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Abstract: We propose an alternative method to solve large linear saddle point problems arising from computational
sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography,
genetics, statistics, and model order reductions for dynamical systems. Such problems have large sparse 2-by-2 block
structure coefficient matrices with zero (2,2)-block matrix. A new technique is presented to solve saddle point problems
with full row rank (2,1)-block matrix and nonzero right-hand side vector. By constructing a projection matrix and
transforming the original problem into a least squares problem, a new reduced least squares problem is solved via the
well-known iterative method LSMR. Numerical experiments show that this new method works very well for the specified
saddle point systems.
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1. Introduction
Large linear system of saddle point problems arise from statistics [11], electromagnetic [9], incompressible
flow [15], and computational fluid dynamics [15]. As an important research topic in numerical linear algebra,
researchers make a lot of effort to solve it efficiently. A typical saddle point problem is in the form of[

A B1
T

B2 0

] [
x
y

]
=

[
f
g

]
, (1.1)

where A ∈ Rn×n is large and sparse, B1, B2 ∈ Rm×n with n ≥ m , nonzero vectors f ∈ Rn and g ∈ Rm . The
vectors x ∈ Rn and y ∈ Rm are unknown variables. (1.1) can also be written as a linear system with 2-by-2
block coefficient matrix like

Az = b, (1.2)

where A =

[
A B1

T

B2 0

]
∈ R(n+m)×(n+m) , b =

[
f
g

]
, and z =

[
x
y

]
. (1.1) is known as a Karush-Kuhn-

Tucker(KKT) problem [7] as well.
There are many efficient and stable numerical methods for solving (1.1) based on the block structures,

such as the HSS method [4], Uzawa methods [1], null space methods [10], etc. Some other approaches for
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solving system (1.2) instead of (1.1) are Krylov subspace methods such as CG [2], GMRES [13], FOM [12]
and MINRES [8]. Even though Krylov subspace methods are easy to implement, the convergence of all these
methods depends on the spectral properties of the coefficient matrix A . For example, GMRES converges fast
if A has clustered eigenvalues, which cannot be guaranteed for every problem. Moreover, some factorization
techniques, such as LDLT factorization [14], can be used, while it involves a large computational cost of the
inverse of A . For these reasons, we try to find a computational saving, stable, and efficient numerical method
for solving (1.1), which can also be implemented as easily as GMRES. In this paper, we focus on solving (1.1)
when (2,1)-block matrix B2 ∈ Rm×n is full row rank with m ≪ n , and g ̸= 0 . The key idea of our method
is to construct a projection matrix and transform the original problem (1.1) to a least squares problem, which
is solved by one of the iterative methods such as LSMR [5]. We work with real matrices but the idea can be
easily extended for complex coefficient matrices. The remainder of this paper is organized as follows. In Section
2, we present the theoretical analysis of our projection method including construction of the projection matrix,
transforming (1.1) to a least squares problem and solving the least squares system. In this section, we also
show the algorithmic framework of the new method. In Section 3, numerical results are displayed to illustrate
the performance of the new method. Finally, we make conclusions and give an outlook on our future work in
Section 4.

Notation. Rn×m is the set of all n×m real matrices, Rn = Rn×1 , R = R1 . The superscript “ ·+ ” takes
the right inverse of a matrix. In (or simply I if its dimension is clear from the context) is the n × n identity
matrix, and ej is its j th column. For a matrix X ∈ Rn×m , R(X) and N (X) denote the range (column space)
and null space of X , respectively. Denote by ∥x∥2 the Euclidean norm of a vector x , and by ∥X∥1 the ℓ1

operator norm of a matrix X .

2. Main contribution
In this part, we show the details about how to construct and implement the new method.

2.1. Constructing a projection matrix

A projection matrix is constructed to transform (1.1) to a least squares problem with the help of the following
theorems. The first theorem is known as the Rank-Nullity theorem.

It was proven in [3] the following theorem is true.

