A simple and constructive proof to a generalization of Lüroth's theorem

François OLLIVIER ${ }^{1}$ (®), Brahim SADIK ${ }^{2, *}$ (D)
${ }^{1}$ LIX, École polytechnique, Palaiseau CEDEX
${ }^{2}$ Department of Mathematics, Faculty of Sciences Semlalia, Avenue My Abdellah, Marrakech, Morocco

Received: 09.10.2021 • Accepted/Published Online: 09.03.2022 \quad Final Version: 05.05.2022

Abstract

A generalization of Lüroth's theorem expresses that every transcendence degree 1 subfield of the rational function field is a simple extension. In this note we show that a classical proof of this theorem also holds to prove this generalization.

Key words: Lüroth's theorem, one transcendence degree, simple extension

1. Introduction

Lüroth's theorem ([2]) plays an important role in the theory of rational curves. A generalization of this theorem to transcendence degree 1 subfields of rational functions field was proven by Igusa in [1]. A purely field t heoretic proof of this generalization was given by Samuel in [6]. In this note we give a simple and constructive proof of this result, based on a classical proof ([7]).
Let k be a field and $k(x)$ be the rational functions field in n variables x_{1}, \ldots, x_{n}. Let \mathcal{K} be a field extension of k that is a subfield of $k(x)$. To the subfield \mathcal{K} we associate the prime ideal $\Delta(\mathcal{K})$ which consists of all polynomials of $\mathcal{K}\left[y_{1}, \ldots, y_{n}\right]$ that vanish for $y_{1}=x_{1}, \ldots, y_{n}=x_{n}$. When the subfield \mathcal{K} has transcendence degree 1 over k, the associated ideal is principal. The idea of our proof relies on a simple relation between coefficients of a generator of the associated ideal $\Delta(\mathcal{K})$ and a generator of the subfield \mathcal{K}. When \mathcal{K} is finitely generated, we can compute a rational fraction v in $k(x)$ such that $\mathcal{K}=k(v)$. For this, we use some methods developed by the first author in $[3,4]$ to get a generator of $\Delta(\mathcal{K})$ by computing a Gröbner basis or a characteristic set.

2. Main result

Let k be a field and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ be $2 n$ indeterminates over k. We use the notations x for x_{1}, \ldots, x_{n} and y for y_{1}, \ldots, y_{n}. If \mathcal{K} is a field extension of k in $k(x)$ we define the ideal $\Delta(\mathcal{K})$ to be the prime ideal of all polynomials in $\mathcal{K}[y]$ that vanish for $y_{1}=x_{1}, \ldots, y_{n}=x_{n}$.

$$
\Delta(\mathcal{K})=\left\{P \in \mathcal{K}[y] \quad: \quad P\left(x_{1}, \ldots, x_{n}\right)=0\right\}
$$

[^0]Lemma 2.1 Let \mathcal{K} be a field extension of k in $k(x)$ with transcendence degree 1 over k. Then the ideal $\Delta(\mathcal{K})$ is principal in $\mathcal{K}[y]$.
If $\mathcal{K}_{1}=\mathcal{K}_{2}$ and $\Delta\left(\mathcal{K}_{i}\right)=\mathcal{K}_{i}[y] G$, for $i=1$, 2, then $\mathcal{K}_{1}=\mathcal{K}_{2}$
Proof In the unique factorization domain $\mathcal{K}[y]$ the prime ideal $\Delta(\mathcal{K})$ has codimension 1. Hence, it is principal. Assume that $\mathcal{K}_{1} \neq \mathcal{K}_{2}$. There exists a reduced fraction $P /{ }_{q}$ with $P /{ }_{q} \in \mathcal{K}_{2} \backslash \mathcal{K}_{1}$. The set $\{1, P / q\}$ may be completed to form a basis $e=\left\{e_{1}=1, e_{2}=P / q, \ldots, e_{s}\right\}$ of \mathcal{K}_{2} as a \mathcal{K}_{1}-vector space Then, $G e$ is a basis of $\Delta\left(\mathcal{K}_{2}\right)=\mathcal{K}_{2} \Delta\left(\mathcal{K}_{1}\right)$ as a $\mathcal{K}_{1}[y]$-module So $p(y)-P / q q(y) \in \mathcal{K}_{2}$ is equal to $p(y) e_{1}-q(y) e_{2}$ which implies that G divides p and q, a contradiction.

