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Abstract: In this paper, we consider gradient estimates for positive solutions to the following equation
Avu+auflogu =0

on complete noncompact Riemannian manifold with k-dimensional Bakry- Emery Ricci curvature bounded from below.

Using the Bochner formula and the Cauchy inequality, we obtain upper bounds of |Vu| with respect to the lower bound

of the Bakry-Emery Ricci curvature.
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1. Introduction

It is an interesting problem to consider gradient estimates for equations on Riemannian manifolds. Li and Yau

[8] derived some parabolic gradient estimates for positive solutions to the following equation
u = Au (1.1)

on Riemannian manifold with Ricci curvature bounded from below. Hamilton [5] obtained some elliptic type
gradient estimates for positive solutions to (1.1). Nowadays, gradient estimate of Li-Yau type or of Hamilton
type was extended to other equations on Riemannian manifolds with various curvature conditions. Ma [9] got

some gradient estimates for positive solutions to the following equation
Au+aulogu =0 (1.2)

on complete noncompact Riemannian manifold with Ricci curvature bounded below. Dung [3] got a sharp

gradient estimates for the following equation
uy = Au ~+ aulogu. (1.3)

Yang [12], Guo-Ishida [4], and Chen [2] discussed gradient estimates for positive solutions to the following
equation
uy = Au~+ aulogu + bu. (1.4)
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Wang [10] studied gradient estimates for the following equation
us(x,t) = Au(z,t) + au(x, t) logu(z, t) + b(z, t)u(z, t). (1.5)
Huang-Ma [7] and Wu [11] studied gradient estimates for the following equation
u = Aju+ aulogu + bu (1.6)

on complete noncompact Riemannian manifold with k-dimensional Bakry- Emery Ricci curvature bounded from

below. Chen and Qiu [1] obtained some gradient estimates for positive solutions to the following equation

uy = Ayu+ aulog u. (1.7)
Zhao [13] discussed gradient estimates for positive solutions to the following equation

Ay (uP) + bu = 0. (1.8)

Huang and Li [6] studied gradient estimates for positive solutions to the following equation

Avyu+ aulogu = 0. (1.9)
Motivated by [6, 9, 11, 13], we study gradient estimates for positive solutions to the following equation

Avyu+ auPlogu =0 (1.10)

on complete noncompact Riemannian manifold with k-dimensional Bakry- Emery Ricci curvature bounded from
below.

2. Preliminaries and notations
Let (M™,g) be a complete n-dimensional Riemannian manifold. The V -Laplacian Ay is defined by
Av = A+ (V, V),

where V' is a smooth vector field on (M",g), A is the Laplacian operator, V is the gradient operator. If
V =V f, then Ay iscalled the f-Laplacian. Therefore the V -Laplacian Ay could be viewed as a generalization

of the f-Laplacian Ay. For k > n, we can define the Bakry- Emery Ricci curvature as follows:

1
Ricy = Ric — iﬂvg,

1
Ric}, = Ricy — mv* ®V*, (2.1)

where Ric is the Ricci curvature of (M™,¢g), £ denotes the Lie derivative and V* is the dual 1-form of

V. Throughout this paper, we denote by B,(R) the geodesic ball centered at ¢ with radius R and use the
convention that k = n if and only if V = 0. Usually, Ric"“/ is called the k-dimensional Bakry-Emery Ricci

curvature and Ricy can seen the co-dimensional Bakry- mery Ricci curvature. For Ric]‘“/ , there is an important

formula which can be read as
1
§AV|VU|2 = [Hessu|? 4+ (Vu, VAyu) + Ricy (Vu, Vau), (2.2)

where Hessu is the Hessian of «. Formula (2.1) is usually called the Bochner formula for Ric"c/.
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3. Main results and their proof

Theorem 3.1 Let (M™,g) be an n-dimensional complete Riemannian manifold with Rict,(B,(2R)) > —A,

