Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: 1294 - 1301
© TÜBİTAK
doi:10.3906/mat-2111-95

Gradient estimates of a nonlinear elliptic equation for the V-Laplacian on noncompact Riemannian manifolds

Yihua DENG* ${ }^{\text {(}}$
College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan, China

Received: 24.11.2021 • Accepted/Published Online: 09.03.2022 • Final Version: 05.05 .2022

Abstract

In this paper, we consider gradient estimates for positive solutions to the following equation $$
\triangle_{V} u+a u^{p} \log u=0
$$ on complete noncompact Riemannian manifold with k-dimensional Bakry-Émery Ricci curvature bounded from below. Using the Bochner formula and the Cauchy inequality, we obtain upper bounds of $|\nabla u|$ with respect to the lower bound of the Bakry-Émery Ricci curvature.

Key words: Gradient estimates, V-Laplacian, Riemannian manifolds, Bakry-Émery Ricci curvature

1. Introduction

It is an interesting problem to consider gradient estimates for equations on Riemannian manifolds. Li and Yau [8] derived some parabolic gradient estimates for positive solutions to the following equation

$$
\begin{equation*}
u_{t}=\triangle u \tag{1.1}
\end{equation*}
$$

on Riemannian manifold with Ricci curvature bounded from below. Hamilton [5] obtained some elliptic type gradient estimates for positive solutions to (1.1). Nowadays, gradient estimate of Li-Yau type or of Hamilton type was extended to other equations on Riemannian manifolds with various curvature conditions. Ma [9] got some gradient estimates for positive solutions to the following equation

$$
\begin{equation*}
\Delta u+a u \log u=0 \tag{1.2}
\end{equation*}
$$

on complete noncompact Riemannian manifold with Ricci curvature bounded below. Dung [3] got a sharp gradient estimates for the following equation

$$
\begin{equation*}
u_{t}=\Delta u+a u \log u . \tag{1.3}
\end{equation*}
$$

Yang [12], Guo-Ishida [4], and Chen [2] discussed gradient estimates for positive solutions to the following equation

$$
\begin{equation*}
u_{t}=\triangle u+a u \log u+b u . \tag{1.4}
\end{equation*}
$$

[^0]Wang [10] studied gradient estimates for the following equation

$$
\begin{equation*}
u_{t}(x, t)=\triangle u(x, t)+a u(x, t) \log u(x, t)+b(x, t) u(x, t) . \tag{1.5}
\end{equation*}
$$

Huang-Ma [7] and Wu [11] studied gradient estimates for the following equation

$$
\begin{equation*}
u_{t}=\triangle_{f} u+a u \log u+b u \tag{1.6}
\end{equation*}
$$

on complete noncompact Riemannian manifold with k-dimensional Bakry-Émery Ricci curvature bounded from below. Chen and Qiu [1] obtained some gradient estimates for positive solutions to the following equation

$$
\begin{equation*}
u_{t}=\triangle_{V} u+a u \log u \tag{1.7}
\end{equation*}
$$

Zhao [13] discussed gradient estimates for positive solutions to the following equation

$$
\begin{equation*}
\triangle_{V}\left(u^{p}\right)+b u=0 \tag{1.8}
\end{equation*}
$$

Huang and Li [6] studied gradient estimates for positive solutions to the following equation

$$
\begin{equation*}
\triangle_{V} u+a u \log u=0 \tag{1.9}
\end{equation*}
$$

Motivated by $[6,9,11,13]$, we study gradient estimates for positive solutions to the following equation

$$
\begin{equation*}
\triangle_{V} u+a u^{p} \log u=0 \tag{1.10}
\end{equation*}
$$

on complete noncompact Riemannian manifold with k-dimensional Bakry-Émery Ricci curvature bounded from below.

