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Abstract: Let A.(x, f) be the Abel-Poisson means of an integrable function f(z) on n—dimensional torus T", —7 <
z; <7, i=1,...,n (n > 2) in the Euclidean n—space. The famous Bochner’s theorem asserts that for any function

f € L*(T™) the Abel-Poisson means Ac(x, f) are pointwise converge to f(z) a.e., that is,

lim A.(z, f) = f(z), a.e.z € T".

e—0t
In this paper we investigate the rate of convergence of Abel-Poisson means at the so-called p—smoothness point of f .
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1. Introduction and formulation of main results

Let R™ denote the n— dimensional Euclidean space,
T"={zeR"| —7n<z;<m i=1,...n}

be n—dimensional torus, and Z" be the integral lattice of R™. For any f(z) € L*(T"), we form the Fourier

series of its periodical continuation by
F@) ~ Y ame™?, (1.1)

with Fourier coefficient a,,, = an f(z)e”™%dy where m = (my,...,my) € Z",and m-x = mix1+- - +MpTy, .

For a function f € L!'(T™), define the Abel-Poisson means of f(x) by

Ac(z, f) = Z ecl7lg,, etme, (1.2)

mezn
It is well known that the Fourier transform of the function e~¢/*l has the following form

Cné
£2 4 [y|2)(n+1)/2 0
( y[?)

Cn = 71'_(n+1)/211(L ;_ !

P.(y) =P(y;e) = (e ') (y) = ). (1.3)

The function P.(y) is called the Poisson kernel and has the following properties [12, p. 253].
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Proposition 1.1

(a) Jpn Pe(y)dy =1, for all e > 0.

(b)  Pi(y) < A1+ |y))~ "+, for some § > 0. 4

For A.(z, f), the Abel-Poisson means of f(x), defined by (1.2), we have the following integral representation

via Poisson kernel,;

Lemma 1.2 Let the function f € L*(T™) be periodically continued to R™ and P.(y) be the Poisson kernel,
defined by (1.3). Then

A f) = [ 0Pt (1.5)

The formula (1.5) is well known and its proof is based on the following Poisson summation formula:

> @(em)e™ = (2m)" Y Po(t+2mm), where &(x) =e "I, (1.6)

mezn mezn

Many works with different perspectives on the summation of multiple Fourier series and integrals have
been studied in great detail in the papers [6, 7, 11, 13] (see also Stein, E.M. and Weiess, G. [12] and Weiess,
F. [14, 15]). The purpose of this paper is as follows: First we introduce the notion of p—smoothness point of a
function f, which is also a Lebesgue point of f. Then we estimate the error of approximation of f(x) by its
Abel-Poisson means A.(x, f) as € — 07 at the p—smoothness point of function f. Note that the analogous
problem for the Gauss—Weierstrass means of the relevant higher dimensional Fourier series has been studied
in [2]. Some aspects of the rate of convergence, in the case of truncated hypersingular integrals generated by
the Poisson and metaharmonic semigroups have been studied in [4], and for truncated hypersingular integrals
generated by the Gauss—Weierstrass semigroups have been studied in [3]. Also, the nice papers by Golubov,
B.I [9, 10], by Aliev I.A. [1] and by Bayrakci S., Shafiev M.F., Aliev I.A [5] should be mentioned.

Definition 1.3 (cf.[1-3]) Let p € (0,1) be fized parameter and the function u(r), (0 < r < p) be continuous

1
loc

on [0,p], be positive on (0,p], and u(0) = 0. We say that a function ¢ € L (R™) has the p—-smoothness

property at a point z° € R™ if

D, (2°) = sup % / - lp(x® — ) — p(z2)|dz < oo. (1.7)

0<r<p Tn,u
In the sequel it will be assumed that u(r) > ar for an « > 0, and u(r) = u(p) for p <r < co.

Remark 1.4 It is clear that every pu—smoothness point 20 is also a Lebesque point of f:

L If(2° — z) — f(2°)|dx (1§7) w(r)D,(2°) = 0, asr — 0T,

n
T Ja|<r

Now, we state the main results of the paper.
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Theorem 1.5 Let a periodical function f € L'(T™) has the p—smoothness property at x° € T™, and suppose
that A.(2°, f) is the Abel-Poisson means of f defined by (1.5). Then

PI€ pfer)
1472

AL (20, f) = F(a°)] < eD, (") < + / dr) e 0t (18)

where ¢ does not depend on €.

Corollary 1.6 Let the function p be continuous on [0, p], positive on (0,p] and u(0) = 0. Also, suppose
u(t) > at, (0<t<p, a>0) and be extended on [p,0) as p(t) = u(p). In addition, assume that there exists
a locally bounded function w(t) > 0 such that

w(t)
1+4+¢2

j(et) < p(ew(t), (0<e<p, 0<t< ple), and /oo it < o, (1.9)
0

If 2° € T™ is a p-smoothness point of f € L*(T™), then the following estimate holds
[A=(a”, f) = f(2°)] = O (u(e)), € — 0T (1.10)

Corollary 1.7 (a) Let 0 <~y <1,0<p<1, and pu(c) =¢7, 0<e < p. If 2° € T" is p-smoothness point
of f € LY(T™), then following estimate holds

|Ac (2%, f) — f(2°)] = O (£7), e = OT. (1.11)

_ 1 n g
(b)) Let 0 <y <1,0<p<1,0<B<o0,and pu(c) =e'(log1)?, 0 <e <p. If 2° € T" is p—smoothness
point of f € L*(T™), then following estimate holds

