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Abstract: Let Aε(x, f) be the Abel–Poisson means of an integrable function f(x) on n–dimensional torus Tn, −π <

xi ≤ π, i = 1, . . . , n (n ≥ 2) in the Euclidean n–space. The famous Bochner’s theorem asserts that for any function
f ∈ L1(Tn) the Abel–Poisson means Aε(x, f) are pointwise converge to f(x) a.e., that is,

lim
ε→0+

Aε(x, f) = f(x), a.e. x ∈ Tn.

In this paper we investigate the rate of convergence of Abel–Poisson means at the so-called µ–smoothness point of f .
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1. Introduction and formulation of main results
Let Rn denote the n– dimensional Euclidean space,

Tn = {x ∈ Rn | −π < xi ≤ π, i = 1, . . . n}

be n–dimensional torus, and Zn be the integral lattice of Rn . For any f(x) ∈ L1(Tn) , we form the Fourier
series of its periodical continuation by

f(x) ∼
∑

ameim·x, (1.1)

with Fourier coefficient am =
∫
Tn f (x) e−im·xdx , where m = (m1, . . . ,mn) ∈ Zn , and m·x = m1x1+· · ·+mnxn .

For a function f ∈ L1(Tn) , define the Abel–Poisson means of f(x) by

Aε(x, f) =
∑

m∈Zn

e−ε|x|ameim·x. (1.2)

It is well known that the Fourier transform of the function e−ε|x| has the following form

Pε(y) ≡ P(y; ε) = (e−ε|·|)∧(y) =
cnε

(ε2 + |y|2)(n+1)/2
, cn = π−(n+1)/2Γ(

n+ 1

2
). (1.3)

The function Pε(y) is called the Poisson kernel and has the following properties [12, p. 253].
∗Correspondence: eryigit@akdeniz.edu.tr
2010 AMS Mathematics Subject Classification: 42A24, 40G99

This work is licensed under a Creative Commons Attribution 4.0 International License.
1302

Turk J Math
(2022) 46: 1302 – 1309
© TÜBİTAK
doi:10.55730/1300-0098.3160

https://orcid.org/0000-0003-2066-7833
https://orcid.org/0000-0002-9782-7199
https://orcid.org/0000-0002-7613-5265


SEZER at al./Turk J Math

Proposition 1.1
( a)

∫
Rn Pε(y)dy = 1, for all ε > 0.

(b) P1(y) ≤ A(1 + |y|)−(n+δ), for some δ > 0.
(1.4)

For Aε(x, f) , the Abel–Poisson means of f(x) , defined by (1.2), we have the following integral representation
via Poisson kernel;

Lemma 1.2 Let the function f ∈ L1(Tn) be periodically continued to Rn and Pε(y) be the Poisson kernel,
defined by (1.3). Then

Aε(x, f) =

∫
Rn

f(x− t)Pε(t)dt. (1.5)

The formula (1.5) is well known and its proof is based on the following Poisson summation formula:

∑
m∈Zn

Φ(εm)eim·t = (2π)n
∑

m∈Zn

Pε(t+ 2πm), where Φ(x) = e−|x|. (1.6)

Many works with different perspectives on the summation of multiple Fourier series and integrals have
been studied in great detail in the papers [6, 7, 11, 13] (see also Stein, E.M. and Weiess, G. [12] and Weiess,
F. [14, 15]). The purpose of this paper is as follows: First we introduce the notion of µ–smoothness point of a
function f , which is also a Lebesgue point of f . Then we estimate the error of approximation of f(x) by its
Abel–Poisson means Aε(x, f) as ε → 0+ at the µ–smoothness point of function f . Note that the analogous
problem for the Gauss–Weierstrass means of the relevant higher dimensional Fourier series has been studied
in [2]. Some aspects of the rate of convergence, in the case of truncated hypersingular integrals generated by
the Poisson and metaharmonic semigroups have been studied in [4], and for truncated hypersingular integrals
generated by the Gauss–Weierstrass semigroups have been studied in [3]. Also, the nice papers by Golubov,
B.I. [9, 10], by Aliev I.A. [1] and by Bayrakci S., Shafiev M.F., Aliev I.A [5] should be mentioned.

Definition 1.3 (cf.[1-3]) Let ρ ∈ (0, 1) be fixed parameter and the function µ(r), (0 ≤ r ≤ ρ) be continuous
on [0, ρ] , be positive on (0, ρ] , and µ(0) = 0 . We say that a function φ ∈ L1

loc(Rn) has the µ–smoothness
property at a point x0 ∈ Rn if

Dµ(x
0) ≡ sup

0<r≤ρ

1

rnµ(r)

∫
|x|≤r

|φ(x0 − x)− φ(x0)|dx < ∞. (1.7)

In the sequel it will be assumed that µ(r) ≥ αr for an α > 0 , and µ(r) = µ(ρ) for ρ ≤ r < ∞ .

Remark 1.4 It is clear that every µ–smoothness point x0 is also a Lebesgue point of f :

1

rn

∫
|x|≤r

|f(x0 − x)− f(x0)|dx
(1.7)

≤ µ(r)Dµ(x
0) → 0, as r → 0+.