where A > 0 1is a constant. Suppose that u is a positive solution to (1.10) on By4(2R), p # %, e=1-— kk—fQ
and h =u®. Then on By(2R), the following inequality holds:
1 kp D |Vh|* kp (Vh,V|Vh|?)
—Ay|Vh|? > - d
T Ny s 1 ey o Ry By R ey s Ry
—ah"FET |Vh]® = A[VA]. (3.1)
Proof Direct calculation shows that
e—1|Vh|? 1 e—1|Vh|? ctpo1
Ayh = +eu T Ayu = —ah™ < logh. (3.2)
€ h € h
Therefore
-1 Vh|? ctp—
(Vh,VAyh) = < - (Vh, v h' ) — a(Vh, V(b= log h))
e—1 o e—1|VR* ale+p—1) p1 _ o P I,
_ _ _ - log h — ah™= . .
7 (Vh,VIVh|*) e 5 h™="|Vh|*logh —ah = |Vh]| (3.3)
By (2.1), (2.2), (3.2) and (3.3), we have
1 1
5AV|Vh|2 > %(Avh)Z + (Vh, VAyh) + Rick, (Vh, Vh)
o 1 e—1 |Vh|2 et+p—1 2 e—1 2 e—1 |Vh|4
- 1 pP— p—
—%h% VA2 log h — ah™=* [Vh|? + Rick (Vh, Vh)
(e—1)2% e—1.|Vh* 26e—-1) e+p—1, »u 9
= - — € 1
[ o2 5 ] % [ i + a lah ™= |Vh|*logh
a?, cip1 5 €—1 9 p-1 2 -k
+?(h < logh)* + 5T<Vh’V|Vh| ) —ah = |Vh|* + Ricy,(Vh, Vh). (3.4)
Since e =1 — kk—fQ, we have 5;1 = kpfzﬁ and
2(e —1 -1 —1)? -1
(-1  etp-1_, (=D e-1__ k (— P )
ke € ke? € kp—k—2"kp—k—2

Therefore, by (3.4) and the condition Ricy,(B,(2R)) > —A, we conclude that (3.1) is true. The proof of

Theorem 3.1 is complete. O
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Theorem 3.2 Let (M™,g) be an n-dimensional complete Riemannian manifold with Rict,(B,(2R)) > —A,

where A > 0 is a constant. Suppose that u is a positive solution to (1.10) on B4(2R), 1 <p < % and

p# %, then the following inequalities hold on By(R):
(1) If a > 0, then

|Vul| < M\/ Mr—1la + A) +— (1+ +/(k — 1) Acoth( \/TR)); (3.5)
(2) If a < 0, then
|Vu| < M4/ Bmax{0,mP—la + A} + %(1 + MCoth(\/zR)), (3.6)
2(k+2)*

where M = sup,cp, (2r) u(z), m =inf,ep, 2r)u(x), B = Yo s and C is a constant depending only on

k and p.

Proof Asin [1] and [6], we define a cut-off function ¢ € C2[0, +00) by

1, telo1
W):{ 0, t€{2,+]oo)

satisfying ¢ (t) € [0,1], and

/ " W' ()12
v <o v >-a, Sab<o
Let
_ (@) _ 2
p=v(57), G=¢lVh
According to [1] and [6], we have
Vel O (3.7)

and

VCi(k —1)Acoth(y/ 25 R) . o

—Ayp < B 2

(3.8)

Assume that G achieves its maximum at the point 2y € By(2R) and assume that G(zo) > 0 (otherwise the
proof is trivial). Then at the point ¢, it holds that

h 2
VG =0, AyG<0, V|Vh?= —ﬂv

Direct calculation shows that

AyvG = Ay |Vh]? +

A 2 2
XPG B |V;0| G
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k Vh|* k Vh, V|Vh|?
o VM (VA VIVA
kp—k— 2 kp—k —2 K2 T kp—k-2 h
2
—ah G TR — AR + 2V - 2|fo| G
¥ ¥
_ 2kp (7 71)G727 2kp G (Vh,Vy)
Ckp—k—2"kp—Fk—2 e kp—k—2¢p h
2
pan "R G A+ BVPq AVl
¢ 0

Therefore at the point xg, it holds that

kp Ek/f— Z(kp —pk -2 1)% = 3?_2 <Vh’hw> +2ah T o 4 240 — Ay + 2AVel® (3.9)
f1<p< k+2 , then k 5 < 0. Therefore, by the Cauchy inequality we have
2kp (Vh, V) <_ 2kp [ kp—Fk—2 |Vo|? kpfk—prg]. (3.10)
kp—k—2 h kp—k—22kp—k—-2-p) ¢ 2(kp — k —2) h?
According to (3.9) and (3.10), we get
kp —kz — Q(kp —pk —2 1)% T ;k—pz —p v;f'Q +2auP " o + 240 — Ay + 2AVel, (3.11)
Ifk+2<p<ﬁ+?,thenk 5>1,p+k+2—kp>0and
2kp  (Vh, Vo) < 2kp [ kp—k—2 |Vl p+k+2—kpg]’ (3.12)
kp—k—2 h kp—k—22(p+k+2—kp) ¢ 2(kp — k —2) h?
According to (3.9) and (3.12), we get
kp _ki 3 —pk -2 )% SpEk ipz — kp VoL | 2wt 4 240 - Ay + 2L (3.13)