Theorem 2.1 (Rank-Nullity Theorem [3]). Let B2 be an m× n matrix. Then

rank(B2) + null(B2) = n. (2.1)

Based on Theorem 2.1, we can show the presence of the inverse of B2B2
T .

Theorem 2.2 If B2 ∈ Rm×n is full row rank, B2B2
T is invertible.

Proof Suppose that B2 ∈ Rm×n is a full row rank matrix, rankB2
T = rank(B2) = m . By Theorem 2.1,

we have null(B2
T ) = 0 . Let B2B2

Tx = 0 for some vector x , then
∥∥B2

Tx
∥∥2
2
= xTB2B2

Tx = 0 . This implies

B2
Tx = 0 . Since null(B2

T ) = 0 , x can only be zero vector. Thus B2B2
T ∈ Rm×m is invertible. 2
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Definition 2.3 (Right Inverse Matrix) Let B2 ∈ Rm×n with rank(B2) = m , the right inverse of B2 is

B2
+ = B2

T (B2B2
T )−1, (2.2)

with B2B2
+ = Im .

It was proven in [16] the following theorem is true.

Theorem 2.4 Let B2 ∈ Rm×n with rank(B2) = m and g ∈ Rm , and let x ∈ Rn be the minimum norm
solution of

∥g −B2x∥2 = min
w∈Rn

∥g −B2w∥2 , (2.3)

Then x = B2
+g .

Theorem 2.5 Let B2 ∈ Rm×n with rank(B2
T ) = m . A vector g ∈ Rm is in the range of B2 such that

B2x = g, (2.4)

where x ∈ Rn if and only if x can be written as

x = B2
+g, (2.5)

where B2
+ = B2

T (B2B2
T )−1 ∈ Rn×m .

Proof Let B2 ∈ Rm×n with rank(B2
T ) = m . A vector g ∈ Rm is in the range of B2 such that B2x = g,

where x ∈ Rn , then x can be written as x = B2
+g, where B2

+ = B2
T (B2B2

T )−1 ∈ Rn×m . This follows
immediately from Theorem 2.4.

To prove the other direction, given g ∈ Rm , let x = B2
+g , then

B2x = B2B2
+g = (B2B2

T )(B2B2
T )−1g = g.

This completes the proof of the theorem. 2

Theorem 2.5 implies that we can use the projection B+
2 to decouple the saddle point problem (1.1) into

a small size subproblem. This is shown as follows.

2.2. Transforming (1.1) to a least squares problem

In this part, we derive how to transform (1.1) into a small size least squares problem. First, we rewrite (1.1) as

Ax+B1
T y = f,

B2x = g.
(2.6)

By Theorem 2.5, we know that x takes the form

x = B2
+g.
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Then the first equation in (2.6) becomes

AB2
+g +B1

T y = f,

which can be rewritten as
B1

T y = f −AB2
+g, (2.7)

where AB2
+g ∈ Rn .

If we can solve for y in (2.7) via some efficient and accurate numerical method, we can obtain an

approximate solution z =

[
x
y

]
to (1.1). Since m ≪ n , (2.7) is an overdetermined linear system. This indicates

that we need to solve an overdetermined least squares problem with the form

min
y

∥∥B1
T y − (f −AB2

+g)
∥∥
2
, (2.8)

Once y is obtained numerically, x can also be calculated by x = B2
+g . Provided y is accurate enough, x

should be a good solution in the sense of least squares norm.
Algorithm 1 shows how the efficient matrix-vector product should be computed.

Algorithm 1 Efficient matrix-vector product.
Require: B2 ∈ Rm×n, g ∈ Rm ;
Ensure: B2

+g .
1: Solve g = (B2B2

T )ĝ for ĝ ;
2: Compute ĝ = B2

T ĝ ;

2.3. Solving (2.8) by LSMR

There are many choices for solving (2.8). We prefer the LSMR method [5] because of its efficiency in computation
and easy implementation. We transform (2.8) to

min
y

∥∥∥B1
T y − b̂

∥∥∥
2
, (2.9)

where b̂ = f −AB2
+g.

