

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

A simple and constructive proof to a generalization of Lüroth's theorem

François OLLIVIER¹ , Brahim SADIK^{2,*}

¹LIX, École polytechnique, Palaiseau CEDEX

²Department of Mathematics, Faculty of Sciences Semlalia, Avenue My Abdellah, Marrakech, Morocco

Received: 09.10.2021 •	•	Accepted/Published Online: 09.03.2022	•	Final Version: 05.05.2022
------------------------	---	---------------------------------------	---	----------------------------------

Abstract: A generalization of Lüroth's theorem expresses that every transcendence degree 1 subfield of the rational function field is a simple extension. In this note we show that a classical proof of this theorem also holds to prove this generalization.

Key words: Lüroth's theorem, one transcendence degree, simple extension

1. Introduction

Lüroth's theorem ([2]) plays an important role in the theory of rational curves. A generalization of this theorem to transcendence degree 1 subfields of rational functions field was proven by Igusa in [1]. A purely field t heoretic proof of this generalization was given by Samuel in [6]. In this note we give a simple and constructive proof of this result, based on a classical proof ([7]).

Let k be a field and k(x) be the rational functions field in n variables x_1, \ldots, x_n . Let \mathcal{K} be a field extension of k that is a subfield of k(x). To the subfield \mathcal{K} we associate the prime ideal $\Delta(\mathcal{K})$ which consists of all polynomials of $\mathcal{K}[y_1, \ldots, y_n]$ that vanish for $y_1 = x_1, \ldots, y_n = x_n$. When the subfield \mathcal{K} has transcendence degree 1 over k, the associated ideal is principal. The idea of our proof relies on a simple relation between coefficients of a generator of the associated ideal $\Delta(\mathcal{K})$ and a generator of the subfield \mathcal{K} . When \mathcal{K} is finitely generated, we can compute a rational fraction v in k(x) such that $\mathcal{K} = k(v)$. For this, we use some methods developed by the first author in [3, 4] to get a generator of $\Delta(\mathcal{K})$ by computing a Gröbner basis or a characteristic set.

2. Main result

Let k be a field and $x_1, \ldots, x_n, y_1, \ldots, y_n$ be 2n indeterminates over k. We use the notations x for x_1, \ldots, x_n and y for y_1, \ldots, y_n . If \mathcal{K} is a field extension of k in k(x) we define the ideal $\Delta(\mathcal{K})$ to be the prime ideal of all polynomials in $\mathcal{K}[y]$ that vanish for $y_1 = x_1, \ldots, y_n = x_n$.

$$\Delta(\mathcal{K}) = \{ P \in \mathcal{K}[y] : P(x_1, \dots, x_n) = 0 \}.$$

²⁰¹⁰ AMS Mathematics Subject Classification: 12F20, 12Y05

^{*}Correspondence: sadik@uca.ac.ma

Lemma 2.1 Let \mathcal{K} be a field extension of k in k(x) with transcendence degree 1 over k. Then the ideal $\Delta(\mathcal{K})$ is principal in $\mathcal{K}[y]$.

If $\mathcal{K}_1 = \mathcal{K}_2$ and $\Delta(\mathcal{K}_i) = \mathcal{K}_i[y]$ G, for i = 1, 2, then $\mathcal{K}_1 = \mathcal{K}_2$

Proof In the unique factorization domain $\mathcal{K}[y]$ the prime ideal $\Delta(\mathcal{K})$ has codimension 1. Hence, it is principal. Assume that $\mathcal{K}_1 \neq \mathcal{K}_2$. There exists a reduced fraction $P/_q$ with $P/_q \in \mathcal{K}_2 \setminus \mathcal{K}_1$. The set $\{1, P/_q\}$ may be completed to form a basis $e = \{e_1 = 1, e_2 = P/_q, \ldots, e_s\}$ of \mathcal{K}_2 as a \mathcal{K}_1 -vector space Then, Ge is a basis of $\Delta(\mathcal{K}_2) = \mathcal{K}_2 \Delta(\mathcal{K}_1)$ as a $\mathcal{K}_1[y]$ -module So $p(y) - P/_q q(y) \in \mathcal{K}_2$ is equal to $p(y)e_1 - q(y)e_2$ which implies that G divides p and q, a contradiction.