2. Preliminaries and notations

Let $\left(M^{n}, g\right)$ be a complete n-dimensional Riemannian manifold. The V-Laplacian \triangle_{V} is defined by

$$
\triangle_{V}=\triangle+\langle V, \nabla \cdot\rangle,
$$

where V is a smooth vector field on $\left(M^{n}, g\right), \triangle$ is the Laplacian operator, ∇ is the gradient operator. If $V=\nabla f$, then \triangle_{V} is called the f-Laplacian. Therefore the V-Laplacian \triangle_{V} could be viewed as a generalization of the f-Laplacian \triangle_{f}. For $k \geq n$, we can define the Bakry-Émery Ricci curvature as follows:

$$
\begin{gather*}
\operatorname{Ric}_{V}=\operatorname{Ric}-\frac{1}{2} \mathfrak{L}_{V} g \\
\operatorname{Ric}_{V}^{k}=\operatorname{Ric}_{V}-\frac{1}{k-n} V^{*} \otimes V^{*} \tag{2.1}
\end{gather*}
$$

where Ric is the Ricci curvature of $\left(M^{n}, g\right), \mathfrak{L}$ denotes the Lie derivative and V^{*} is the dual 1-form of V. Throughout this paper, we denote by $B_{q}(R)$ the geodesic ball centered at q with radius R and use the convention that $k=n$ if and only if $V \equiv 0$. Usually, $\operatorname{Ric}_{V}^{k}$ is called the k-dimensional Bakry-Émery Ricci curvature and Ric_{V} can seen the ∞-dimensional Bakry- mery Ricci curvature. For Ric ${ }_{V}^{k}$, there is an important formula which can be read as

$$
\begin{equation*}
\frac{1}{2} \triangle_{V}|\nabla u|^{2}=|\operatorname{Hess} u|^{2}+\left\langle\nabla u, \nabla \triangle_{V} u\right\rangle+\operatorname{Ric}_{V}(\nabla u, \nabla u) \tag{2.2}
\end{equation*}
$$

where Hess u is the Hessian of u. Formula (2.1) is usually called the Bochner formula for $\operatorname{Ric}_{V}^{k}$.

YDENG/Turk J Math

3. Main results and their proof

Theorem 3.1 Let $\left(M^{n}, g\right)$ be an n-dimensional complete Riemannian manifold with $\operatorname{Ric}_{V}^{k}\left(B_{q}(2 R)\right) \geq-A$, where $A \geq 0$ is a constant. Suppose that u is a positive solution to (1.10) on $B_{q}(2 R), p \neq \frac{k+2}{k}, \epsilon=1-\frac{k p}{k+2}$ and $h=u^{\varepsilon}$. Then on $B_{q}(2 R)$, the following inequality holds:

$$
\begin{align*}
\frac{1}{2} \triangle_{V}|\nabla h|^{2} \geq & \frac{k p}{k p-k-2}\left(\frac{p}{k p-k-2}-1\right) \frac{|\nabla h|^{4}}{h^{2}}+\frac{k p}{k p-k-2} \frac{\left.\left.\langle\nabla h, \nabla| \nabla h\right|^{2}\right\rangle}{h} \\
& -a h^{\frac{(p-1)(2+k)}{2+k-k p}}|\nabla h|^{2}-A|\nabla h|^{2} \tag{3.1}
\end{align*}
$$

Proof Direct calculation shows that

$$
\begin{equation*}
\triangle_{V} h=\frac{\varepsilon-1}{\varepsilon} \frac{|\nabla h|^{2}}{h}+\varepsilon u^{\varepsilon-1} \triangle_{V} u=\frac{\varepsilon-1}{\varepsilon} \frac{|\nabla h|^{2}}{h}-a h^{\frac{\varepsilon+p-1}{\varepsilon}} \log h \tag{3.2}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left\langle\nabla h, \nabla \triangle_{V} h\right\rangle & =\frac{\varepsilon-1}{\varepsilon}\left\langle\nabla h, \nabla \frac{|\nabla h|^{2}}{h}\right\rangle-a\left\langle\nabla h, \nabla\left(h^{\frac{\varepsilon+p-1}{\varepsilon}} \log h\right)\right\rangle \\
& \left.=\left.\frac{\varepsilon-1}{\varepsilon h}\langle\nabla h, \nabla| \nabla h\right|^{2}\right\rangle-\frac{\varepsilon-1}{\varepsilon} \frac{|\nabla h|^{4}}{h^{2}}-\frac{a(\varepsilon+p-1)}{\varepsilon} h^{\frac{p-1}{\varepsilon}}|\nabla h|^{2} \log h-a h^{\frac{p-1}{\varepsilon}}|\nabla h|^{2} \tag{3.3}
\end{align*}
$$