Now, we state the main results of the paper.
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Theorem 1.5 Let a periodical function f ∈ L1(Tn) has the µ–smoothness property at x0 ∈ Tn , and suppose
that Aε(x

0, f) is the Abel–Poisson means of f defined by (1.5).Then

|Aε(x
0, f)− f(x0)| ≤ cDµ(x

0)

(
ε+

∫ ρ/ε

0

µ(εr)

1 + r2
dr

)
, ε → 0+, (1.8)

where c does not depend on ε .

Corollary 1.6 Let the function µ be continuous on [0, ρ] , positive on (0, ρ] and µ(0) = 0 . Also, suppose
µ(t) ≥ αt, (0 ≤ t ≤ ρ, α > 0) and be extended on [ρ,∞) as µ(t) = µ(ρ) . In addition, assume that there exists
a locally bounded function w(t) > 0 such that

µ(εt) ≤ µ(ε)w(t), (0 < ε < ρ, 0 < t < ρ/ε), and

∫ ∞

0

w(t)

1 + t2
dt < ∞. (1.9)

If x0 ∈ Tn is a µ–smoothness point of f ∈ L1(Tn) , then the following estimate holds

|Aε(x
0, f)− f(x0)| = O (µ(ε)), ε → 0+. (1.10)

Corollary 1.7 (a) Let 0 < γ < 1, 0 < ρ < 1 , and µ(ε) = εγ , 0 < ε ≤ ρ . If x0 ∈ Tn is µ–smoothness point
of f ∈ L1(Tn) , then following estimate holds

|Aε(x
0, f)− f(x0)| = O (εγ), ε → 0+. (1.11)

(b) Let 0 < γ < 1, 0 < ρ < 1, 0 < β < ∞ , and µ(ε) = εγ(log 1
ε )

β , 0 < ε ≤ ρ . If x0 ∈ Tn is µ–smoothness
point of f ∈ L1(Tn) , then following estimate holds

|Aε(x
0, f)− f(x0)| = O (εγ(log

1

ε
)β), ε → 0+. (1.12)

2. Proofs of the main results
We will use of some techniques from [2] and [4].
Proof of Theorem 1.5: Let x0 ∈ Tn be a µ−smoothness point of f . By (1.4) and (1.5) , we have

∣∣Aε

(
x0, f

)
− f(x0)

∣∣ =
∣∣∣∣∣∣
∫
Rn

Pε(x)(f(x
0 − x)− f(x0))dx

∣∣∣∣∣∣
≤
∫

|x|≤ρ

|Pε(x)|
∣∣f(x0 − x)− f(x0)

∣∣ dx+

∫
|x|>ρ

|Pε(x)|
∣∣f(x0 − x)− f(x0)

∣∣ dx
= I1(ε) + I2(ε). (2.1)

In order to estimate I1(ε) we introduce the function

Ψ
(
x, x0

)
=

{ ∣∣f(x0 − x)− f(x0)
∣∣ , if |x| ≤ ρ,

0, if |x| > ρ.
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Hence, using this function, we have

I1(ε) =

∫
Rn

Pε(x)Ψ
(
x, x0

)
dx.

In the last integral, by change of variables x = rθ, where r = |x|, and remembering that the function Pε is
radial, we obtain that

I1(ε) =

∞∫
0

rn−1 |Pε(r)|

 ∫
|θ|=1

Ψ
(
rθ, x0

)
dθ

 dr.

Here, dθ is the Euclidean area element of the unit sphere Sn−1 = {θ ∈ Rn : |θ| = 1} . If we let

g(r) =

∫
|θ|=1

Ψ
(
rθ, x0

)
dθ,

and

h(r) =

r∫
0

g(t)tn−1dt

then, we have

I1(ε) =

∞∫
0

rn−1 |Pε(r)| g(r)dr =

∞∫
0

|Pε(r)| dh(r).

Since Pε(r) > 0 and differentiable on [0,∞), we get, by integrating by parts,

I1(ε) =

∞∫
0

Pε(r)dh(r) = Pε(r)h(r) |∞0 −
∞∫
0

P ′
ε(r)h(r)dr. (2.2)

Because that h(0) = 0, h(r) = h(ρ) ( for r ≥ ρ ), and Pε(r) → 0 as r → ∞

Pε(r)h(r) |∞0 = 0.

Now, observing that

h(r) =

r∫
0

g(t)tn−1dt =

∫
|x|≤r

Ψ
(
x, x0

)
dx =

∫
|x|≤r

∣∣f(x0 − x)− f(x0)
∣∣ dx

= rnµ(r)
1

rnµ(r)

∫
|x|≤r

∣∣f(x0 − x)− f(x0)
∣∣ dx ≤ rnµ(r)Dµ(x

0) (2.3)
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where Dµ(x
0) is defined as in (1.7), and using the fact h(r) = h(ρ) = constant for r ≥ ρ, we have

I1(ε) ≤
∞∫
0

h(r)|P ′
ε(r)|dr =

ρ∫
0

h(r)|P ′
ε(r)|dr +

∞∫
ρ

h(r)|P ′
ε(r)|dr

≤ Dµ(x
0)

ρ∫
0

rnµ(r)|P ′
ε(r)|dr + h(ρ)

∞∫
ρ

|P ′
ε(r)|dr. (2.4)

By (1.3),

P ′
ε(r) = c1εr

(
ε2 + r2

)−(n+3)/2
.