LSMR is based on the Golub-Kahan bidiagonalization process [6] that recursively transforms
[
b̂ B1

T
]

into a bidiagonal form.
Specifically, it can be shown as follows:

1. Given initial guess y0 = 0 . The residual r0 = b̂ ;

2. Set β1 = ∥r0∥2 , u1 = r0/β1 , v̂1 =B1 u1 , α1 = ∥v̂1∥2 , v1 = v̂1/α1 ;

3. For i = 1, 2, · · · , do

ûi+1 = B1
T vi − αiui, βi+1 = ∥ûi+1∥2, ui+1 = ûi+1/βi+1,

v̂i+1 = B1ui+1 − βi+1vi, αi+1 = ∥v̂i+1∥2, vi+1 = v̂i+1/αi+1.
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After the k -th step and provided no breakdown, (i.e. βi+1 = 0 or αi+1 = 0), occurs, we have

B1
TVk = Uk+1Fk, B1Uk+1 = VkF

T
k + αk+1vk+1e

T
k+1, (2.10)

where Vk =
[
v1 v2 · · · vk

]
, Uk =

[
u1 u2 · · · uk

]
, UT

k Uk = I , V T
k Vk = I , and

Fk =


α1

β2 α2

. . . . . .
βk αk

βk+1

.

The k -th approximate solution yk is sought over span(Vk) , and Vk is the orthogonal basis of the Krylov
subspace.

Kk

(
B1B1

T , B1r0
)
= span

(
B1r0, B1B1

T (B1r0), · · · , (B1B1
T )k−1(B1r0)

)
.

Denote by yk = Vktk . In LSMR, we minimize ∥B1rk∥2 over span(Vk) , where rk = b̂ − B1
T yk is the k -th

residual. According to (2.10), we have

B1rk = Vk+1

(
β1α1e1 −

[
FT
k Fk

αk+1βk+1e
T
k

]
tk

)
.

Since Vk+1
TVk+1 = Ik+1 , we have a reduced problem

min
t

∥B1r∥2 = min
t

∥∥∥∥β̄1e1 −
[
FT
k Fk

β̄k+1e
T
k

]
t

∥∥∥∥
2

,

where β̄k = αkβk and β̄1 = α1β1 . LSMR uses the double QR decomposition on FT
k Fk to iteratively minimize

∥B1r∥2 at k -th iteration. The framework of our method (FSPPvLS) is shown below.

Algorithm 2 SPP via least squares with full rank B2 and g ̸= 0 (FSPPvLS).
Require: A and b as in (1.2), an initial guess y0 = 0 ;

Ensure: an approximate solution
[
xopt
yopt

]
to the SPP (1.1).

1: solve least squares problem (2.8) by LSMR to find an approximate solution yopt ;
2: compute xopt = B2

+g via Algorithm 1;

3: return
[
xopt
yopt

]
.

3. Numerical results
In this section, we exhibit some numerical results to illustrate the performance of our method. The numerical
experiments show that the comparison of the convergence for solving the problem (1.1) by LSMR and GMRES
applied to the whole problem and LSMR applied to the least squares problem (2.8).

All numerical results shown in this work were run using Matlab version R2017b (9.3.0) on a machine
with 2.7 GHz Dual-Core Intel Core i5 and 8GB RAM. The testing matrices with their generic properties are
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shown in Table 1. Each matrix examples downloaded in the Matlab format with the built-in right-hand side

vector b . The example matrices have the form A =

[
A B1

T

B2 0

]
in Table 1, n represents the number of columns

in B2 and m is the number of the rows in B2 . The size of A is (n+m)× (n+m) . B2 has full row rank and
g is nonzero vector for each example.

Given guess
[
x0

y0

]
= 0 for all problems, we report the relative residual

∥∥r∥∥∥∥A∥∥∥∥z∥∥+
∥∥b∥∥ , (3.1)

where r = b − Az . The stopping criterion is either when the number of iterations reaches 3000 or the
relative residual (3.1) is no bigger than tol = 10−8 . We check the consistency of the system Az = b by
calculating the rank of the coefficient matrix, A and the rank of the augmented matrix [A, b] . In all our
examples, rank(A)=rank([A, b]) . We make a note that no reorthogonalization or preconditioning is applied for
all examples. The idea we used here is easy to be used among a wide selection of problems.