By (2.1), (2.2), (3.2) and (3.3), we have

$$
\begin{align*}
\frac{1}{2} \triangle_{V}|\nabla h|^{2} \geq & \frac{1}{k}\left(\triangle_{V} h\right)^{2}+\left\langle\nabla h, \nabla \triangle_{V} h\right\rangle+\operatorname{Ric}_{V}^{k}(\nabla h, \nabla h) \\
= & \left.\frac{1}{k}\left[\frac{\varepsilon-1}{\varepsilon} \frac{|\nabla h|^{2}}{h}-a h^{\frac{\varepsilon+p-1}{\varepsilon}} \log h\right]^{2}+\left.\frac{\varepsilon-1}{\varepsilon h}\langle\nabla h, \nabla| \nabla h\right|^{2}\right\rangle-\frac{\varepsilon-1}{\varepsilon} \frac{|\nabla h|^{4}}{h^{2}} \\
& -\frac{a(\varepsilon+p-1)}{\varepsilon} h^{\frac{p-1}{\varepsilon}}|\nabla h|^{2} \log h-a h^{\frac{p-1}{\varepsilon}}|\nabla h|^{2}+\operatorname{Ric}_{V}^{k}(\nabla h, \nabla h) \\
= & {\left[\frac{(\varepsilon-1)^{2}}{k \varepsilon^{2}}-\frac{\varepsilon-1}{\varepsilon}\right] \frac{|\nabla h|^{4}}{h^{2}}-\left[\frac{2(\varepsilon-1)}{k \varepsilon}+\frac{\varepsilon+p-1}{\varepsilon}\right] a h^{\frac{p-1}{\varepsilon}}|\nabla h|^{2} \log h } \\
& \left.+\frac{a^{2}}{k}\left(h^{\frac{\varepsilon+p-1}{\varepsilon}} \log h\right)^{2}+\left.\frac{\varepsilon-1}{\varepsilon h}\langle\nabla h, \nabla| \nabla h\right|^{2}\right\rangle-a h^{\frac{p-1}{\varepsilon}}|\nabla h|^{2}+\operatorname{Ric}_{V}^{k}(\nabla h, \nabla h) . \tag{3.4}
\end{align*}
$$

Since $\epsilon=1-\frac{k p}{k+2}$, we have $\frac{\varepsilon-1}{\varepsilon}=\frac{k p}{k p-k-2}$ and

$$
\frac{2(\varepsilon-1)}{k \varepsilon}+\frac{\varepsilon+p-1}{\varepsilon}=0, \quad \frac{(\varepsilon-1)^{2}}{k \varepsilon^{2}}-\frac{\varepsilon-1}{\varepsilon}=\frac{k p}{k p-k-2}\left(\frac{p}{k p-k-2}-1\right)
$$

Therefore, by (3.4) and the condition $\operatorname{Ric}_{V}^{k}\left(B_{q}(2 R)\right) \geq-A$, we conclude that (3.1) is true. The proof of Theorem 3.1 is complete.

YDENG/Turk J Math

Theorem 3.2 Let $\left(M^{n}, g\right)$ be an n-dimensional complete Riemannian manifold with $\operatorname{Ric}_{V}^{k}\left(B_{q}(2 R)\right) \geq-A$, where $A \geq 0$ is a constant. Suppose that u is a positive solution to (1.10) on $B_{q}(2 R), 1 \leq p<\frac{k+2}{k-1}$ and $p \neq \frac{k+2}{k}$, then the following inequalities hold on $B_{q}(R)$:
(1) If $a>0$, then

$$
\begin{equation*}
|\nabla u| \leq M \sqrt{\beta\left(M^{p-1} a+A\right)+\frac{C}{R^{2}}\left(1+\sqrt{(k-1) A} \operatorname{coth}\left(\sqrt{\frac{A}{k-1}} R\right)\right)} \tag{3.5}
\end{equation*}
$$

(2) If $a<0$, then

$$
\begin{equation*}
|\nabla u| \leq M \sqrt{\beta \max \left\{0, m^{p-1} a+A\right\}+\frac{C}{R^{2}}\left(1+\sqrt{(k-1) A} \operatorname{coth}\left(\sqrt{\frac{A}{k-1}} R\right)\right)} \tag{3.6}
\end{equation*}
$$

where $M=\sup _{x \in B_{q}(2 R)} u(x), m=\inf _{x \in B_{q}(2 R)} u(x), \beta=\frac{2(k+2)^{2}}{k p(p+k+2-k p)}$ and C is a constant depending only on k and p.