If a >0, by (3.7), (3.8), (3.11) and (3.13) we conclude that there exists a constant C' depending only on &k and
p such that

o _kZ - Q(kp _pk —5 ~ DG(x) < W¥(xo)2M" N + 2A+ —(1+ /(k — 1) Acoth( \/TR))] (3.14)

holds for = € B,(2R).
If x € B,(R), then ¢ =1 and G(z) = |Vh|*(z) = e2u?**~2(2)|Vu|?*(z). Therefore, by (3.14) we get

(k +2)?

_ k+2)?
2—2e 2e H< (

Vul*(@) < ~ kp(p+k+2—kp)

M?H, (3.15)
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where

H =2MP~ 1a+2A+—1+\/ k=D Acoth(y/ = A —R) (3.16)

By (3.15) and (3.16), we conclude that (3.5) is true. On the other hand, if a < 0 then 2amP~lp + 24p <
2max{0,amP~! + A}. Similar to the case of a > 0, we can get (3.11) and (3.13). Therefore, we conclude that
(3.6) is true. The proof of Theorem 3.2 is complete. O

Theorem 3.3 Let (M™,g) be an n-dimensional complete Riemannian manifold with Rict,(B,(2R)) > —A,
where A > 0 is a constant. Suppose that u is a positive solution to (1.10) on By(2R), then the following
inequalities hold on By(R):

(1) If a>0, 0<p <1 and inf,cp, 2r) u(r) # 0, then

|[Vu| < M\/B(amp—1 + A) —|— — (14 +/(k — 1) A coth( g/ A R)); (3.17)

(2)If a <0 and 0 < p <1, then

A
|Vu| < M4/ B max{0,aMP~1 + A} + (14 +/(k —1)Acoth( 1/ 1R)) (3.18)

where M = sup,cp, (2r) u(z), m =inf,cp, or)u(z), B = #% and C is a constant depending only on

k and p.

Proof As in the proof of Theorem 3.2, we can arrive at (3.9). If 0 < p <1, then == < 0. Therefore, by

the Cauchy inequality we can get (3.11). If a >0, 0 <p <1 and inf,cp, (2r) u(x) # 0, then

(p=1)(2+h)
ah™TF=rr @ = aquP "t < amP L. (3.19)

According to (3.11), (3.19) and the methods in the proof of Theorem 3.2, we conclude that (3.17) is true. If
a<0and 0<p<1, then

(p—1)(2+k)

ah 7= o+ Ap = auP 1o + Ap < max{0,aMP~ + A}. (3.20)
By (3.11), (3.20) and the methods in the proof of Theorem 3.2, we conclude that (3.18) is true. The proof of
Theorem 3.3 is complete. O

Letting R — +o00, we obtain the following global estimates on complete noncompact Riemannian
manifolds:

Theorem 3.4 Let (M™,g) be an n-dimensional complete Riemannian manifold with Ric I‘“/ —A, where A >0
is a constant. Suppose that u is a positive solution to (1.10), 1 < p < k+2 and p # k+ , then the following

inequalities hold
(1) If a > 0, then

2(k +2)2
\% M Mpr=—1a 4 A);
Vul < \/ p+k+2—k)( “ )
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(2) If a <0, then

(k +2)
v _M\/ P+k4—;2—k )max{o’m”‘laﬂl},

where M = sup,cpm u(z), m = infream ula

Theorem 3.5 Let (M™,g) be an n-dimensional complete Riemannian manifold with Ric]f/ > —A, where A>0
is a constant. Suppose that u is a positive solution to (1.10), then the following inequalities hold
(1) If a >0, 0<p<1 and inf, ecpn u(x) #0, then

2(k +2)?
< M p—1 A):
IVl < \/kp(p+k+2kp) (ame= + A);

(2)Ifa<0 and 0 <p<1, then

where M = sup e pm u(x), m = infyepm u(x).

In particular, we have

Theorem 3.6 Let (M™,g) be an n-dimensional complete Riemannian manifold with Ricl‘cf > —A, where A>0
is a constant. Suppose that u is a bounded nonconstant positive solution to (1.10), M = sup,epm u(z) and
m = infyepmu(z). If a <0 and 0 < p <1, then M'7P > —%-Ifa<0,1<p< % and p # %, then

A
=

mP~t < —
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