Theorem 2.2 Let \mathcal{K} be a field extension of k in $k(x)$ with transcendence degree 1 over k. Then, there exists v in $k(x)$ such that $\mathcal{K}=k(v)$.

Proof By the last lemma the prime ideal $\Delta(\mathcal{K})$ of $\mathcal{K}[y]$ is principal. Let G be a monic polynomial such that $\Delta(\mathcal{K})=(G)$ in $\mathcal{K}[y]$. We arrange G with respect to a term order on y and we multiply by a suitable element $A \in k[x]$ so that $F=A G$ is primitive in $k[x][y]$. Let $A_{0}(x), \ldots, A_{r}(x)$ be the coefficients of F as a polynomial in $k[x][y]$ then all the ratios $\frac{A_{i}(x)}{A_{r}(x)}$ lie in \mathcal{K}. Since x_{1}, \ldots, x_{n} are \bullet transcendentals over k there must be a ratio $v=\frac{A_{i_{0}}(x)}{A_{r}(x)}$ that lies in $\mathcal{K} \backslash k$. Write $v=\frac{f(x)}{g(x)}$ where f and g are relatively prime in $k[x]$ and let $D=f(y) g(x)-f(x) g(y)$. The polynomial $f(y)-v g(y)$ lies in $\Delta(\mathcal{K})$, so G divides $f(y)-v g(y)$ in $\mathcal{K}[y]$. Therefore F divides D in $k(x)[y]$. But F is primitive in $k[x][y]$, so that F divides D in $k[x][y]$. Since $\operatorname{deg}_{x_{i}}(D) \leq \operatorname{deg}_{x_{i}}(F)$ and $\operatorname{deg}_{y_{i}}(D) \leq \operatorname{deg}_{y_{i}}(F)$ for $i=1, \ldots, n$ there must be $c \in k$ such that $D=c F$. We have now $\Delta(\mathcal{K})=\Delta(k(v))$. Hence $\mathcal{K}=k(v)$.

The following result, given by the first author in [3] and [4, th. 1], permits to compute a basis for the ideal $\Delta(\mathcal{K})$.

Proposition 2.3 Let $\mathcal{K}=k\left(f_{1}, \ldots, f_{r}\right)$ where the $f_{i}=\frac{P_{i}}{Q_{i}}$ are elements of $k(x)$. Let u be a new indeterminate and consider the ideal

$$
\mathcal{J}=\left(P_{1}(y)-f_{1} Q_{1}(y), \ldots, P_{r}(y)-f_{r} Q_{r}(y), u\left(\prod_{i=1}^{r} Q_{i}(y)-1\right)\right)
$$

in $\mathcal{K}[y, u]$. Then

$$
\Delta(\mathcal{K})=\mathcal{J} \cap \mathcal{K}[y]
$$

3. Conclusion

A generalization of Lüroth's theorem to differential algebra has been proven by J. Ritt in [5]. One can use the theory of characteristic sets to compute a generator of a finitely generated differential subfield of the differential field $\mathcal{F}\langle y\rangle$ where \mathcal{F} is an ordinary differential field and y is a differential indeterminate. In a forthcoming work we will show that Lüroth's theorem can be generalized to one differential transcendence degree subfields of the differential field $\mathcal{F}\left\langle y_{1}, \ldots, y_{n}\right\rangle$.

OLLIVIER and SADIK/Turk J Math

References

[1] Igusa J. On a theorem of Lüroth. Memoirs of the College of Science, University of Kioto 1951; (26): 251-253.
[2] Lüroth J. Beweis eines Satzes über rationale Curven. Mathematische Annalen 1876; (9): 163-165 (in German).
[3] Ollivier F. Le problème d'identifiabilité structurelle globale : approche théorique, méthodes effectives et bornes de complexité. Thèse de doctorat en science, École polytechnique, 1991 (in French).
[4] Ollivier F. Standard bases of differential ideals. Lecture Notes in Computer Science 1990; 508: 304-321.
[5] Ritt JF. Differential Algebra. American Mathematical Society. USA: New York, 1950.
[6] Samuel P. Some Remarks on Lüroth's Theorem. Memoirs of the College of Science, University of Kioto 1953; (27): 223-224.
[7] Van Der Waerden BL. Modern Algebra. Volueme I, Frederic Ungar Publishing Company, 1931.

[^0]: *Correspondence: sadik@uca.ac.ma
 2010 AMS Mathematics Subject Classification: 12F20, 12Y05