Proof As in [1] and [6], we define a cut-off function $\psi \in C^{2}[0,+\infty)$ by

$$
\psi(t)= \begin{cases}1, & t \in[0,1] \\ 0, & t \in[2,+\infty)\end{cases}
$$

satisfying $\psi(t) \in[0,1]$, and

$$
\psi^{\prime}(t) \leq 0, \quad \psi^{\prime \prime}(t) \geq-C_{1}, \quad \frac{\left|\psi^{\prime}(t)\right|^{2}}{\psi(t)} \leq C_{1}
$$

Let

$$
\varphi=\psi\left(\frac{r(x)}{R}\right), \quad G=\varphi|\nabla h|^{2}
$$

According to [1] and [6], we have

$$
\begin{equation*}
\frac{|\nabla \varphi|^{2}}{\varphi} \leq \frac{C_{1}}{R^{2}} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
-\triangle_{V} \varphi \leq \frac{\sqrt{C_{1}(k-1) A} \operatorname{coth}\left(\sqrt{\frac{A}{k-1}} R\right)}{R^{2}}+\frac{C_{1}}{R^{2}} \tag{3.8}
\end{equation*}
$$

Assume that G achieves its maximum at the point $x_{0} \in B_{q}(2 R)$ and assume that $G\left(x_{0}\right)>0$ (otherwise the proof is trivial). Then at the point x_{0}, it holds that

$$
\nabla G=0, \quad \triangle_{V} G \leq 0, \quad \nabla|\nabla h|^{2}=-\frac{|\nabla h|^{2}}{\varphi} \nabla \varphi
$$

Direct calculation shows that

$$
\triangle_{V} G=\varphi \triangle_{V}|\nabla h|^{2}+\frac{\triangle_{V} \varphi}{\varphi} G-\frac{2|\nabla \varphi|^{2}}{\varphi^{2}} G
$$

$$
\begin{aligned}
\geq & 2 \varphi\left[\frac{k p}{k p-k-2}\left(\frac{p}{k p-k-2}-1\right) \frac{|\nabla h|^{4}}{h^{2}}+\frac{k p}{k p-k-2} \frac{\left.\left.\langle\nabla h, \nabla| \nabla h\right|^{2}\right\rangle}{h}\right. \\
& \left.-a h^{\frac{(p-1)(2+k)}{2+k-k p}}|\nabla h|^{2}-A|\nabla h|^{2}\right]+\frac{\triangle_{V} \varphi}{\varphi} G-\frac{2|\nabla \varphi|^{2}}{\varphi^{2}} G \\
= & \frac{2 k p}{k p-k-2}\left(\frac{p}{k p-k-2}-1\right) \frac{G^{2}}{h^{2} \varphi}-\frac{2 k p}{k p-k-2} \frac{G}{\varphi} \frac{\langle\nabla h, \nabla \varphi\rangle}{h} \\
& -2 a h^{\frac{(p-1)(2+k)}{2+k-k p}} G-2 A G+\frac{\triangle_{V} \varphi}{\varphi} G-\frac{2|\nabla \varphi|^{2}}{\varphi^{2}} G .
\end{aligned}
$$

Therefore at the point x_{0}, it holds that

$$
\begin{equation*}
\frac{2 k p}{k p-k-2}\left(\frac{p}{k p-k-2}-1\right) \frac{G}{h^{2}} \leq \frac{2 k p}{k p-k-2} \frac{\langle\nabla h, \nabla \varphi\rangle}{h}+2 a h^{\frac{(p-1)(2+k)}{2+k-k p}} \varphi+2 A \varphi-\triangle_{V} \varphi+\frac{2|\nabla \varphi|^{2}}{\varphi} . \tag{3.9}
\end{equation*}
$$