Table 1. Testing matrices.

Matrix n m nonzero application
lshape1 353 98 3807 statistics
lshape2 634 179 6926 statistics
lshape3 2004 604 23408 statistics
maxwell1 88 25 958 electromagnetic
maxwell2 368 113 4374 electromagnetic
maxwell3 1504 481 18598 electromagnetic
navier_stokes_N2 16 7 252 incompressible flow
navier_stokes_N4 80 31 1852 incompressible flow
navier_stokes_N8 352 127 9372 incompressible flow
stokes_N2 16 7 252 computational fluid dynamics
stokes_N4 80 31 1852 computational fluid dynamics
stokes_N8 352 127 9372 computational fluid dynamics

Figures 1 – 4 show the sparsity pattern of A and the convergence for solving (1.1) by Algorithm 2, LSMR,
and GMRES on the testing matrices.

Table 2 lists the number of cycles needed by algorithms to achieve relative residual less than or equal to
10−8 . According to the results, we have the following observations:

• For all examples, GMRES can not make the relative residual as small as 10−8 within 3000 iterations.

• Both LSMR and FSPPvLS can make relative residuals reach 10−8 within 3000 iterations. Though LSMR
is better than GMRES, it is not as good as our method FSPPvLS for most of the examples. We point
out that LSMR and FSPPvLS have comparable performance for navier_ stokes_N2 and stokes_N2.

• FSPPvLS obtains the smallest iteration numbers and the fastest convergence rate for each example.
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Figure 1. Left : Sparsity pattern of A formed by lshape1 , lshape2, lshape3. Right : Relative residual vs.
iteration number for lshape1, lshape2, lshape3.
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Figure 2. Left : Sparsity pattern of A formed by maxwell1, maxwell2, maxwell3. Right : Relative residual vs.
iteration number for maxwell1, maxwell2, maxwell3.
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Figure 3. Left : Sparsity pattern of A formed by navier_stokes_N2, navier_stokes_N4, navier_stokes_N8.
Right : Relative residual vs. iteration number for navier_stokes_N2, navier_stokes_N4, navier_stokes_N8.
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Figure 4. Left : Sparsity pattern of A formed by stokes_N2, stokes_N4, stokes_N8. Right : Relative residual vs.
iteration number for stokes_N2, stokes_N4, stokes_N8.
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Table 2. Iteration number for LSMR, FSPPvLS, and GMRES.

Matrix LSMR FSPPvLS GMRES

lshape1 912 188 –
lshape2 2006 170 –
lshape3 2305 179 –
maxwell1 184 38 –
maxwell2 1075 254 –
maxwell3 2553 628 –
navier_stokes_N2 31 16 –
navier_stokes_N4 320 133 –
navier_stokes_N8 2087 691 –
stokes_N2 26 13 –
stokes_N4 285 129 –
stokes_N8 2010 583 –

4. Conclusions and future
This paper presents an iterative method for large and sparse saddle point systems (1.1). The main contribution
of this paper is that the presented technique can be applied to a large class of saddle point problems. In other
words, the technique does not necessarily require a specific form of block matrices except the (2,2)-block matrix
in the saddle point matrix being 0-matrix and the (2,1)-block matrix B2 being a full row rank. The advantage
of our method it can be applied to systems with a nonzero right-hand side vector. It is one important highlight
of the work.

In our method, a projection matrix related to B2 is constructed and the original problem is reduced into
a small size overdetermined least squares problem. Then the least squares problem is solved by LSMR, which
is one of the Krylov subspace methods for solving the least squares problems. Numerical results demonstrate
the advantages of our method, which are the fastest convergence rate and the easy implementation. One of the
future work is to construct a precondition to improve our idea in this research.
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