Theorem 2.2 Let \mathcal{K} be a field extension of k in k(x) with transcendence degree 1 over k. Then, there exists v in k(x) such that $\mathcal{K} = k(v)$.

Proof By the last lemma the prime ideal $\Delta(\mathcal{K})$ of $\mathcal{K}[y]$ is principal. Let G be a monic polynomial such that $\Delta(\mathcal{K}) = (G)$ in $\mathcal{K}[y]$. We arrange G with respect to a term order on y and we multiply by a suitable element $A \in k[x]$ so that F = AG is primitive in k[x][y]. Let $A_0(x), \ldots, A_r(x)$ be the coefficients of F as a polynomial in k[x][y] then all the ratios $\frac{A_i(x)}{A_r(x)}$ lie in \mathcal{K} . Since x_1, \ldots, x_n are \bullet transcendentals over k there must be a ratio $v = \frac{A_{i_0}(x)}{A_r(x)}$ that lies in $\mathcal{K} \setminus k$. Write $v = \frac{f(x)}{g(x)}$ where f and g are relatively prime in k[x] and let D = f(y)g(x) - f(x)g(y). The polynomial f(y) - vg(y) lies in $\Delta(\mathcal{K})$, so G divides f(y) - vg(y) in $\mathcal{K}[y]$. Therefore F divides D in k(x)[y]. But F is primitive in k[x][y], so that F divides D in k[x][y]. Since $\deg_{x_i}(D) \leq \deg_{x_i}(F)$ and $\deg_{y_i}(D) \leq \deg_{y_i}(F)$ for $i = 1, \ldots, n$ there must be $c \in k$ such that D = cF. We have now $\Delta(\mathcal{K}) = \Delta(k(v))$. Hence $\mathcal{K} = k(v)$.

The following result, given by the first author in [3] and [4, th. 1], permits to compute a basis for the ideal $\Delta(\mathcal{K})$.

Proposition 2.3 Let $\mathcal{K} = k(f_1, \ldots, f_r)$ where the $f_i = \frac{P_i}{Q_i}$ are elements of k(x). Let u be a new indeterminate and consider the ideal

$$\mathcal{J} = \left(P_1(y) - f_1 Q_1(y), \dots, P_r(y) - f_r Q_r(y), u\left(\prod_{i=1}^r Q_i(y) - 1\right) \right)$$

in $\mathcal{K}[y, u]$. Then

$$\Delta(\mathcal{K}) = \mathcal{J} \cap \mathcal{K}[y].$$

3. Conclusion

A generalization of Lüroth's theorem to differential algebra has been proven by J. Ritt in [5]. One can use the theory of characteristic sets to compute a generator of a finitely generated differential subfield of the differential field $\mathcal{F}\langle y \rangle$ where \mathcal{F} is an ordinary differential field and y is a differential indeterminate. In a forthcoming work we will show that Lüroth's theorem can be generalized to one differential transcendence degree subfields of the differential field $\mathcal{F}\langle y_1, \ldots, y_n \rangle$.

OLLIVIER and SADIK/Turk J Math

References

- [1] Igusa J. On a theorem of Lüroth. Memoirs of the College of Science, University of Kioto 1951; (26): 251-253.
- [2] Lüroth J. Beweis eines Satzes über rationale Curven. Mathematische Annalen 1876; (9): 163-165 (in German).
- [3] Ollivier F. Le problème d'identifiabilité structurelle globale : approche théorique, méthodes effectives et bornes de complexité. Thèse de doctorat en science, École polytechnique, 1991 (in French).
- [4] Ollivier F. Standard bases of differential ideals. Lecture Notes in Computer Science 1990; 508: 304-321.
- [5] Ritt JF. Differential Algebra. American Mathematical Society. USA: New York, 1950.
- [6] Samuel P. Some Remarks on Lüroth's Theorem. Memoirs of the College of Science, University of Kioto 1953; (27): 223-224.
- [7] Van Der Waerden BL. Modern Algebra. Volueme I, Frederic Ungar Publishing Company, 1931.