If $1 \leq p<\frac{k+2}{k}$, then $\frac{2 k p}{k p-k-2}<0$. Therefore, by the Cauchy inequality we have

$$
\begin{equation*}
\frac{2 k p}{k p-k-2} \frac{\langle\nabla h, \nabla \varphi\rangle}{h} \leq-\frac{2 k p}{k p-k-2}\left[\frac{k p-k-2}{2(k p-k-2-p)} \frac{|\nabla \varphi|^{2}}{\varphi}+\frac{k p-k-2-p}{2(k p-k-2)} \frac{G}{h^{2}}\right] . \tag{3.10}
\end{equation*}
$$

According to (3.9) and (3.10), we get

$$
\begin{equation*}
\frac{k p}{k p-k-2}\left(\frac{p}{k p-k-2}-1\right) \frac{G}{h^{2}} \leq \frac{-k p}{k p-k-2-p} \frac{|\nabla \varphi|^{2}}{\varphi}+2 a u^{p-1} \varphi+2 A \varphi-\triangle_{V} \varphi+\frac{2|\nabla \varphi|^{2}}{\varphi} \tag{3.11}
\end{equation*}
$$

If $\frac{k+2}{k}<p<\frac{k+2}{k-1}$, then $\frac{p}{k p-k-2}>1, p+k+2-k p>0$ and

$$
\begin{equation*}
\frac{2 k p}{k p-k-2} \frac{\langle\nabla h, \nabla \varphi\rangle}{h} \leq \frac{2 k p}{k p-k-2}\left[\frac{k p-k-2}{2(p+k+2-k p)} \frac{|\nabla \varphi|^{2}}{\varphi}+\frac{p+k+2-k p}{2(k p-k-2)} \frac{G}{h^{2}}\right] \tag{3.12}
\end{equation*}
$$

According to (3.9) and (3.12), we get

$$
\begin{equation*}
\frac{k p}{k p-k-2}\left(\frac{p}{k p-k-2}-1\right) \frac{G}{h^{2}} \leq \frac{k p}{p+k+2-k p} \frac{|\nabla \varphi|^{2}}{\varphi}+2 a u^{p-1} \varphi+2 A \varphi-\triangle_{V} \varphi+\frac{2|\nabla \varphi|^{2}}{\varphi} \tag{3.13}
\end{equation*}
$$

If $a>0$, by $(3.7),(3.8),(3.11)$ and (3.13) we conclude that there exists a constant C depending only on k and p such that

$$
\begin{equation*}
\frac{k p}{k p-k-2}\left(\frac{p}{k p-k-2}-1\right) G(x) \leq h^{2}\left(x_{0}\right)\left[2 M^{p-1} a+2 A+\frac{C}{R^{2}}\left(1+\sqrt{(k-1) A} \operatorname{coth}\left(\sqrt{\frac{A}{k-1}} R\right)\right)\right] \tag{3.14}
\end{equation*}
$$

holds for $x \in B_{p}(2 R)$.
If $x \in B_{p}(R)$, then $\varphi=1$ and $G(x)=|\nabla h|^{2}(x)=\varepsilon^{2} u^{2 \varepsilon-2}(x)|\nabla u|^{2}(x)$. Therefore, by (3.14) we get

$$
\begin{equation*}
|\nabla u|^{2}(x) \leq \frac{(k+2)^{2}}{k p(p+k+2-k p)} u^{2-2 \varepsilon}(x) u^{2 \varepsilon}\left(x_{0}\right) H \leq \frac{(k+2)^{2}}{k p(p+k+2-k p)} M^{2} H \tag{3.15}
\end{equation*}
$$

YDENG/Turk J Math

where

$$
\begin{equation*}
H=2 M^{p-1} a+2 A+\frac{C}{R^{2}}\left(1+\sqrt{(k-1) A} \operatorname{coth}\left(\sqrt{\frac{A}{k-1}} R\right)\right) . \tag{3.16}
\end{equation*}
$$

By (3.15) and (3.16), we conclude that (3.5) is true. On the other hand, if $a<0$ then $2 a m^{p-1} \varphi+2 A \varphi \leq$ $2 \max \left\{0, a m^{p-1}+A\right\}$. Similar to the case of $a>0$, we can get (3.11) and (3.13). Therefore, we conclude that (3.6) is true. The proof of Theorem 3.2 is complete.