422, 1) = F&")] = O (7 (log 2)°), & = O*. (112

2. Proofs of the main results
We will use of some techniques from [2] and [4].

Proof of Theorem 1.5: Let 2° € T™ be a u—smoothness point of f. By (1.4) and (1.5), we have
[Ac @) = 16 = | [ P60 - 0) - Fa))da

< / P()| | £ — ) — f(2%)| i + / Po()]|£(2 — ) — f(2%)| de

jei<p ] >p

= Ii(e) + Lx(e). (2.1)
In order to estimate I;(e) we introduce the function

_ f(m()*x)*f(xo)v if |$|§Pa
‘I’(x,xo){| 0, | it |z > p.
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Hence, using this function, we have

Ii(e) = /Pa(x)\ll (z,2°) dx.

R

In the last integral, by change of variables © = 0, where r = |z|, and remembering that the function P. is

radial, we obtain that

11(5):/r”*1|P5(r)\ /qf(re,xo)do dr.
0 0)=1

Here, df is the Euclidean area element of the unit sphere S,y = {6 e R*: |0 =1}. If we let

g(r) = / 1\ (7“9,360) do,

and

then, we have

Ie) = / P Pa(r) g(r)dr = / |P.(r)| dh(r).
0

0

Since P.(r) > 0 and differentiable on [0,00), we get, by integrating by parts,

I(e) = / Po(r)dh(r) = Po(r)h(r) |5 — / P (r)h(r)dr. (2.2)
0 0

Because that h(0) =0, h(r)=h(p) (for r>p ), and P.(r) =0 as r— o0
P.(r)h(r) |5°= 0.

Now, observing that

T

0 |z|<r |z|<r
" 1 O—2) = ()| dz < ru(r 20
i >Tnu(r)||[ 7@~ 2) ~ @) dz < 7" u(r) Dy (a°) (23)
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where D, (2°) is defined as in (1.7), and using the fact h(r) = h(p) = constant for r > p, we have

oo oo

n(e) < / h(r)| P! (r)|dr = / h(r)| P! () ldr + / W) L) dr
0

0 p

p

() / ()| P\ + hp) / P! ()| dr-

0

By (1.3),

—(n+3)/2

Pl(r) = cier (2 +r?)

€

Thus, from (2.3) and (2.4), we obtain

P
1
0 n+1
h(e) < ab) [ r e
0

o

+ c1h(p 8/ @ 1 12) (n+3)/2d
P

Since n > 1, the latter integral in the above expression is finite, hence

p
Lie) < chM(xO)e/r"Hu(r) (e + r2)7(n+3)/2 dr + cae.
0

Finally, denoting c3 = max {01; ﬁ}, we obtain
"
P

Ii(e) < e3Dy,(2°) | e+ E/T"+1u(r) (2 + r2)’(”+3)/2 dr

ple
= 3D, (2°) | e+ / r"uer) (1+ r2)_(”+3)/2 dr

(=)

<eyDy(a) [ e+

Let us now estimate the term I (¢) :

) / \Pu(2)| da + / IPo(a)]|f(2° — 2)|da.

|z|>p lz|>p
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For the first integral,

o

29| / \P.(2)] dar = c5 /r"* \P.(r)| dr
|z|>p P
— [l dr < cqe dr—cs (2.7)
FARNERI O 8 |
p P

For the second integral, by applying the Holder’s inequality, we get

1/p 1/q
[ r@ise-ode< | [ e -opa| | [ ip@re
[z]|>p z|>p z|>p
1/q
dx
<Ifle| [ | — e (2.8)
z|>p
Hence, by (2.7) and (2.8) we obtain
IQ (E) S C10€. (29)
Finally, using (2.5) and (2.9) in (2.1), we have
p/e
|A5(x07f) — f(m0)| <L(e)+1(e) < cDu(xO) €+ / iufrldr ,
r

0

where the coefficient ¢ does not depend on € > 0. This clearly proves the theorem.
Proof of Corollary 1.6:
By (1.8) and the condition u(et) < p (&) w(t),

ple
|A6(x07f)7f( O)|<CD/L( ) e+ p
0
Since
/Oowt)dt< d pE)>as, (0<e<p<l)
1yt S0 e plE=as e<p
0
we obtain
|Ac(2®, f) = f(2°)] < crple) (O<e<p<l)
as desired.

Proof of Corollary 1.7:

a) It is easy to verify that the function

[, i 0<t<p<,
u'(t)_{p“/’ if tZ,O,
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satisfies all the conditions of Corollary 1.6 with the function w (t) =t7, (0 <t < 00).

and

then

b) If we let
0, if t=0,
p)=<{ ' (n(1/t)?, if 0<t<p<l,
P (In(1/p)’, if  t>p,
B
w(t) =7 <1+|lnt|> , 0<t< oo,
|In p|

B B -1\ "
1 1 Int
= v — =7 - v
u(et) = (et) (ln 5t> € <ln 5> t <1 + lna—l)

B8 B8

1 In|t

<V lm=—) (14 njf , O<e<p, O0<t<p<l).
€ | In p

Consequently, for the function

[In ¢|
|In p|

w(t)=t7(1+ ) 0<t<ple,

we observe that

w(et) <p)w (), (0<e<p, 0<t<p/e),

and therefore

This

1308

/w“)dt:c/Mde
1+ ¢2
0 0

proves the Corollary 1.7-(b).
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