Thus, from (2.3) and (2.4), we obtain

I1(ε) ≤ c1Dµ(x
0)

ρ∫
0

rn+1µ(r)ε
1

(ε2 + r2)
(n+3)/2

dr

+ c1h(ρ)ε

∞∫
ρ

r

(ε2 + r2)
(n+3)/2

dr.

Since n ≥ 1, the latter integral in the above expression is finite, hence

I1(ε) ≤ c1Dµ(x
0)ε

ρ∫
0

rn+1µ(r)
(
ε2 + r2

)−(n+3)/2
dr + c2ε.

Finally, denoting c3 = max
{
c1;

c2
Dµ(x0)

}
, we obtain

I1(ε) ≤ c3Dµ(x
0)

ε+ ε

ρ∫
0

rn+1µ(r)
(
ε2 + r2

)−(n+3)/2
dr



= c3Dµ(x
0)

ε+

ρ/ε∫
0

rn+1µ(εr)
(
1 + r2

)−(n+3)/2
dr



≤ c4Dµ(x
0)

ε+

ρ/ε∫
0

µ(εr)

1 + r2
dr

 . (2.5)

Let us now estimate the term I2 (ε) :

I2 (ε) ≤ |f(x0)|
∫

|x|>ρ

|Pε(x)| dx+

∫
|x|>ρ

|Pε(x)| |f(x0 − x)|dx. (2.6)
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For the first integral,

|f(x0)|
∫

|x|>ρ

|Pε(x)| dx = c5

∞∫
ρ

rn−1 |Pε(r)| dr

= c6

∞∫
ρ

rn−1 ε

(ε2 + r2)
(n+1)/2

dr ≤ c7ε

∞∫
ρ

1

r2
dr = c8ε. (2.7)

For the second integral, by applying the Hölder’s inequality, we get

∫
|x|>ρ

|Pε(x)| |f(x0 − x)|dx ≤

 ∫
|x|>ρ

|f(x0 − x)|pdx


1/p ∫

|x|>ρ

|Pε(x)|q dx


1/q

≤ ∥f∥p ε

 ∫
|x|>ρ

dx

|x|(n+1)q


1/q

= c9ε. (2.8)

Hence, by (2.7) and (2.8) we obtain
I2 (ε) ≤ c10ε. (2.9)

Finally, using (2.5) and (2.9) in (2.1), we have

∣∣Aε(x
0, f)− f(x0)

∣∣ ≤ I1 (ε) + I2 (ε) ≤ cDµ(x
0)

ε+

ρ/ε∫
0

µ(εr)

1 + r2
dr

 ,

where the coefficient c does not depend on ε > 0. This clearly proves the theorem.
Proof of Corollary 1.6:

By (1.8) and the condition µ (εt) ≤ µ (ε)w (t) ,

∣∣Aε(x
0, f)− f(x0)

∣∣ ≤ cDµ(x
0)

ε+ µ (ε)

ρ/ε∫
0

w (t)

1 + t2
dt

 .

Since
∞∫
0

w (t)

1 + t2
dt < ∞ and µ (ε) ≥ αε, (0 < ε < ρ < 1) ,

we obtain ∣∣Aε(x
0, f)− f(x0)

∣∣ ≤ c1µ (ε) , (0 < ε < ρ < 1) ,

as desired.
Proof of Corollary 1.7:

a) It is easy to verify that the function

µ (t) =

{
tγ , if 0 ≤ t ≤ ρ < 1,
ργ , if t ≥ ρ,
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satisfies all the conditions of Corollary 1.6 with the function w (t) = tγ , (0 < t < ∞) .

b) If we let

µ (t) =


0, if t = 0,

tγ (ln(1/t))
β
, if 0 < t ≤ ρ < 1,

ργ (ln (1/ρ))
β
, if t ≥ ρ,

and

w(t) = tγ
(
1 +

|ln t|
|ln ρ|

)β

, 0 < t < ∞,

then

µ (εt) = (εt)
γ

(
ln

1

εt

)β

= εγ
(
ln

1

ε

)β

tγ
(
1 +

ln t−1

ln ε−1

)β

≤ εγ
(
ln

1

ε

)β

tγ
(
1 +

ln |t|
| ln ρ|

)β

, (0 < ε < ρ, 0 < t < ρ < 1) .

Consequently, for the function

w(t) = tγ
(
1 +

|ln t|
|ln ρ|

)
, 0 < t < ρ/ε,

we observe that
w(εt) ≤ µ (ε)w (t) , (0 < ε < ρ, 0 < t < ρ/ε) ,

and therefore
∞∫
0

w (t)

1 + t2
dt = c

∞∫
0

tγ (ln ρ+ | ln t|)β

1 + t2
dt < ∞.

This proves the Corollary 1.7-(b).
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