Theorem 3.3 Let $\left(M^{n}, g\right)$ be an n-dimensional complete Riemannian manifold with $\operatorname{Ric}_{V}^{k}\left(B_{q}(2 R)\right) \geq-A$, where $A \geq 0$ is a constant. Suppose that u is a positive solution to (1.10) on $B_{q}(2 R)$, then the following inequalities hold on $B_{q}(R)$:
(1) If $a>0,0<p \leq 1$ and $\inf _{x \in B_{q}(2 R)} u(x) \neq 0$, then

$$
\begin{equation*}
|\nabla u| \leq M \sqrt{\beta\left(a m^{p-1}+A\right)+\frac{C}{R^{2}}\left(1+\sqrt{(k-1) A} \operatorname{coth}\left(\sqrt{\frac{A}{k-1}} R\right)\right)} ; \tag{3.17}
\end{equation*}
$$

(2)If $a<0$ and $0<p \leq 1$, then

$$
\begin{equation*}
\left.|\nabla u| \leq M \sqrt{\beta \max \left\{0, a M^{p-1}+A\right\}+\frac{C}{R^{2}}\left(1+\sqrt{(k-1) A} \operatorname{coth}\left(\sqrt{\frac{A}{k-1}} R\right)\right.}\right) \tag{3.18}
\end{equation*}
$$

where $M=\sup _{x \in B_{q}(2 R)} u(x), m=\inf _{x \in B_{q}(2 R)} u(x), \beta=\frac{2(k+2)^{2}}{k p(p+k+2-k p)}$ and C is a constant depending only on k and p.

Proof As in the proof of Theorem 3.2, we can arrive at (3.9). If $0<p \leq 1$, then $\frac{2 k p}{k p-k-2}<0$. Therefore, by the Cauchy inequality we can get (3.11). If $a>0,0<p \leq 1$ and $\inf _{x \in B_{q}(2 R)} u(x) \neq 0$, then

$$
\begin{equation*}
a h^{\frac{(p-1)(2+k)}{2+k-k p}} \varphi=a u^{p-1} \varphi \leq a m^{p-1} \tag{3.19}
\end{equation*}
$$

According to (3.11), (3.19) and the methods in the proof of Theorem 3.2, we conclude that (3.17) is true. If $a<0$ and $0<p \leq 1$, then

$$
\begin{equation*}
a h^{\frac{(p-1)(2+k)}{2+k-k p}} \varphi+A \varphi=a u^{p-1} \varphi+A \varphi \leq \max \left\{0, a M^{p-1}+A\right\} \tag{3.20}
\end{equation*}
$$

By (3.11), (3.20) and the methods in the proof of Theorem 3.2, we conclude that (3.18) is true. The proof of Theorem 3.3 is complete.

Letting $R \rightarrow+\infty$, we obtain the following global estimates on complete noncompact Riemannian manifolds:

Theorem 3.4 Let $\left(M^{n}, g\right)$ be an n-dimensional complete Riemannian manifold with $\operatorname{Ric}_{V}^{k} \geq-A$, where $A \geq 0$ is a constant. Suppose that u is a positive solution to (1.10), $1 \leq p<\frac{k+2}{k-1}$ and $p \neq \frac{k+2}{k}$, then the following inequalities hold
(1) If $a>0$, then

$$
|\nabla u| \leq M \sqrt{\frac{2(k+2)^{2}}{k p(p+k+2-k p)}\left(M^{p-1} a+A\right)}
$$

(2) If $a<0$, then

$$
|\nabla u| \leq M \sqrt{\frac{2(k+2)^{2}}{k p(p+k+2-k p)} \max \left\{0, m^{p-1} a+A\right\}}
$$

where $M=\sup _{x \in M^{n}} u(x), m=\inf _{x \in M^{n}} u(x)$.

