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Abstract: A generalization of Liiroth’s theorem expresses that every transcendence degree 1 subfield of the rational
function field is a simple extension. In this note we show that a classical proof of this theorem also holds to prove this

generalization.
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1. Introduction

Liiroth’s theorem ([2]) plays an important role in the theory of rational curves. A generalization of this theorem
to transcendence degree 1 subfields of rational functions field was proven by Igusa in [1]. A purely field t
heoretic proof of this generalization was given by Samuel in [6]. In this note we give a simple and constructive
proof of this result, based on a classical proof ([7]).

Let k be a field and k(z) be the rational functions field in n variables z1,...,z,. Let K be a field extension of k
that is a subfield of k(x). To the subfield K we associate the prime ideal A(K) which consists of all polynomials
of Kly1,...,yn] that vanish for y; = z1,...,y, = x,. When the subfield £ has transcendence degree 1 over
k, the associated ideal is principal. The idea of our proof relies on a simple relation between coefficients of a
generator of the associated ideal A(K) and a generator of the subfield . When K is finitely generated, we
can compute a rational fraction v in k(z) such that I = k(v). For this, we use some methods developed by

the first author in [3, 4] to get a generator of A(K) by computing a Grobner basis or a characteristic set.

2. Main result

Let k£ be a field and x1,...,Zn,¥1,---,Yn be 2n indeterminates over k. We use the notations z for x1,...,x,
and y for y1,...,yn. If K is a field extension of k in k(z) we define the ideal A(K) to be the prime ideal of

all polynomials in K[y] that vanish for y; = x1,...,yn = z,.

AK)={PeKly] : P(zy,...,z,) =0}
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Lemma 2.1 Let K be a field extension of k in k(x) with transcendence degree 1 over k. Then the ideal A(K)
is principal in Kly].
If K1 = Ko and AK;) = Ki[y] G, for i= 1, 2, then K1 = Kq

Proof In the unique factorization domain K[y| the prime ideal A(K) has codimension 1. Hence, it is principal.
Assume that Ky # Kg. There exists a reduced fraction P/, with P/, € K2\K1. The set {1, P/, } may be

completed to form a basis e = {e1 = 1,ea = P/, ...,es} of Ky as a Ky-vector space Then, Ge is a basis of
A(K2) = Ko A(Ky) as a Kq[y]-module So p(y)-P/q q(y) € Ko is equal to p(y)er — g(y)e2 which implies that
G divides p and ¢, a contradiction. O

Theorem 2.2 Let K be a field extension of k in k(x) with transcendence degree 1 over k. Then, there exists
v in k(z) such that K = k(v).

Proof By the last lemma the prime ideal A(K) of K[y] is principal. Let G be a monic polynomial such
that A(K) = (G) in K[y]. We arrange G with respect to a term order on y and we multiply by a suitable

element A € k[x] so that F = AG is primitive in k[z][y]. Let Ag(z),...,A.(x) be the coefficients of F as a
A;(x)

polynomial in k[z][y] then all the ratios F 7 lein K. Since zy,...,2, aree transcendentals over k there
must be a ratio v = ‘Zif((j)) that lies in IC\k. Write v = % where f and g are relatively prime in kx]

and let D = f(y)g(z) — f(z)g(y). The polynomial f(y) — vg(y) lies in A(K), so G divides f(y) — vg(y) in
Kly]. Therefore F' divides D in k(z)[y]. But F' is primitive in k[z][y], so that F' divides D in k[z][y]. Since
deg,,(D) < deg,,(F) and deg, (D) < deg, (F') for i = 1,...,n there must be c € k such that D = cF". We
have now A(K) = A(k(v)). Hence K = k(v). O
The following result, given by the first author in [3] and [4, th. 1], permits to compute a basis for the ideal
A(K).

Proposition 2.3 Let K = k(f1,..., fr) where the f; = gf are elements of k(x). Let u be a new indeterminate

and consider the ideal

J = (Pl(y) — [1Q1(y),- -, Pr(y) — [rQr(y), u (HQi(y) - 1))

in Kly,u]. Then

AK) =T nKly|.

3. Conclusion

A generalization of Liiroth’s theorem to differential algebra has been proven by J. Ritt in [5]. One can use the
theory of characteristic sets to compute a generator of a finitely generated differential subfield of the differential
field F(y) where F is an ordinary differential field and y is a differential indeterminate. In a forthcoming work

we will show that Liiroth’s theorem can be generalized to one differential transcendence degree subfields of the
differential field F(y1,...,yn)-
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