, 2) , (16, 0, 5) ,
(16, 4, 2) , (18, 3, 0) , (18, 2, 3) and (20, 1, 1) of (n, s1, s2) . The decompositions (16, 1, 2) , (18, 3, 0) , and (20, 1, 1)

satisfy χh(Y ) = 0 , a contradiction. By considering the possible values (16, 0, 5) , (16, 4, 2) , and (18, 2, 3) of
(n, s1, s2) , it can be concluded that 21 ≤M4 ≤ 24 . 2

As we have already proved above, M2 = 14 and M3 = 18 . Moreover, the total spaces of corresponding
hyperelliptic Lefschetz fibrations are exotic copies of the rational surface CP 2#7CP 2 . Since we know that
CP 2#7CP 2 does not admit a genus-g Lefschetz fibration for g ≥ 2 [5, Lemma 2 ], the following question
appears naturally:

question 4.5 Does there exist a genus-g Lefschetz fibration whose total space is an exotic copy of CP 2#7CP 2

for g ≥ 4?

If there exists such a fibration, then it admits 4g + 6 singular fibers with (n, s) = (4g, 6) , which implies
that 4g ≤ Ng ≤ 4g+6 . Moreover, if it is also hyperelliptic, one can conclude that 4g+1 ≤Mg ≤ 4g+6 . Since
Mg = 4g + 6 holds for g = 2 and 3 , it is also natural to ask the following question:

question 4.6 Is it true that Mg = 4g + 6 for g ≥ 4?
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Appendix
In this appendix, we give a proof of Lemma 3.1 using Alexander’s method.

Proof of Lemma 3.1.
Since the collection of simple closed curves and simple proper arcs {γi} fills the genus-2 surface Σ2

2 as shown
in Figure 3, we will prove the relation (3.1) by showing that the oriented three curves γ2 , γ3 , γ4 and the two
arcs γ1 and γ5 are fixed (up to isotopy) under the map

t−1
δ2
t−1
δ1
te′tx′

1
tx′

2
tx′

3
td′tB2

tC .

Indeed, Figures 8 and 9 show that the collection {γi} are fixed and also their given orientations are preserved
under this map. This finishes the proof.

Figure 8. t−1
δ2

t−1
δ1

te′tx′
1
tx′

2
tx′

3
td′tB2tC(γi) = γi , for i = 1, 2 .
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Figure 9. t−1
δ2

t−1
δ1

te′tx′
1
tx′

2
tx′

3
td′tB2tC(γi) = γi , for i = 3, 4, 5 .
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