Theorem 3.5 Let $\left(M^{n}, g\right)$ be an n-dimensional complete Riemannian manifold with $\operatorname{Ric}_{V}^{k} \geq-A$, where $A \geq 0$ is a constant. Suppose that u is a positive solution to (1.10), then the following inequalities hold
(1) If $a>0,0<p \leq 1$ and $\inf _{x \in M^{n}} u(x) \neq 0$, then

$$
|\nabla u| \leq M \sqrt{\frac{2(k+2)^{2}}{k p(p+k+2-k p)}\left(a m^{p-1}+A\right)}
$$

(2) If $a<0$ and $0<p \leq 1$, then

$$
|\nabla u| \leq M \sqrt{\frac{2(k+2)^{2}}{k p(p+k+2-k p)} \max \left\{0, a M^{p-1}+A\right\}}
$$

where $M=\sup _{x \in M^{n}} u(x), m=\inf _{x \in M^{n}} u(x)$.
In particular, we have

Theorem 3.6 Let $\left(M^{n}, g\right)$ be an n-dimensional complete Riemannian manifold with $\operatorname{Ric}_{V}^{k} \geq-A$, where $A \geq 0$ is a constant. Suppose that u is a bounded nonconstant positive solution to (1.10), $M=\sup _{x \in M^{n}} u(x)$ and $m=\inf _{x \in M^{n}} u(x)$. If $a<0$ and $0<p \leq 1$, then $M^{1-p}>-\frac{a}{A}$. If $a<0,1 \leq p<\frac{k+2}{k-1}$ and $p \neq \frac{k+2}{k}$, then $m^{p-1}<-\frac{A}{a}$.

Acknowledgment

This work is supported by the Special Project of Discipline for Hengyang Normal University (XKZX21002, KYZX21003), Application-oriented Special Disciplines, Double First-Class University Project of Hunan Province (Xiangjiaotong[2018]469), the Science and Technology Innovation Program of Hunan Province (2016TP1020).

References

[1] Chen Q, Qiu H. Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the V-Laplacian. Annals of Global Analysis and Geometry 2016; 50:47-64.
[2] Chen L, Chen W. Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannia nmanifolds, Annals of Global Analysis and Geometry 2009; 35:397-404.
[3] Dung HT, Dung NT. Sharp gradient estimates for a heat equation in Riemannian manifolds. Proceedings of the American Mathematical Society 2019; 147: 5329-5338.
[4] Guo H, Ishida M. Harnack estimates for nonlinear backward heat equations in gemetric flows. Journal of Functional Analysis 2014; 267: 2638-2662.
[5] Hamilton R. A matrix Harnack estimates for the heat equation. Communications in Analysis and Geometry 1993; 1: 113-126.
[6] Huang G, Li Z. Liouville type theorems of nonlinear elliptic equation for the V-Laplacian. Analysis and Mathematical Physics 2018; 8: 123-134.
[7] Huang G, Ma B. Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Archiv der Mathematik 2010; 94: 265-275.
[8] Li P, Yau S. On the parabolic kernel of the Schrodinger operator. Acta Mathematica 1986; 156: 153-201.
[9] Ma L. Gradient estimates for a simple elliptic equation on non-compact Riemannian manifolds. Journal of Functional Analysis 2006; 241: 374-382.
[10] Wang W. Upper bounds of Hessian matrix and gradient estimates of positive solutions to the nonlinear parabolic equation along Ricci flow. Nonlinear Analysis 2022; 214: 1-43.
[11] Wu J. Elliptic gradient estimates for a weighted heat equation and applications. Mathematische Zeitschrift 2015; 280: 451-468.
[12] Yang Y. Gradient estimates for a nonlinear parabolic equation on Riemannian manifold. Proceedings of the American Mathematical Society 2008; 136: 4095-4102.
[13] Zhao G. Gradient estimates of a nonlinear elliptic equation for the V-Laplacian. Archiv der Mathematik 2020; 114: 457-469.

[^0]: *Correspondence: dengchen4032@126.com
 2010 AMS Mathematics Subject Classification: 58J35, 35B45

